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Abstract— A memoryless precoder is designed for orthogonal space- @ Vi
time block codes for multiple-input multiple-output channels exhibiting OSTBC ‘A\
joint transmit-receive correlation. Unlike most previous similar work = F H Mo L
which concentrate on transmit correlation only and pair-wise error C(x) AN
probability metrics, the precoder is designed to minimize theexactsymbol ci(@) YT 21 N % M, Yi
error rate as function of the channel correlation coefficients, which are K x1 Bx1 My x 1 My % 1 K x1
fed back to the transmitter, and the correlation may or may not follow the ,
so-called Kronecker structure The proposed method can handle general (b) Yk
propagation settings including those arising form a cooperative macro- . ‘A\y, N
diversity (multi-base) scenario. We present two algorithms. This first is k Ja k MLD |k
suboptimal, but provide a simple closed-form precoder that handles the A
case of uncorrelated transmitters, correlated receivers. The second is a ) )
fast-converging numerical optimization which covers the general case.  Fig- 1. Block model of the linear precoded OSTBC MIMO system.

The results show the superiority of the exact SER metric over the PEP . . . .
as a precoding metric and the impact of "non-Kronecker” channels in  MIMO channel. Our main contributions are: We deraeactexpres-

the overall performance. sions for the average SER for a system where the transmitter has an
|. INTRODUCTION OSTBC followed by a full precoder matrix and where the receiver
In the area of efficient communications over non-reciprocal MIM@Iso has multiple antennas and is using MLD. The transmitter knows
channels, recent research has demonstrated the value of feeding pageorrelation matrix of the channel transfer matrix and the receiver
to the transmitter information about channel state observed at #ows the channel realization exactly. We propose an iterative nu-
receiver. Among those, there has been a growing interest in trafgrical technique for minimizing the exact SER with respect to the
mitter schemes that can exploit low-rate long-term statistical chani$pcoder matrix. This is contrast with previous PEP-based precoders.
state information in the form of antenna correlation coefficients. S¥everal properties of the optimal precoder are presented. We identify
far, emphasis has been on designing precoders for space-time biggkes in which the precoder is dependentnot of the receive
coded (STBC) [1] signals or spatially multiplexed streams that af@rrelation matrix. An analytical closed-form precoder is proposed as
adjusted based on the knowledge of the transmit correlation or@{) approximation based on the hereby propasedimum diversity
while the receiving antennas are uncorrelated [2], [3], [4], [5]. Thes¥inciple in the particular case of cooperative diversity. This solution
techniques are well suited to downlink situation where an elevaté&dalso easily interpretable.
access point (situated above the surrounding clutter) transmits to a II. SYSTEM DESCRIPTION
subscriber placed in a rich scattering environment. Although simpde OSTBC Signal Model
models exist for the joint transmit receiver correlation based on therjgure 1 (a) shows the block MIMO system model witti, and
well known Kronecker structure [1], the accuracy of these modelgy, transmitter and receiver antennas, respectively. One block of
has recently been questioned in the literature based on measuremenfignal samplesco, z1, ..., zx_1 is transmitted by means of an
campaigns [6]. Therefore, there is interest in investigating the pi@STBC matrix C(z) of size B x N, where B and N are the
coding of orthogonal space-time coded (OSTBC) signals for MIM@pace and time dimension of the given OSTBC, respectively, and
channels thatlo notnecessarily follow the Kronecker structure. g — [0, 21,...,zx_1]7. It is assumed that the OSTBC is given.
Methods have been proposed previously in the field of precodest »-; ¢ .4, where A is a signal constellation set such &s-PAM,
design based on correlation knowledge on the transmitter side. RgtQAM, or M-PSK. The OSTBC returns aB x N matrix C(x)
instance, an upper bound of the PEP is minimized in [2] for transmihat is dependent ow. If bits are used as inputs to the system,

only correlation, and for full channel correlation in [7], [8]. In [9], K log, |.A| bits are used to produce the vectarwhere| - | denotes
the exact SER expressions were derived doe receiver antenna cardinality. Assume thafs [lzi|’] = o2, and that the matrix that

x

employing maximum ratio combiner at the receiver and a bound ghmes out of the OSTBC is denotéd(x) is of size B x N. Since
the exact error probability was used as the optimization criteriothe OSTBC is orthogonal, the following holds

With only one receiver antenna, no receiver correlation can be K-1
included in the model unfortunately. In [10], exact SER expressions C@)C" (@) =a ) |v|’Is, (1)
were found for uncorrelated MIMO channels that are precoded with i=0
the identity matrix as the precoder. wherea = 1 if C(z) = G3, C(z) = H3, or C(a) = Hj in [11]

In this paper, we address the problem of linear precoding 8fda = 2 if C(z) = G5 or C(z) = G{ in [11]. The rate of the

OSTBC signals launched over a jointly transmit-receive correlaté@de isK/N. Other OSTBC can be used as well. The codeword

Thi i dbv the R he T of N hroudh oroi matrix C'(x) has sizeB x N and can be expressed as:
is work is supported by the Research Council of Norway through project
number 157716/432. C(z) =[co(®) cr(m) -+ en-a1(w)], )



wherec; (x) is theith column vector ofC () and it has sizeB x 1. Ela]=E [vecH (H ) P vec (Hw)]

Before each code vectas;(x) is launched into the channel, it "
is precoded with a memoryless complex-valued maffixof size - Tr{éE [Vec (Huw) vec (H“’)” =T{2}. 12
M, x B, so theM, x 1 receive signal vectoy, becomes By generalizing the approach given in [10], [13] to include a
y, = HFci(x) + v, (3) full complex-valued precodeF of size M; x B and having &full
channel correlation matrix® the OSTBC system can be shown

where the additive noise on the chaneelis complex Gaussian Cir- 1o pe equivalent with a system having the following output input
cularly distributed with independent components having variaige re|ationship

and H is the channel transfer MIMO matrix. Let the vectoys

/ — / 13
andwv; be collected into the matricég and V', respectively, of size Y = Ve + v, (13)
M, x N in the following way: fork € {0,1,..., K—1}, and wherey;, ~ CN(0, No/a) is complex
Y = [yo Yy, - yl\_l] , (4) circularly distributed. This signal is fed into a memoryless MLD that

) is designed from the signal constellation of the source symigols
The equivalent single-input single-output (SISO) model is shown in

Then, the input-output relationship for the MIMO system can beigure 1 (b).

VZ[UO v - 1)1\771].

expressed: I1l. SER EXPRESSIONS FORGIVEN RECEIVED SNR

Y=HFC(z)+V. (6) By considering the SISO system in Figure 1 (b), it is seen that the

instantaneous received SNRper source symbol is given by
The receiver is assumed to know the channel maktiixand the aca
precoding matrixF exactly, and it performs maximum likelihood Y= N, T da, (14)
decoding (MLD) of blocks of lengthV. whered = %‘TE The expected received signal to noise ratio is given
B. Correlated Channel Models by: E [y] = aog Tr{®}
: Ne -

A quasi-static non-frequency selective correlated Rayleigh fadingin order to simplify the expressions, the following three signal
channel model [1] is assumed. LBt be the general; M, x MM,  constellation dependent constants are defined

positive definite autocorrelation matrix for the channel coefficients. —sin2 __ 3 _ 3 (15)
A channel realization of the correlated channel can then be found by gpsx M I Tz g 2(M —1)°
The symbol error probabilitBER, £ Pr {Symbol erropy} for a
vec (H) = RY?vec (H ), (7) given for M-PSK, M-PAM, and M-QAM signalling given by [14]
where R'/? is the unique positive definite matrix square root [12] 1 Y5 s
of R, H,, has sizeM, x M, and is complex Gaussian circularly SER, = ;/ e =% dp, (16)
distributed with independent components all having unit variance, 9 ]\;7 L (5 _seanr
and the operatovec(-) stacks the columns of the matrix it is applied SER, = = e sin2(8) df, 17
to into a long column vector [12]. ™ M Jo
. . . jus g ~
Kronecker model: A special case of the model above is as SER., = 4 (1 - L) [/2 e,sigghzle) i
follows [1] ™ VM x
H = Ri/gHszl/27 (8) 1 I _ Soam™
+—/ e sn%0dh| (18)
where the matrice®?,. and R, are the correlations matrices of the VM Jo }
receiver and transmitter, respectively, and their sizesMyex M,  respectively.
and M; x M;. The full autocorrelation matrix® of the model in 1V. EXACT SER EXPRESSIONS
Equation (8) is then given by The moment generating function of the probability density func-
R=E [Vec (H)vec” (H)| = R ® R,, (9) tion p,(v) is defined asp, () = [, p(7)e*dr. Since all thekK

source symbols go through the same SISO system in Figure 1 (b),
where the operatar)” denotes transposition amlis the Kronecker the average SER of the MIMO system can be found as
product. Unlike Equation (9), the general model considers that the A Y e
receive (or transmit) correlation depends on at which transmit (or SER < Pr {Error} = 0 Pr{Erorty} ps (v)dy
receive) antenna the measurements are performed. oo
= / SER+ py(7)dy. (19)
0

This integral can be rewritten by means of the moment generating
function of 4.
From Equation (11) and the fact that all the elements Hf,, is

This matrix plays an important role in the developed theory. Deﬁdgd_epen_dent a_nd complex Gaussian distributed .W'th Zero mean and
the real non-negative scalar by unit variance, it follows that the moment generating functiornvaé

C. Equivalent Single-Input Single-Output Model
Define the matrix® of size MM, x M;M, as:
& = R'/? [(FFT) ® I]MT] R'Y?. (10)

iven by:
o= ||HF|2 = vec™ (H.,)® vec (H.), ay VeV )
; . . . Pals) = MM, —1 ) (20)
where|| - |7 is the Frobenius norm. Since the mat#X,, contains H (1= Ais)
unit variance uncorrelated variableg, [vec (H ) vec” (H,)| = Pl '

I, The expected value ef can now be found:



where )\; is eigenvalue number of the positive semi-definite matrix ~ Lemma 2:1f Ny — 0" and B = M, then the optimal precoder
. Sincey = da, the moment generating function ofis given by: is given by the trivial precodeF = , / —ZL— I, for the M-PSK,

Kao'%]\lt
0(8) = o (85) = 72— 1 . (21) M-PAM, and M-QAM constellations.
tHT_ (1 - 57es) Proof: See [15]. u
i Lemma 3:If M, = B andR = I m,u,, then the optimal precoder

By using Equation (19) and the oZIeIPinition of the moment generating given by the trivial precodeF = ,/#%Im for the M-PSK,
function together with the result in Equation (21) it is possible td/-PAM, and M-QAM constellations. ’
express the exa@@ER for all the signal constellations in terms of Proof: See [15]. ]
the eigenvalues\; of the matrix . When finding the necessary Lemma 4:Let B = M,. If only receiver correlation is present, the
conditions for the optimal precoder, eigenvalues that are not simple total correlation matrix can be expressed as

might case difficulties in connection with calculations of derivatives. R, Onoxn, -+ Own.xm,
Therefore, it is useful to rewrite the expressions for 81€R in 01, x M, R, <o Oayx M,
terms of the full matrix®. This can be done by utilizing the eigen- R = . . . . ,  (26)
decomposition of this matrix. The result of all these operations led : : B :
to the following expressions for tHeER for M-PSK, M-PAM, and Ontrxnt, Ongoxcnt, oo Ry oy
M-QAM where R,, is the receive correlation matrix seen by transmitter
1 M—1)m a0 number: and the matrix0y «; has sizek x | containing only zeroes.
SER = — / , (22) Then, the optimalF’ can be chosen diagonal up to a unitary matrix.
™ Jo det (I MM, + 028G ) Without loss of optimality, the precoding matrix can also be chosen
SER — 2M-1 /% do 23) real with non-negative diagonal elements.
™ M Jy det(Inm, +0HL D)’ Proof: See [15]. [ ]
AVIT -1 z 40 Lemma 5:Let th_e correlgtlon model of the channel follow the
SER = — {/ oA Kronecker model in Equation (9) and assume tihat= M;. If
™ VM z det (Laronr, + 03255 ) R: = I,,, then the optimal precoder is independent of the receiver
1 i do 24 correlation matrixR, and given byF = ‘/#MIM“
Y /0 det (Tarar, + 620 3 | (24) Proof: See [15]. m

respectively. It is seen that Equations (22) and (23) gives the safjie o Closed-Form Solution for Independent-Transmit Correlated-
result whenM = 2. This is not surprising, since, the constellationgeceive Antennas

of 2-PSK and2-PAM are identical. Whenl/ = 4, it can be shown
that Equations (22) and (24) return the same resulR K= I s, v,
and F = I, then the performance expressions are reduced to

In this subsection, we derive a method to obtain a closed-form
xpression for the precoder in the particular case when the transmit
. . . > E‘ﬁtPennas are uncorrelated but the receive antennas are not. The ex-
results found_ in [10] and simulations result in the exact same res lﬁ]ples of this situation include the possibly non-Kronecker scenario
as reported in [10]. described in [6] where the the transmit antennas are sufficiently
V. PRECODING OFOSTBCSIGNALS spaced to be (close to) uncorrelated. For the sake of exposition we
A. Power Constraint limit ourselves to the case d8 = M, = 2, however, the approach
Then OSTBC is used, Equation (1) holds and the average powgh pe extended t& = M, > 2 as well. The number of receive
constraint on the transmitted blo® £ FC(x) can be expressed gntenna remains arbitrary.
as From Lemma 4, we know that when the transmit antennas are
aKo? Tr {FFH} =P, (25) uncorrelated, the optimal precoder boils down to a diagonal precodet,
i.e., the precoder amounts to a power allocation strategy. Here, we
attempt to find the optimal power weights analytically. For the sake
B. Optimal Precoder Problem Formulation of exposition, we assume Alamouti [16] OSTBC, i.€(x) = G7
The goal is to find the matrixF’ such that the exacSER is from [11]. We also take the following normalizatiog% =1
minimized under the power constraint. We propose that the optimall) Equivalent 1.1.D. Channel FormulationOur strategy below

where P is the average power used by the transmitted bl#ck

precoder is given by the following optimization problem: consists in rewriting the independent-transmit correlated-receive
Problem 1: channel model into an equivalent i.i.d. MIMO channel with power
. weights depending on both i) the correlation matrix, ii) the precoder
min SER -
{FecM:ixB} coefficients.
) ) . Let H = [ho ho]. From Equation (7), it follows that
subject to Kao? Tr{FF } - P hi = R ho,. 27)
: i i h I f T . . .
Remark 1: The optimal p_recoder is (_Jlependent on the valué&vp whereho, = |hu hu oo B contains unit variance
and therefore also of the signal to noise raBivR). i (Wi Wiy Wine—1] :
) ) complex Gaussian circularly distributed independent variables. Let
C. Properties of Optimal Precoder R,, = E [h;h'] have the following eigenvalue decomposition:
Lemma 1:If F' is an optimal solution of Problem 1, then the R. -V. A VH (28)
. . . . Ti T TiEET YV Ty
precoderFU, whereU € CP*Z is unitary, is also optimal.
Proof: Let F be an optimal solution of Problem 1 aidd € From the equivalent SISO model in Equation (13), it is seen that

CB*B, be an arbitrary unitary matrix. It is then seen by insertioall the K original samples are going through the same SISO system.
that the objective function and the power constraint are unaltered Blgerefore, it is sufficient to consider any of tH€ samplesxy.
the unitary matrix. B Since the precoder matri¥’, of size2 x 2, is a diagonal matrix



satisfying the power constraint in Equation (25) with— = 1, it 3) Examples:

follows that f2 + f2 = 1, where f; is diagonal element numbeér ~ Example 1 (Precoding for Kronecker Correlationjet R be
of the matrix F. From Equations (10) and (11), it is seen that théodeled according to Equation (26) wifd., = R.,. In this case,
signal amplification ¢) of z;, in the equivalent SISO model can bethe eigenvalues are characterized by

expressed as: /\roj = /\rlj (33)
a=fllhol* + £ |1 |? which according to Equation (32) yield = f? = L. In other

My —1 My —1 words, if the transmit antennas are uncorrelated and the receive

= > Ar, |hiu0j P+ Ary, Ihiulj I (29) antenna are correlated but in a way that is independent of which

j=0 j=0 transmit antenna is taken, then the best strategy is to pour power

where the variablé/, is the jth component of the vectdr .. €qually across the transmit antennas, which makes good intuitive
Since V. is unitar;/J each of the variables’ has thel same Sense. It means that the fact that the receive antennas are correlated,
q ) w;

distribution as the variablelswij, i.e., they are ind’ependent complef;nmthbe corlnpensateq folr a_t tf;e transmlﬁer through precoding of
Gaussian distributed with zero mean and unit variance. the orthogonal STBC signals in the Kronecker case.

2) Maximum Diversity Principle:n this subsection, we examine

the factor multiplyingz, in Equation (29) and invoke themaximum  Example 2 (Precoding for Non-Kronecker Correlatiortiere, we
diversity principlein order to determine optimal power weighfs assume that the two transmit antennas are uncorrelated and "see" two
and f1 in closed form. Note that we do not claim optimality ofwidely different receive correlation matrices. This may happen for
the approach below in terms of symbol error rate, although we {pstance for widely spaced transmit antennas, or transmit antennas
conjecture the obtained coefficients are (close to) optimal in tHgeated on distinct access points, such as the cooperative diversity
sense as well. We observe that for diagonal precodeis equal scenario in [17]. We assume an extreme case where transmit antenna
to a sum of2M,. uncorrelated diversity branches weighted by powdpumber0 sees an uncorrelated receivar,, = I. This corresponds
terms. According to our proposed maximum diversity principle, wi® @ link with M, orders of diversity with a wide angle spread in the
make those weights as similar to each other as possible in or@éection of arrival. While antenna numbérsees a fully correlated

to spread the symbol energy evenly across all diversity branchEC€VerR.,, = 1ar.xw,, where the matrixiar, xa,. contains only

Mathematically, this is realized through the following minimunfnes and has siz&f, x M..
Vanance problem In thIS Case)\m% =1 V 7 S {0, 1, ey Mr — 1} and>\7~11 = MT
and\,, =0 Vi€ {l,...,M, —1}. This yields directlytan 6 =

1 My—1 1 1 My—1 2 -
; 2 _ 2 ——, thus,
FT0 90 DN VTS b SRS BC IR E:
=0 j=0 =0 j=0 f2 _ Mr f2 _ 1
subject to f& + f2 =1, ° T M.+1 T M.+1

_ _ N _ V1. OPTIMIZATION ALGORITHM
Interestingly, we notice that the empirical mean, definednas | et the matrixk ., be the commutation matrix [18] of sidé x k.
used in the expression above is independent of the precoder: Sing@ constrained maximization Problem 1 can be converted into

Tr{R.,} = M, V i we have an unconstrained optimization problem by introducing a Lagrange
1 LMt 1 multiplier u/. This is done by defining the following Lagrange
_ 2 _ 2 2 _ = H .
m= o Z Z Fidr, = T (f6 My + fIMy) = 3. function: / ;
i=0 j=0 L(F) = SER 44 Tr{FF } (34)
SoP(r)(;Jtr)lgrrT(])bzlgm can be rewritten simply into Since the objective function should be minimized, > 0. Define
' the M? x M7?M? matrix L as
fo. 120525 550 In order to present the results compactly, define the following
subject to f& + f7 = 1. BM; x 1 vectors(F, 0, g, 11):

s(F,0,9,1) = p {FT ® IMt] L [R”Q ® (R”Q) ]
Lemma 6:We parametrize the precoder accordingféo= cos(0),

-1
f1 = sin(0) whered is arbitrary in[0, Z]. The solution to Problem 2 vec ([IAQJMT + 6%@%] )
is given in terms o® by: X . (36)
sin? (9) det (IMtM,,. + 5%@)
Lemma 7:The precoder that is optimal for Problem 1 must satisfy:
tan 6 = (32) A
vee(F) = [ s(F, 0,905k, (37)
0
vee (F) = [ * s(F.0. gow, 1), (38)
Proof: See [15]. | 0

w3

This results can be interpreted as follows: The power allocatiqn,. F) :/ s(F. 0, gomm, 11)d0 + 1 /z $(F. 0. gomm, 110,
on a given transmit antenna is proportional to the receive-correlation = Y ’ VM Jo Y ’
eigenvalue spread "experienced" by this antenna. (39)
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Fig. 2. Scenario 1: SER versus SNR performance of the proposed minimé&ig. 3. Scenario 2: SER versus SNR performance of the proposed precoder
SER precoder— o —, the trivial precoder— + —, and the minimum PEP —o — in Lemma 7, the PEP precoder x —, the precoder in Lemma 6, and

precoder— x — proposed in [8].

the trivial precoder— + —.

for the M-PSK, M-PAM, and M-QAM constellations, respectively. In the particular case of cooperative diversity, we present a closed-
1 is a positive scalar chosen such that the power constraint fairm precoder which approximates well the optimal precoder.

Equation (25) is satisfied.
Proof: See [15]. |

constantsy’ and p. are different.
VIl. RESULTS AND COMPARISONS

ing, i.e., F =
bound of the PEP [8]. The SNR is defined 8NR = 101log,, N%.
02=1/2, P=1, and M, = 6 are used.

Scenario 1:The following parameters are used in Scenario 1: Thegs]

signal constellation is 8-PAM. As OSTBC the cod¥x) = Gi

in [11] was used such that = 2, K = 4, My = B = 4, and
N = 8. Let the correlation matrix® be given by
(R),,, = 0.9, (40)

where the notatior(-), , picks out element with row numbér and
column number.

Scenario 2:Let the correlation matrixR be given by Equation (26)
with R, = Iy, and R, = ala,.xm,. + (1 — b)In,., Where

b = 0.9999. 9-QAM is used with Alamouti coding. Since the PEP

precoder is developed under the assumption Ras invertible, the
parametem is chosen close to one but different from one.

Figures 2 and 3 show the SER versus SNR performance [%]
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