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Abstract— A precoder is designed for orthogonal space-time block
codes (OSTBCs) for arbitrarily correlated Ricean multiple-input
multiple-output (MIMO) channels. Unlike previous works, the precoder
can be designed to minimize the exact symbol error rate (SER) as function
of both a) the joint transmit-receive channel correlation coefficients, and
b) the MIMO Rice component, which are fed back to the transmitter. Im-
portantly, the covariance may or may not follow the so-called Kronecker
structure. Exact SER expressions are given for multi-level PAM, PSK,
and QAM signaling. Several properties of the minimum exact precoder
are provided. An iterative numerical optimization algorithm is proposed
for finding the exact minimum SER precoder under a power constraint.

I. INTRODUCTION

In the area of efficient communications over non-reciprocal MIMO
channels, recent research has demonstrated the value of feeding back
information about the channel state observed at the receiver to the
transmitter. There has been a growing interest in transmitter schemes
that can exploit low-rate long-term statistical or structural channel
state information in the form of antenna correlation coefficients
and line-of-sight MIMO coefficients. So far, emphasis has been
on designing precoders for space-time block coded (STBC) [1]
signals or spatially multiplexed streams that are adjusted based on
the knowledge of the transmit correlation only while the receiving
antennas are uncorrelated [2], [3], [4]. However, in practice both
transmitter and receiver may exhibit correlation and the precoder
can take this into account [5]. Furthermore, although simple models
exist for the joint transmit receiver correlation based on the well
known Kronecker structure [1], the accuracy of these models has
recently been questioned in the literature based on measurement
campaigns [6]. Therefore, it is of interest to investigate the precoding
of OSTBC signals for MIMO channels that do not necessarily follow
the Kronecker structure over Ricean channels.

Previous related research: An upper bound of the pair-wise error
probability (PEP) is minimized in [2] for a Rayleigh fading channel
with transmit-only correlation. In [5], an upper bound for the PEP is
found for a Ricean fading channel with arbitrary correlation and some
asymptotic results are provided. In [7], the exact SER expressions
were derived when the receiver antennas employing maximum ratio
combiner and a bound of the exact error probability was used as the
optimization criterion for a correlated Rayleigh channel. No receiver
correlation was included in the Rayleigh channel model used in [7].
In [8], the precoder matrix was designed for minimizing the exact
SER for correlated Rayleigh MIMO channels. In [9], the precoder
was designed for uncorrelated Ricean channels. Unfortunately, in
practice correlation is present. In [10], exact expressions where
proposed for correlated Ricean channels not employing precoding
for arbitrary input signal constellations.

Here, we find the minimum exact SER linear precoder for OSTBC
signals for communication over MIMO channels which are simulta-
neously correlated and have a line-of-sight (LOS) component such
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Fig. 1. Block model of the linearly precoded OSTBC MIMO system.

that they are Rice channels. More specifically, our main contributions
and assumptions are: We derive exact expressions for the average
SER for a system where the transmitter has an OSTBC followed
by a full precoder matrix and where the receiver also has multiple
antennas and is using maximum likelihood decoding (MLD). The
SER expressions are found for regular multi-level PAM, PSK, and
QAM, and they are easy to evaluate. The transmitter knows the LOS
component and the invertible correlation matrix of the fading portion
of the channel transfer matrix and the receiver knows the channel
realization exactly. We propose an iterative numerical technique for
minimizing the exact SER with respect to the precoder matrix. Several
key properties of the optimal precoder are presented.

II. SYSTEM DESCRIPTION

A. OSTBC Signal Model

Figure 1 (a) shows the block MIMO system model with Mt

transmitter and Mr receiver antennas. One block of L signal
samples x0, x1, . . . , xL−1 is transmitted by means of an OSTBC
matrix C(x) of size B × N , where B and N are the space
and time dimension of the given OSTBC, respectively, and x =
[x0, x1, . . . , xL−1]

T . It is assumed that the OSTBC is given. Let
xi ∈ A, where A is a signal constellation set such as M -PAM,
M -QAM, or M -PSK. If bits are used as inputs to the system,
L log2 |A| bits are used to produce the vector x, where | · | denotes
cardinality. Assume that E

[|xi|2
]

= σ2
x. Since the OSTBC C(x) is

orthogonal, the following holds

C(x)CH(x) = a

L−1∑
i=0

|xi|2IB, (1)

where a = 1 if C(x) = GT
2 , C(x) = HT

3 , or C(x) = HT
4 in [11]

and a = 2 if C(x) = GT
3 or C(x) = GT

4 in [11], so the constant
a is OSTBC dependent. The rate of the code is L/N . The proposed
theory holds for any OSTBC.



Before each code word C(x) is launched into the channel, it is
precoded with a memoryless complex-valued matrix F of size Mt ×
B, so the Mr × N receive signal matrix Y becomes

Y = HF C(x) + V , (2)

where the additive noise is contained in the block matrix V of size
Mr × N , with all the components are complex Gaussian circularly
distributed with independent components having variance N0, and
H is the channel transfer MIMO matrix. The receiver is assumed
to know the channel matrix H and the precoding matrix F exactly,
and it performs MLD of blocks Y of size Mr × N .

B. Correlated Channel Models

A quasi-static non-frequency selective correlated Rice fading chan-
nel model [1] is assumed. Let R be the general MtMr × MtMr

positive definite autocorrelation matrix for the fading part of the

channel coefficients and
√

K
1+K

H̄ be the mean value of the channel
coefficients. The mean value represents the LOS component of the
MIMO channel. The factor K ≥ 0 is called the Ricean factor [1]. A
channel realization of the correlated channel can then be found by

vec (H) =

√
K

1 + K
vec

(
H̄

)
+

√
1

1 + K
vec (HFading)

=

√
K

1 + K
vec

(
H̄

)
+

√
1

1 + K
R1/2 vec (Hw) , (3)

where R1/2 is the unique positive definite matrix square
root [12] of the assumed invertible matrix R, where R =
E

[
vec (HFading) vecH (HFading)

]
is the correlation matrix of the

Mr × Mt fading component HFading of the channel, Hw has
size Mr × Mt and is complex Gaussian circularly distributed
with independent components all having unit variance and zero
mean, and the operator vec(·) stacks the columns of the matrix
it is applied to into a long column vector [12]. The notation
vec (Hw) ∼ CN (0MtMr×1, IMtMr ) is used to indicate the distri-
bution of the vector vec (Hw). Using the same notation vec (H) ∼
CN

(√
K

1+K
vec

(
H̄

)
, 1

1+K
R

)
.

Kronecker model: A special case of the model above is as
follows [1]

H =

√
K

1 + K
H̄ +

√
1

1 + K
R1/2

r HwR
1/2
t , (4)

where the matrices Rr and Rt are the covariance matrices of the
receiver and transmitter, respectively, and their sizes are Mr × Mr

and Mt×Mt. The autocorrelation matrix of the fading component R
of the model in (4) is then given by

R = RT
t ⊗ Rr, (5)

where the operator (·)T denotes transposition and ⊗ is the Kronecker
product. Unlike (5), the general model considers that the receive (or
transmit) covariance depends on which transmit (or receive) antenna
the measurements are performed at.

C. Equivalent Single-Input Single-Output Model

Define the matrix Φ of size MtMr × MtMr as:

Φ = R1/2
[(

F ∗F T
)
⊗ IMr

]
R1/2. (6)

This matrix plays an important role in the developed theory. Let
the eigenvalue decomposition of this Hermitian non-negative definite
matrix be given by:

Φ = UΛUH , (7)

where U ∈ C
MtMr×MtMr is unitary and Λ ∈ R

MtMr×MtMr is a
diagonal matrix containing the non-negative eigenvalues λi of Φ on
its main diagonal.

Define the real non-negative scalar α by

α=‖HF ‖2
F=

[√
1

1 + K
vecH (Hw)R1/2+

√
K

1 + K
vecH

(
H̄

)]

[(
F ∗F T

)
⊗IMr

][√ 1

1 + K
R1/2vec (Hw)+

√
K

1 + K
vec

(
H̄

)]
,

(8)

where ‖ · ‖F is the Frobenius norm. Since the matrix
Hw contains zero mean, unit variance uncorrelated variables,
E

[
vec (Hw) vecH (Hw)

]
= IMtMr . Since it is assumed that R is

invertible, α can be rewritten by means of the eigen-decomposition,
in (7), as:

α=

MtMr−1∑
i=0

λi

1 + K

∣∣∣(vec
(
H ′

w

)
+

√
KUHR−1/2 vec

(
H̄

))
i

∣∣∣2 , (9)

where vec (H ′
w) ∼ CN (0MtMr×1, IMtMr ) has the same distribu-

tion as vec (Hw).
By generalizing the approach given in [13], [14] to include a

full complex-valued precoder F of size Mt × B and having a full
channel correlation matrix 1/(1+K)R and mean

√
K/(1 + K)H̄ ,

the OSTBC system can be shown to be equivalent with a system
having the following input-output relationship

y′
k =

√
αxk + v′

k, (10)

for k ∈ {0, 1, . . . , L−1}, and where v′
k ∼ CN (0, N0/a) is complex

circularly distributed. This signal is fed into a memoryless MLD that
is designed from the signal constellation of the source symbols A.
The equivalent single-input single-output (SISO) model is shown in
Figure 1 (b). The equivalent SISO model is valid for any realization
of H .

III. SER EXPRESSIONS FOR GIVEN RECEIVED SNR

By considering the SISO system in Figure 1 (b), it is seen that the
instantaneous received SNR γ per source symbol is given by

γ =
aσ2

xα

N0
= δα, (11)

where δ � aσ2
x

N0
.

In order to simplify the expressions, the following three signal
constellation dependent constants are defined

gPSK = sin2 π

M
, gPAM =

3

M2 − 1
, gQAM =

3

2(M − 1)
. (12)

Define the positive definite matrix A of size MtMr × MtMr as

A = IMtMr +
δg

(1 + K) sin2(θ)
Φ, (13)

where g takes on the form in (12). The symbols A(PSK), A(PAM),
and A(QAM) are used for the PSK, PAM, and QAM constellations,
respectively.



The symbol error probability SERγ � Pr {Error|γ} for a given γ
for M -PSK, M -PAM, and M -QAM signaling is given by [15]

SERγ=
1

π

∫ (M−1)π
M

0

e
− gPSKγ

sin2 θ dθ, (14)

SERγ=
2

π

M − 1

M

∫ π
2

0

e
− gPAMγ

sin2 θ dθ, (15)

SERγ=
4

π

(
1− 1√

M

)[
1√
M

∫ π
4

0

e
− gQAMγ

sin2 θ dθ+

∫ π
2

π
4

e
− gQAMγ

sin2 θ dθ

]
, (16)

respectively.

IV. EXACT SER EXPRESSIONS

The moment generating function of the probability density func-
tion pγ(γ) is defined as φγ(s) =

∫ ∞
0

pγ(γ)esγdγ. Since all the L
source symbols go through the same SISO system in Figure 1 (b),
the average SER of the MIMO system can be found as

SER � Pr {Error} =

∫ ∞

0

SERγ pγ(γ)dγ. (17)

This integral can be rewritten by means of the moment generating
function of γ.

In order to find the moment generating function of γ, the following
results will be useful.

Lemma 1: Let X ∼ N (mX , σ2
X) and Y = X2. The moment

generating function of Y is given by:

φY (s) =
e

m2
X s

1−2σ2
X

s√
1 − 2σ2

Xs
. (18)

Proof: This result can be shown by using the Laplace transform
formulas in Chapter 29 of [16] of Equation (2.1-115) in [17].

Lemma 2: Let Z = X + jY be a Gaussian complex circularly
distributed process CN (mZ , σ2

Z). The moment generating function
of |Z|2 = X2 + Y 2 is given by:

φ|Z|2(s) =
e

|mZ |2s

1−σ2
Z

s

1 − σ2
Zs

. (19)

Proof: Since Z is circularly distributed, the real and imaginary
part of Z are statistically independent, real and Gaussian distributed

with equal variance σ2
Z
2

. Since the moment generating function of a
sum of two random variables is equal to the product of the moment
generating functions of the two variables, the result follows by using
Lemma 1.

The moment generating function in Lemma 2 has the same shape
as the moment generating function for the Rice distribution given in
Equation (2.17) in [15].

From vec (H ′
w) +

√
KUHR−1/2 vec

(
H̄

) ∼
CN

(√
KUHR−1/2 vec

(
H̄

)
, IMtMr

)
and (9), it follows

from Lemma 2 that the moment generating function of α is given
by:

φα(s) =
e

MtMr−1∑
i=0

|uH
i R−1/2 vec

(
H̄

) |2 K
1+K

λis

1 − λi
1+K

s

MtMr−1∏
i=0

(
1 − λi

1 + K
s

) , (20)

where λi is eigenvalue number i of the matrix Φ, and ui is the ith
column vector of the matrix U . Since γ = δα, the moment generating
function of γ is given by:

φγ(s) = φα (δs) =
e

MtMr−1∑
i=0

|uH
i R−1/2 vec

(
H̄

) |2 Kδλi
1+K

s

1 − δλi
1+K

s

MtMr−1∏
i=0

(
1 − δλi

1 + K
s

) . (21)

By using (17) and the definition of the moment generating function
together with the result in (21) it is possible to express the exact
SER for all the signal constellations in terms of the eigenvalues λi

and eigenvectors ui of the matrix Φ:

SER =
1

π

∫ M−1
M

π

0

φγ

(
− gPSK

sin2 θ

)
dθ, (22)

SER =
2

π

M − 1

M

∫ π
2

0

φγ

(
− gPAM

sin2 θ

)
dθ, (23)

SER =
4

π

(
1 − 1√

M

) [
1√
M

∫ π
4

0

φγ

(
− gQAM

sin2 θ

)
dθ

+

∫ π
2

π
4

φγ

(
− gQAM

sin2 θ

)
dθ

]
. (24)

In order to present the SER expressions compactly, define the
following real non-negative scalar function, which is dependent on
the LOS component, as:

f(K, R, A) =
eK vecH(H̄)R−1/2A−1R−1/2 vec(H̄)

detA
. (25)

Optimization of the system might be done through differentiation.
The eigenvalues that are not simple can cause problems since the
differentiation with respect to these are difficult to find. Therefore,
it is useful to rewrite the SER expressions such that the expressions
become independent of U and λi. If the eigen-decomposition in (7)
is utilized, it is possible to express the SER as a function of Φ:

SER =
f(−K, R, IMtMr )

π

∫ M−1
M

π

0

f(K, R, A(PSK))dθ, (26)

SER =
2f(−K, R, IMtMr )

π

M − 1

M

∫ π
2

0

f(K, R, A(PAM))dθ, (27)

SER =
4f(−K, R, IMtMr )

π

(
1 − 1√

M

)
[

1√
M

∫ π
4

0

f(K, R, A(QAM))dθ +

∫ π
2

π
4

f(K, R, A(QAM))dθ

]
, (28)

for PSK, PAM, and QAM signaling, respectively.

Remark 1: If K = 0, then the above SER expressions reduce to
the SER expressions derived for Rayleigh fading channels in [8]. The
above SER expressions were verified by Monte Carlo simulations.
The proposed SER expressions are only valid for invertible R
when there is a non-zero LOS component present, but if the LOS
component is zero, R can be singular. It is seen from the above
expressions, that if F = 0Mt×B , then all three expressions give
SER = M−1

M
. Intuitively, this makes sense, since in this case, the

receiver will only receive noise and then on average one of M symbol
decisions will be correct. The above expressions have a similar form
as the PEP expressions proposed in [5]. The expressions in [10] are
not as easy to evaluate as the proposed expressions since, in [10], the
input signal constellation was arbitrary and then the SER expressions



must be found by performing two-dimensional integrals over possibly
complicated regions in the complex plane. The proposed expressions
are very easy to evaluate.

V. PRECODING OF OSTBC SIGNALS

A. Power Constraint

When an OSTBC is used, (1) holds and the average power
constraint on the transmitted block Z � F C(x) can be expressed
as

aLσ2
x Tr

{
F F H

}
= P, (29)

where P is the average power used by the transmitted block Z .

B. Optimal Precoder Problem Formulation

The goal is to find the matrix F such that the exact SER is
minimized under the power constraint. We propose that the optimal
precoder is given by the following optimization problem:

Problem 1:

min
{F ∈CMt×B}

SER

subject to Laσ2
x Tr

{
F F H

}
= P.

In general, the optimal precoder is dependent on the value of N0

and, therefore, also of the signal to noise ratio (SNR).

C. Properties of Optimal Precoder

Remark 2: When K = 0, the channel has no LOS component
and then all the properties given in [8] are applicable.

Lemma 3: If F is an optimal solution of Problem 1, then the
precoder F W , where W ∈ C

B×B is unitary, is also optimal.
Proof: Let F be an optimal solution of Problem 1 and W ∈

C
B×B , be an arbitrary unitary matrix. It is then seen by insertion

that the objective function and the power constraint are unaltered by
the unitary matrix.

Lemma 4: If SNR → ∞ and B = Mt, then the optimal precoder
is given by the trivial precoder F =

√
P

Laσ2
xMt

IMt for the M -PSK,
M -PAM, and M -QAM constellations.

Proof: When SNR → ∞, then δ → ∞, and in this
case, the integrand of SER can be simplified as f(K, R, A) →
1/ det

(
δg/((1 + K) sin2 θ)Φ

)
. Then, the problem can be rewritten

as finding the maximum of det (Φ) under the power constraint.
This problem is again equivalent to maximize det

(
F F H

)
subject

to Tr
{
F F H

}
= P

aLσ2
x

. It can be shown that the solution of this
symmetrical equivalent problem is the trivial precoder.

Let the matrix Kk,l be the commutation matrix1 of size kl × kl.
Let G � KMr,Mt

[
K vec

(
H̄

)
vecH

(
H̄

)
+ R

]
KMt,Mr , and let

the ith block diagonal of this matrix of size Mt×Mt be denoted Gi,
i.e., Gi = (G)iMt:(i+1)Mt−1,iMt:(i+1)Mt−1. Define the Mt × Mt

matrix β as:

β =

Mr−1∑
i=0

GT
i . (30)

1The commutation matrix Kk,l is the unique kl × kl permutation matrix
satisfying Kk,l vec (S) = vec

(
ST

)
for all matrices S ∈ Ck×l.

Lemma 5: Assume that β has a simple maximum eigenvalue, with
the unit-norm vector v as the corresponding eigenvector. If SNR →
−∞ dB, then the optimal precoder is given by

F =

√
P

Laσ2
x

[v 0Mt×B−1] , (31)

for the M -PSK, M -PAM, and M -QAM constellations.
Proof: This can be proven using a similar strategy as was used

in [5], where the same result is proved when PEP is the optimization
criterion.

With the precoder in Lemmas 5, the transmitted signal from
the transmitter has the shape v (C(x))0,:. This shows that the
first row of C(x) is beamformed in the direction of v which is
the eigenvector corresponding to the largest eigenvalue of G =
KH̄H̄

H
+ E

[
HH

FadingHFading
]
.

Lemma 6: Assume that the Mt×Mt matrix H̄
H

H̄ has a simple
maximum eigenvalue with corresponding normalized eigenvector w.
If K → ∞, then the minimum SER precoder is given by:

F =

√
P

Laσ2
x

[w 0Mt×B−1] , (32)

for the M -PSK, M -PAM, and M -QAM constellations.

Proof: This can be proven using a similar method as in the
previous lemma.

With the precoder in Lemma 6, the transmitted signal from the
transmitter has the shape w (C(x))0,:, where w. This shows that
the first row of C(x) is beamformed in the direction of w, which
corresponds to the leading right singular vector of the LOS matrix H̄ .
Notice that, the precoders in Lemmas 5 and 6 are not unique since any
precoder can be postmultiplied with a unitary matrix, see Lemma 3.

VI. OPTIMIZATION ALGORITHM

The constrained maximization Problem 1 can be converted into
an unconstrained optimization problem by introducing a Lagrange
multiplier µ′. This is done by defining the following Lagrange
function:

L(F ) = SER+µ′ Tr
{

F F H
}

. (33)

Since the objective function should be minimized, µ′ > 0. Define
the M2

t × M2
t M2

r matrix Π as

Π =
[
IM2

t
⊗ vecT (IMr )

]
[IMt ⊗ KMt,Mr ⊗ IMr ] . (34)

In order to present the results compactly, define the following
BMt × 1 vector s(F , θ, g, µ):

s(F , θ, g, µ) = µ
[
F T ⊗ IMt

]
Π

[
R1/2 ⊗

(
R1/2

)T
]

vec∗
(
A−1 + KA−1R−1/2 vec

(
H̄

)
vecH

(
H̄

)
R−1/2A−1

)
eK vecH(H̄)R−1/2A−1R−1/2 vec(H̄)

sin2(θ) det (A)
. (35)
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Fig. 2. SER versus SNR performance of the proposed minimum SER
precoder − + − and the trivial precoder − ◦ −.

Theorem 1: The precoder that is optimal for Problem 1 must
satisfy:

vec (F ) =

∫ M−1
M

π

0

s(F , θ, gPSK, µ)dθ, (36)

vec (F ) =

∫ π
2

0

s(F , θ, gPAM, µ)dθ, (37)

vec (F ) =
1√
M

∫ π
4

0

s(F , θ, gQAM, µ)dθ +

∫ π
2

π
4

s(F , θ, gQAM, µ)dθ.

(38)

for the M -PSK, M -PAM, and M -QAM constellations, respectively.
µ is a positive scalar chosen such that the power constraint in (29)
is satisfied.

Proof: The necessary condition for the optimality of Problem 1
is found by setting the derivative of the Lagrangian in (33) with
respect to vec (F ∗) equal to the zero vector of the same size. Finding
the derivative with respect to the complex valued vector vec (F∗) can
be done by generalizing the works in [18], [19] when the differentials
of F and F ∗ are treated as independent.

Equations (36), (37), and (38) can be used in a fixed point iteration
for finding the precoder that solves Problem 1. Notice that the positive
constants µ′ and µ are different.

VII. RESULTS AND COMPARISONS

Comparisons are made against a system not employing any precod-
ing, i.e., F =

√
P

Laσ2
xMt

IMt , since we have not found any explicit
algorithm for minimizing PEP in the literature for precoded corre-
lated Ricean channels. The SNR is defined as: SNR = 10 log10

P
N0

.
σ2

x = 1/2, P = 1, Mr = 6, and 9-QAM were used. The OSTBC
code C(x) = GT

4 in [11] was used such that a = 2, L = Mt = B =
4, and N = 8. The channel statistics is given by (R)k,l = 0.9|k−l|,
where the notation (·)k,l picks out element with row number k and
column number l, K = 1 and H̄ = 1Mr×Mt , where the matrix 1k×l

has size k× l containing only ones. Although R is not necessarily a
practical case, this serves as a test-case for the proposed algorithm.

Figure 2 shows the SER versus SNR performance of the proposed
system and a system not using precoding. It is seen from the figure
that the proposed precoder outperforms the system not employing
a precoder. It is seen from Figure 2 that when SNR → ∞,
the performances of the systems approach each other. This is in
accordance with Lemma 4.

VIII. CONCLUSIONS

For an arbitrary given OSTBC, exact SER expressions have been
derived for a precoded MIMO system for communication over
correlated Ricean channels. The receiver employs MLD and has
knowledge of the exact channel coefficients, while the transmitter
only knows the channel statistics, i.e., the Ricean factor, the LOS
component, and the autocorrelation matrix of the fading component
of the channel. An iterative method is proposed for finding the
exact minimum SER precoder for M -PSK, M -PAM, and M -QAM
signaling. The proposed precoders outperforms the trivially precoded
OSTBC system. Several properties of the optimal precoder were
identified.

REFERENCES

[1] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications. Cambridge, United Kingdom: Cambridge University
Press, May 2003.

[2] H. Sampath and A. Paulraj, “Linear precoding for space-time coded
systems with known fading correlations,” IEEE Communications Letters,
vol. 6, no. 6, pp. 239–241, June 2002.

[3] R. U. Nabar, H. Bölcskei, and A. J. Paulraj, “Cut-off rate based transmit
optimization for spatial multiplexing on general MIMO channels,” in
Proc. Int. Conf. on Acoustics, Speech, and Signal Proc., vol. 5, 2003,
pp. 61–64.

[4] R. U. Nabar, H. Bolcskei, and A. J. Paulraj, “Transmit optimization
for spatial multiplexing in the presence of spatial fading correlation,” in
Proc. IEEE GLOBECOM, vol. 1, Nov. 2001, pp. 131–135.

[5] G. Jöngren, M. Skoglund, and B. Ottersten, “Combining beamforming
and orthogonal space-time block coding,” IEEE Trans. Inform. Theory,
vol. 48, no. 3, pp. 611–627, Mar. 2002.

[6] E. Bonek, H. Özcelik, M. Herdin, W. Weichselberger, and J. Wallace,
“Deficiencies of a popular stochastic MIMO radio channel model,” in
Proc. Int. Symp. on Wireless Personal Multimedia Communications,
Yokosuka, Japan, Oct. 2003.

[7] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming
and space-time block coding based on channel correlations,” IEEE Trans.
Inform. Theory, vol. 49, no. 7, pp. 1673–1690, July 2003.

[8] A. Hjørungnes and D. Gesbert, “Minimum exact SER precoding of
orthogonal space-time block codes for correlated MIMO channels,” in
Proc. IEEE GLOBECOM, Dallas, USA, Nov. - Dec. 2004.

[9] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming
and space-time block coding based on channel mean feedback,” IEEE
Trans. Signal Processing, vol. 50, no. 10, pp. 2599–2613, Oct. 2002.

[10] M. Gharavi-Alkhansari, A. B. Gershman, and M. Haardt, “Exact error
probability analysis of orthogonal space-time block codes over correlated
rician fading channels,” in Proceedings of the ITG Workshop on Smart
Antennas (ITG 2004), Munich, Germany, Mar. 2004.

[11] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
coding for wireless communications: Performance results,” IEEE J.
Select. Areas Commun., vol. 17, no. 3, pp. 451–460, Mar. 1999.

[12] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge
University Press Cambridge, UK, 1991, reprinted 1999.

[13] H. Shin and J. H. Lee, “Exact symbol error probability of orthogonal
space-time block codes,” in Proc. IEEE GLOBECOM, vol. 2, Nov. 2002,
pp. 1197–1201.

[14] X. Li, T. Luo, G. Yue, and C. Yin, “A squaring method to simplify the
decoding of orthogonal space-time block codes,” IEEE Trans. Commun.,
vol. 49, no. 10, pp. 1700–1703, Oct. 2001.

[15] M. K. Simon and M.-S. Alouini, Digital Communication over Fading
Channels: A Unified Approach to Performance Analysis. Wiley Series
in Telecommunications and Signal Processing, 2000.

[16] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York, USA: Dover Publications, Inc., 1972.

[17] J. G. Proakis, Digital Communications, 4th ed. Singapore: McGraw-
Hill, 2001.

[18] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with
Application in Statistics and Econometrics. Essex, England: John Wiley
& Sons, Inc., 1988.

[19] D. H. Brandwood, “A complex gradient operator and its application in
adaptive array theory,” IEE Proc., Parts F and H, vol. 130, no. 1, pp.
11–16, Feb. 1983.


