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ABSTRACT 
We investigate space-frequency block coding for OFDM systems with multiple transmit antennas, where coding is 
applied in the frequency domain (OFDM carriers) rather than in the time domain (OFDM symbols). In particular we 
consider Alamouti’s code, which was shown to be the optimum block code for two transmit antennas and time domain 
coding. We show that the standard decoding algorithm results in significant performance degradation depending on the 
frequency-selective nature of the transmission channels, such that a low coherence bandwidth results in a huge 
degradation. The optimum decoding algorithm that alleviates this problem is the maximum-likelihood decoder for joint 
symbol detection. We present a performance analysis for the investigated space-frequency decoders in terms of the 
achievable BER results. Furthermore we compare space-time and space-frequency coding and discuss the respective 
advantages and drawbacks of the different decoding algorithms in terms of their complexity. It should be noted that for 
the space-time approach we introduce the so-called matched-filter receiver, which shows significantly lower complexity 
compared to the maximum-likelihood decoder known from literature. The HIPERMAN system serves as an example 
OFDM system for quantitative comparisons.  
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1. INTRODUCTION 
The domain of space-frequency coding was introduced in [1]. Space-frequency coding basically extends the 
theory of space-time coding for narrowband flat fading channels to broadband time-variant and frequency-
selective channels. The application of classical space-time coding techniques for narrowband flat fading 
channels to OFDM seems straightforward, since the individual subcarriers can be seen as independently flat 
fading channels. However, in [1] it was shown that the design criteria for space-frequency codes operating in 
the space-time- and frequency domain are different from those for classical space-time codes for narrowband 
fading channels as introduced in [2]. 
In this paper we investigate the application of the Alamouti space-time block code [3] in the frequency 
domain (over two adjacent OFDM carriers), resulting in a space-frequency block coded system with two 
transmit antennas. We will show that, when operating in frequency-selective fading channels, the application 
of conventional decoding algorithms results in a significant performance decrease. This is due to the fact that 
the equivalent channel matrix is no longer orthogonal. Consequently, independent decoding of the two 
transmitted symbols, as in conventional decoding algorithms, is no longer appropriate. In this paper we are 
going to outline joint maximum-likelihood decoding for the two transmitted symbols that allows overcoming 
the drawbacks of conventional decoding algorithms. Based on the HIPERMAN system, an OFDM system 
with 201 modulated carriers, both decoding approaches are going to be evaluated in terms of their BER 
performance and their respective complexity. 



2. SYSTEM MODEL 
We consider a communication system using space-time block coding with two transmit antennas and at least 
one receive antenna. The block diagram of such a communication system is depicted in Figure 1. 
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Figure 1.  System block diagram. 

At the transmitter side the information blocks of symbols are passed to the space-time block encoder, where 
each block contains two symbols. The space-time block encoder generates the code words of length 2M = , 
where M  corresponds to the number of transmit antennas. These code words are passed to the OFDM 
modulator and the radio frequency (RF) front-ends, which modulate the information onto the carrier 
frequency. On the receiver side up to N  receiver antennas can be used for reception. The RF signals are 
down-converted and digitized in the RF front-ends and then passed to the OFDM demodulator and the space-
time block decoder. The space-time block decoder interprets the received signals and generates estimates for 
the transmitted information symbols, which are again provided in blocks of two symbols. 

2.1. Transmitter processing and signal model 

2.1.1. Space Time Coding (STC) 

In general, a space–time block code is defined by a p M×  transmission matrix К . The entries of this 
transmission matrix are linear combinations of the transmitted symbols and their conjugates. The number of 
transmission antennas is M , and we usually use this parameter as index to separate different codes from each 
other. For example, 2К  represents a code that utilizes two transmit antennas and is defined by [3] 

 1 2
2 * *

2 1

x x
К

x x
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
, (1) 

We assume that transmission at the baseband employs a signal constellation set with 2b  elements. At each 
time slot, which consists of p  OFDM symbols (e.g. 2p =  for 2К ), nb bits arrive at the encoder of subcarrier 
k  and constellation symbols 1, ,, ,k n ks sK  are selected. Setting ,i i kx s=  for 1, 2, ,i n= K  in К , we obtain the 
matrix kÇ  for each subcarrier k , where the matrix entries are linear combinations of 1, ,, ,k n ks sK  and their 



conjugates. They are specific constellation symbols that are transmitted from the M  transmit antennas. If, for 
subcarrier k , ( )

,
i

t kc  represents the element in the tht  row and the thi  column of kÇ , the entries ( )
, , 1, 2, ,i

t kc i M= K  
are transmitted simultaneously from transmit antennas 1, 2, , MK  during the OFDM symbol 1, 2, ,t p= K *. So, 
for each individual subcarrier, the thi  column of kÇ  represents the transmitted symbols from the thi  antenna 
and the tht  row of kÇ  represents the transmitted constellation symbols at OFDM symbol t . Note that kÇ  is 
basically defined using К , and the orthogonality of К ’s columns allows a simple decoding scheme which 
will be explained in Section 2.1. Since p  OFDM symbols are used to transmit n  constellation symbols, we 
define the rate of the code to be /R n p= . For example, the rate of 2К  is one. 

In the sequel we will only consider Alamouti’s transmission matrix 2К . For this transmission matrix the 
signal ,t ky , which is received at subcarrier k  during OFDM symbol t  is given by 
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where ,i kH  is the path gain of the channel transfer function of subcarrier k  and transmit antenna i . The noise 
samples ,t kn  observed at subcarrier k  are independent samples of a zero-mean complex Gaussian random 
variable with variance /M γ , where γ  is the SNR†. The average energy of the symbols transmitted from each 
antenna is normalized to be one, so that the average power of the received signal at each receive antenna is 
M  and the resulting signal-to-noise ratio is γ . 

The transmission model of eq. (2) can also be expressed by means of a vector signal model. Without loss of 
generality we set 1t =  and by using the following equivalence 
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the received signal vector *
1, 2,

T

k k ky y⎡ ⎤= ⎣ ⎦Y  can be expressed as follows: 

 k k k kH= +Y X N , (4) 

where 1, 2,

T

k k ks s⎡ ⎤= ⎣ ⎦X  and *
1, 2,

T

k k kn n⎡ ⎤= ⎣ ⎦N  are the transmitted and additive noise signal vectors, 
respectively and the channel matrix, which is imposed by the Alamouti code matrix, is given by 
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k
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H H
H

H H
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Note that transmission model assumes that the channel does not vary during the two consecutive OFDM 
symbols, e.g. [ ] [ ], , 1i k i kH t H t= + , which results in an orthogonal channel matrix. 

                                                           
* Note that the entries ( )

, , 1, 2, ,i
t kc i M= K  of all 1,2, , SCk N= K  modulated subcarriers are transmitted in parallel during one OFDM 

symbol period. 
† Note that the increase of the noise energy by M  corresponds to an increase of the transmit energy since each of the M  transmit 
antennas is transmitting with the same power. Due to the increase of noise energy the received SNR is kept constant, which in turn 
ensures a fair comparison with systems employing one single transmit antenna. 



2.1.2. Space Frequency Coding (SFC) 

Let us now consider the application of the Alamouti code matrix [3] with coding in the frequency domain 
across two adjacent subcarriers and thus within one OFDM symbol time. The received signal vector 

*
1

T

k k ky y +′ ⎡ ⎤= ⎣ ⎦Y  now contains two adjacent subcarrier signals and may be represented in the vector signal 
model as‡: 

 k k k kH′ ′ ′ ′= +Y X N , (6) 

where [ ]1
T

k k ks s +′ =X  and *
1

T

k k kn n +′ ⎡ ⎤= ⎣ ⎦N  are the transmitted and additive noise signal vectors, respectively 
and the channel matrix is given by 
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Note that for frequency-selective channels the channel coefficients of the two adjacent OFDM carriers k  and 
1k +  are, in general, not equal ( , , 1i k i kH H +≠ ) such that the channel matrix kH  is no longer orthogonal. 

2.2. Receiver processing 

2.2.1. Space Time Coding (STC) 

The space–time block code 2К  uses the transmission matrix in (1) for each individual subcarrier k . 
Consequently, maximum likelihood detection for the transmission model (4) leads to minimizing the decision 
metric 

 ( ) 222 * *
1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1,,k k k k k k k k k k k k k k kD s s H y H s H s y H s H s= − = − − + + −Y X  (8) 

for all possible values of 1,ks  and 2,ks , thus for all carriers 1,2, , SCk N= K . The minimizing values are the 
receiver estimates of 1,ks  and 2,ks , respectively. By expanding the above metric and by deleting the terms that 
are independent of the codewords, we observe that the above metric can be decomposed in to two separate 
parts for detecting each individual symbol: minimizing the decision metric 
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for detecting 1,ks  and the decision metric 
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for decoding 2,ks . This is the simple decoding scheme described in [3]. Note that the decomposition and the 
consequent individual decoding of the two transmitted symbols is possible due to the fact that the channel 
matrix (5) is orthogonal (quasi-static channel assumption with constant path gains over two consecutive 
OFDM symbols). 
                                                           
‡ Note that the index t  is no longer required since all constellation symbols are transmitted within the same OFDM symbol and the 
carrier index k  is a sufficient identifier. Hence, the index t  was suppressed for simplicity and ease of reading. 



Next we will show that the maximum likelihood decoding solution of (9) and (10) is equivalent to the solution 
of the standard matched filter receiver. The zero-forcing equalizer for the signal model in (4) provides the 
unbiased estimates 1, 2,

ˆ ˆ ˆ T

k k ks s⎡ ⎤= ⎣ ⎦X and is given by 

 ( ) 1ˆ H H
k k k k kH H H

−
=X Y . (11) 

Note that the first term ( ) 1H
k kH H

−
 in the above equation corresponds to the equalization part whereas the term 

H
kH  is the actual matched filter part of the matched filter receiver for the flat fading vector signal model (4). 

By using the structure of the channel matrix in (5), the entire matched filter matrix can be written as 
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Consequently, we obtain the estimates ,î ks  for the transmitted signal 1,ks  and 2,ks  as 
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which provides the detailed description for the implementation of the matched filter receiver. From (13), we 
observe that the following equation holds: 
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We deduce that for , ,î k i ks s=  the previous two metrics show a minimum. By expanding the previous 
expressions and by deleting the terms that are independent of the codewords the above metrics decompose 
into (9) and (10), which are the decision metrics of the maximum likelihood receiver. This goes to show that 
the matched filter solution proposed in (12) is identical to the maximum likelihood detector proposed in [3]. 
This observation is not surprising since it is well known that, in general, the ZF equalizer provides the 
optimum solution for flat fading channels. Hence, for the transmission model (4) the ZF solution is equivalent 
to the maximum-likelihood solution. 

2.2.2. Space Frequency Coding (SFC) 

In the same way as before we can now derive the matched filter receiver for the SFC signal model (6). The 
zero-forcing equalizer providing the unbiased estimates [ ]1

ˆ ˆ ˆ T
k k ks s +=X  can be written as: 
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Consequently, we obtain the estimates ˆks  and 1ˆks +  for the transmitted signal ks  and 1ks +  as: 
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Note that for the flat fading case, where , 1 ,i k i kH H+ = , the above matched filter receiver for the frequency-
selective case converges towards solution (13). However, for the frequency-selective fading case the channel 
matrix kH ′  is no longer orthogonal and we consequently deduce that the matched filter receiver no longer 
provides the optimum solution. 
The maximum likelihood decision metric, which yields the optimum signal detector, now detects the symbols 

ks  and 1ks +  jointly and is given by 

 ( ) 222 * *
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 (16) 

where the minimization over all possible combinations of ks  and 1ks +  provides the estimates for the two 
transmitted symbols. Note that, since the channel matrix kH ′  is no longer orthogonal, the maximum likelihood 
decision metric does not decompose into two separated metrics for detection of ks  and 1ks +

§. Hence, the two 
symbols have to be detected jointly. By neglecting the terms that are independent of the transmitted symbols 

ks  and 1ks +  the above decision metric reduces to 

 

( ) ( ) ( )
( ){ ( )
( ) }

2 2 22 2
1 1, 2, 1 1, 1 2, 1

* * * *
1, 2, 1 1 2, 1, 1 1 1

* * *
1, 1 2, 1 1, 2, 1

,

2

k k k k k k k k

k k k k k k k k k k

k k k k k k

D s s H H s H H s

H y H y s H y H y s

H H H H s s

+ + + +

+ + + + +

+ + +

= + + + −

⋅ℜ + + − +

−

 (17) 

3. PERFORMANCE EVALUATION 
Simulation results for the simple and the joint maximum-likelihood decoding approach are presented in the 
following figures. The BER for HIPERMAN system parameters and Alamouti-based space-frequency coding 
are shown for channels with different coherence bandwidths. The guard interval was set to its maximum value 

/ 4GT TN=  (T  is the DFT sampling time and N  is the FFT size) and the maximum excess delay maxτ  of the 
channel was varied in order to produce channels with different coherence bandwidth. In other words, channels 
with long excess delay times, e.g. max GTτ = , exhibit a lower coherence bandwidth – corresponding to higher 
frequency-selectivity – than shorter channels. All channels are based on an exponentially decaying power 
delay profile. The performance results of the conventional Alamouti-based space-time coding on an OFDM 
carrier basis** and with matched filter based decoding is given for comparison purposes. Results for space-
                                                           
§ The same applies for STC in case where the transmission channel is not constant over two consecutive OFDM symbols. 
** For these results we assume that the channel does not change over the duration of the transmission of the space-time code, which is 
two consecutive OFDM symbols in the case of the Alamouti code. 



frequency coding are referred to by the acronym SFC whereas the space-time coding results are referred to by 
the term STC. Performances were investigated for QPSK, 16QAM and 64QAM modulations. Figure 2 shows 
the results for QPSK modulations.  From the results for the joint maximum-likelihood decoding it can be seen 
that with the new decoding approach the frequency-selective nature of the channel no longer degrades the 
performance as with the traditional matched filter approach, in the sense that the error floor for the BER that 
appears for the conventional approach can be eliminated through joint maximum likelihood decoding. 
Similarly, this observation also holds for 16QAM and 64QAM modulations. 
The above figures illustrate that Alamouti-based space-frequency coding can achieve the same performance 
as Alamouti-based space-time coding if joint symbol detection is employed. This observation can be extended 
to other block-coding schemes, e.g. involving more than two transmit antennas. 
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Figure 2.  Alamouti-based SFC for QPSK modulation and different frequency selective transmission channels and with matched filter 
(left) and advanced joint maximum likelihood decoding (right). 

4. COMPLEXITY EVALUATION 
For the complexity analysis we are going to compare the number of complex-valued additions/subtractions 
and multiplications as well as the number of real-valued metrics that have to be computed for the maximum-
likelihood decoders. We assume that the received signals and the channel estimates are available in the form 
complex numbers represented through their real and imaginary part. Furthermore, we assume that the values 
for the symbols is  as well as the values for 2

is  and *
i js s  are stored in the receiver and hence directly available 

for decoding. As for complex- and real-valued operations we assume that one complex-valued addition is 
equal to two real-valued additions and that a complex-valued multiplication accounts for four real-valued 
multiplications. Furthermore, the multiplication of a real-valued quantity by the factor 2 , like e.g. the term on 
the right hand side of (17), is implemented by means of one real-valued addition. Note furthermore, that the 
number of complex-valued memory cells that are required to store the constellation symbols, e.g. is  and *

i js s , 
is going to be referred by the term symbol memory. 
Let us first consider space-time coding and the complexity of the two decoding algorithms presented in 
Section 2.2.1, namely the maximum-likelihood decoder given by (9) and (10) and the matched-filter 
decoder (13). The discussion of the complexity of the maximum-likelihood decoder is presented in the 
following paragraphs. The complexity of the matched-filter receiver is straight-forward. For each of the 
bracketed terms in (13) we require one complex-valued addition as well as two complex-valued 
multiplications. The first term in (13) is common to both symbols that need to be decoded and this term 



requires one real-valued addition (or equally 0.5 complex-valued additions) as well as two complex-valued 
multiplications. In total this comes to 2.5 complex-valued additions and six complex-valued multiplications. 
Furthermore, we require one real-valued division for the first term in (13). It is important to note, that the 
complexity of the matched-filter receiver does not depend on the symbol constellation, a characteristic that 
does not apply to the maximum-likelihood decoder. In Table 1 quantitative results of the complexity of both 
decoders are presented for different common symbol constellation, namely QPSK, 16QAM, and 64QAM. 
By comparing the results in Table 1 for the maximum-likelihood and the matched-filter receiver, we can see 
that the matched-filter receiver shows a significantly lower complexity as far as additions and multiplications 
are concerned. This is especially true for higher order modulations like, e.g., 64QAM. Moreover, this solution 
does not require to store neither symbols nor metrics. The only drawback of the matched-filter decoder is the 
need for one real-valued division. 
 

 QPSK 16QAM 64QAM 

 ML MF decrease 
ML  MF 

ML MF Decrease 
ML  MF 

ML MF decrease 
ML  MF

real decision metrics 8 0 ∞ 32 0 ∞ 128 0 ∞ 
additions/subtractions 16 2.5 6.4 52 2.5 20.8 196 2.5 78.4 
complex multiplications 18 6 3.0 48 6 8.0 168 6 28.0 
real divisions 0 1 N.A. 0 1 N.A. 0 1 N.A. 
symbol memory cells 6 0 ∞ 24 0 ∞ 96 0 ∞ 

Table 1.  Complexity analysis for space-time coding with comparison of maximum-likelihood (ML) and  
matched-filter (MF) decoders, results for QPSK, 16QAM, and 64QAM. 

Let us next consider the complexity of the decoding algorithms for space-frequency decoding as outlined in 
Section 2.2.2. We are interested in the complexity of the joint maximum likelihood decoding as described by 
(17) and the disjoint maximum likelihood decoding outlined in (9) and (10). Note that the latter corresponds 
to the complexity for the space-time coding scheme mentioned above, e.g. in Table 1. 

For the disjoint detection approach we need to compute 2b  metrics for each of the two transmission symbols, 
where b  is the number of bits per modulated symbol, e.g. 2 in the case of QPSK modulation. Joint detection, 
in contrast, requires 22 b  metrics in order to determine the two symbols that jointly minimize the metric in 
(17). In order to minimize the number of additions, subtractions, and multiplications it is advantageous to 
arrange the expressions for the decision metrics such that terms that are independent of the symbols is  are 
grouped together, e.g. as in (17). The number of necessary complex-valued additions/subtractions and 
multiplications are provided in Table 2. For the disjoint detection approach we need to store 2b  complex-
valued symbols is  as well as their real-valued squared amplitude values 2

is . Due to their real-valued nature 
we require only half the storage place for the latter values. For the joint detection approach we need to foresee 
additional 22 b  complex-valued storage cell for the values *

i js s . The number of real-valued decision metrics as 
well as the number of complex-valued operations and memory cells is summarized in the following table. 
  



 disjoint 
detection 

joint 
detection 

real decision metrics 2 2b⋅  22 b  
additions/subtractions 4 3 2b+ ⋅  24 3.5 2 b+ ⋅  
complex multiplications 8 2.5 2b+ ⋅  210 4 2 b+ ⋅  
symbol memory cells 1.5 2b⋅  21.5 2 2b b⋅ +

Table 2.  Number of complex-valued operations and memory cells for space-frequency coding  
with comparison of disjoint and joint maximum-likelihood decoding. 

In Table 3 the results of the complexity analysis in terms of the complexity increase, which is given as the 
fraction of the number for joint versus the number for the disjoint decoding approach, are provided for QPSK, 
16QAM and 64QAM modulation. Although the complexity increase is quite moderate for QPSK, the 
increase, especially of the required number of complex-valued multiplications, might be prohibitive for 
implementation of higher order modulation schemes like, e.g., 64QAM. It should be noted, however, that in 
the system context the complexity of the space-frequency decoder needs to be put in relation to the 
complexity of other functional blocks. Let for example consider the FFT operation at the receiver. The 
number of complex multiplications required for an N  point FFT equals to 2logN N⋅ , which comes to 2048 
complex multiplications for the HIPERMAN system, where 256N = . As such, the optimal space-frequency 
decoder based on joint maximum likelihood decoding is approximately higher times as complex as the FFT 
operation. 

 

 QPSK (b=2) 16QAM (b=4) 64QAM (b=6) 

 disjoint joint increase disjoint joint increase disjoint joint increase

real decision metrics 8 16 2.0 32 256 8.0 128 4096 32.0 
additions/subtractions 16 60 3.8 52 900 17.3 196 14340 73.2 
complex multiplications 18 74 4.1 48 1034 21.5 168 16394 97.6 
symbol memory cells 6 22 3.7 24 280 11.7 96 4192 43.7 

Table 3.  Complexity analysis for space-frequency coding with comparison of disjoint and joint maximum-likelihood decoders, results 
for QPSK, 16QAM, and 64QAM and presentation of required increase of complexity for joint ML decoder. 

5. CONCLUSIONS 
Significant attention has been given to the well-known Alamouti code since the diversity gain is achieved 
without loss in bandwidth efficiency. In contrast to conventional space-time block coding with coding in the 
temporal domain, this paper also addresses space-frequency coding, i.e. coding across the OFDM subcarriers 
within one OFDM symbol. The study considers the Alamouti code as a study case. The BER performance of 
different detection methods has been investigated. First, we show that for space-time coding the conventional 
scalar (disjoint) maximum likelihood detection is equivalent to the matched-filter receiver. It was shown that 
the complexity of the newly introduced matched-filter solution is independent of the symbol constellation size 
and results in a significantly lower complexity in terms of the required additions and multiplications. Second, 
we show that the use of conventional disjoint maximum likelihood detection for space-frequency decoding 
leads to a significant performance degradation, which is due to the frequency selective nature of the 
transmission channel. This performance degradation can be avoided by using joint maximum likelihood 
detection. The complexity in terms of the number of required operations and the required memory has been 
studied for this detector and we show that the complexity increase with respect to the standard (disjoint) 
maximum likelihood detection might be prohibitive for large constellation sizes. 
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