
Identity Based Message Authentication for
Dynamic Networks

Pietro Michiardi, Refik Molva

Institut Eurecom 2229, route des Cretes BP 193 06904 Sophia-Antipolis, France
Email: {first name.last name}@eurecom.fr}

Abstract. This paper presents a message authentication scheme built
on top of an original construct that combines a simple form of iden-
tity based cryptography with an iterated version of RSA. Our scheme
blends the features of identity based cryptography and stream authenti-
cation while at the same time offering security comparable to that of the
basic RSA cryptosystem. As opposed to other authentication schemes
available in the literature, our solution does not rely on any public key
infrastructure and, like any identity based cryptosystems, it does not re-
quire public key certificates. A basic security analysis, performance eval-
uation and storage requirements of our scheme are also provided in the
paper. Furthermore, we explore a challenging application of our scheme:
a scalable and lightweight key distribution service that offers authenti-
cation services to an infrastructure-less ad hoc network and that can be
coupled with existing secure routing solutions.

1 Introduction

In this paper we propose a message authentication scheme (that we call IB-
MAC) built on top of an original construct that combines a simple form of
identity based cryptography1 with an iterated version of RSA. In our solution,
users are able to locally generate a chain of authentication material that we
call authentication tickets using as seed the secret information (that we call a
master authentication ticket) delivered by a key distribution center (KDC). By
removing the reliance on a public key infrastructure, our scheme is particularly
suitable for networks with multiple dynamic sources whereas other authentica-
tion schemes available in the literature suffer from the limitations imposed by
certificate management requirements. We also describe an interesting applica-
tion of our scheme: IB-MAC can be used as a basis to provide a lightweight
key distribution mechanism for peer authentication in infrastructure-less ad hoc
networks. In the proposed solution there is no need for a network infrastructure
and the security bootstrap phase is lightweight: the key distribution center is
involved neither in networking operations nor in any further security operations
beyond the bootstrap phase. The remainder of the paper is organized as follows:
we present the IB-MAC authentication scheme and focus on the technique used
1 in the remainder of the paper ID-based and identity based have the same meaning

2

to generate the authentication material. A basic assessment of the security prop-
erties of our scheme is provided. We then focus on the performance analysis of
the IB-MAC scheme both in terms of computational and message overhead and
storage requirements. Finally, we describe an application of the IB-MAC scheme
for key-distribution and message authentication in ad hoc networks.

2 The IB-MAC scheme

In our solution, users contact a key distribution center (KDC) and receive a
secret called the master authentication ticket M which is tightly bound to the
users’ identity (ID). M is used as a seed to generate a chain of authentication
tickets by iterative RSA encryption over the secret M . IB-MAC authentication
tickets are then proposed as symmetric keying material for a message authentica-
tion protocol designed for loosely time-synchronized users. As opposed to similar
stream authentication schemes available in the literature [9,10], our solution does
not rely on any public key infrastructure and, like any ID-based cryptosystem,
it does not require public key certificates for system users.
We now describe the basic stages of the IB-MAC scheme.

2.1 KDC setup

The idea behind our identity based scheme is the use of a single common RSA
key pair for all users within a system. The public key is assumed to be publicly
known while the private key is held by the KDC. The proposed cryptosystem
uses computations in Zn, where n is the product of two distinct odd primes p and
q. For such an integer n, note that φ(n) = (p− 1)(q− 1). The formal description
of the KDC bootstrap phase is as follows.

Key-distribution Center (KDC) setup:

1. KDC generates: two large random odd primes p and q
2. KDC computes: n = p · q → RSA-like modulus (common to all users)
3. KDC selects: small e ∈ Z∗φ(n), k ∈ N → Public values e and k (common to

all users)
4. KDC computes: d = e−k mod φ(n) → Master Secret Key

The KDC uses the RSA modulus to generate a master secret key d that
corresponds to a public exponent ek: this operation is equivalent to the legacy
RSA key-pair generation.
We stress that our scheme is not exposed to the well known common modulus
attack whereby anyone, based on one’s knowledge of a single key-pair, can simply
factor the modulus and compute other users’ private keys. In the present context,
the secret key d is only known to the KDC and kept secret from the users of
the system. Our scheme relies on a single keypair of which the private key is
only known by the KDC. Further discussion on the common modulus attack is
presented in section 3.

3

Master secret key generation As explained in section 2.1 the secret key
used by the KDC to generate master authentication tickets is of the form:
d = e−k mod φ(n). Since the secret key d is generated only once during the
system initialization and used to process all user requests, the KDC can afford
to run a complex algorithm to generate d. However, an efficient way for calcu-
lating d can be derived based on the following observation: d = e−k mod φ(n) =(
e−1

)k mod φ(n). The inverse of the public exponent e can be easily calculated,
and then it is sufficient to apply the square and multiply algorithm to compute
the exponentiation.

2.2 Sender setup

In order to produce authenticated packets, the sender needs to contact the KDC
that is in charge of issuing a master authentication ticket.

Distribution of Master Authentication Ticket:
Sender → KDC : ID
KDC generates: H(ID) = C
KDC → Sender : M = Cd mod n (securely)

Upon verification of the sender identity ID, the KDC generates and se-
curely distributes to the sender the following master authentication ticket:
M = (H(ID))d mod n, where the function H() is a one-way collision resistant
function, applied to the user identity ID. M can be thought of as the KDC’s
digital signature over the user’s identity ID2.

Sender setup:

1. Retrieve the public values n, e, k
2. Contact KDC to obtain the master authentication ticket M
3. Generate k time-dependent authentication tickets Tk

Next, the sender divides the time into uniform intervals of duration τint.
Time interval 1 starts at time τ1, time interval 2 at time τ2 = τ1 + τint, etc.
The sender computes authentication tickets Ti by iterative exponentiation of
the master authentication ticket M using the public exponent e as shown be-
low. Each authentication ticket is then assigned to a time interval starting with
time interval τ1 and ticket Tk, continuing with time interval τ2 and ticket Tk−1

and so on. The one-way authentication ticket chain is used in the reverse order
of generation, so any value of a time interval can be used to derive values of
previous time intervals. The sender uses the length k of the one-way chain as
obtained from the KDC: this length limits the maximum transmission duration
before a new one-way authentication ticket chain must be created. Note that in

2 Note however that the public exponent used for the digital signature does not cor-
respond to the one adopted by a legacy RSA signature

4

this paper we assume that chains are sufficiently long for the duration of com-
munication. It is part of our future work to find an additional mechanism that
would allow any user to self-generate a new authentication ticket chain without
the need to contact the KDC 3.

Ticket generation (Sender): Generation: ↑ and Releasing: ↓ order

Tk = Mek

mod n

Tk−1 = Mek−1
mod n

...

Tk−i = Mek−i

mod n, with i ≤ k

...

T1 = Me mod n

2.3 Transmission of authenticated messages

Message authentication requires a source of asymmetry, such that the receivers
can only verify the authentication information, but not generate valid authen-
tication information. In our scheme we adopt the key idea behind the TESLA
scheme [9] that suggest to use time as a source of asymmetry. This can be done
if we assume loose time synchronized between senders and receivers: up to some
time synchronization error ∆, all parties agree on the current time4.
Subsequently to the setup phase, the sender assigns each authentication ticket
sequentially to the selected time intervals (one ticket per time interval). Note
that using the one-way chain of authentication tickets in reverse order of gener-
ation renders computationally infeasible for an attacker to forge authentication
tickets. Furthermore, any values of a time interval can be used to derive values
of previous time intervals. The sender generates a message authentication code
(MAC) and attaches it to each packet. The MAC is computed over the contents
of the packet that needs to be transmitted. For each packet, the sender deter-
mines the time interval and uses the corresponding value from the one-way chain
of authentication tickets as a cryptographic key to compute the MAC (see [3]
for details). Along with the packet, the sender also sends the authentication
ticket it used to generate the MAC in the previous time interval and its unique
identifier (ID). Upon receipt of a packet, the receiver verifies the authentica-
tion ticket contained in the packet and uses it to check the correctness of the

3 In general, the need for such an additional scheme would depend on the particular
scenario in which our scheme is applied. Indeed one could think of applications in
which secure message authentication would be offered only to users that payed for
a pre-defined amount of authentication tickets. In this case, our scheme should be
extended in order to the number k of authentication tickets delivered to the users
by the KDC, while at the same time preserving the basic properties of the original
scheme. This is another interesting future research direction.

4 The interested reader should refer to TESLA [9] for a thorough discussion on time
synchronization issues.

5

MAC of the buffered packet that corresponds to the time interval of the au-
thentication ticket. If the MAC is correct, the receiver accepts the packet. Every
time a sender transmits a message, it appends a MAC to the message, using the
authentication ticket corresponding to the current time interval as the key to
compute the MAC. The authentication ticket for time interval τi remains secret
until it is revealed in the packet corresponding to time interval τi+1. Figure 1
depicts the time intervals and some sample packets transmitted by the sender
along time. Formally, a generic packet sent at time interval τi is of the form:
Pi =

{
mi,MACTk−i

(mi), Tk−(i−1), IDSENDER

}
where:

- mi is the message,
- MACTk−i

(mi) is the MAC generated with Tk−i,
- Tk−i = Mek−i

mod n is the ticket for time interval τi,
- Tk−(i−1) = Mek−i−1

mod n is the disclosed ticket for time interval τi−1,
- IDSENDER is the unique identifier of the sender.

i-1

i
i+1

{ }SENDERikiTii IDTmMACmP
ik

,),(,)1(−−−
=

{ }SENDERikiTii IDTmMACmP
ik

,),(,
)1(11 −++ +−

=

Fig. 1. Sending authenticated messages.

2.4 Verification of message authentication information at the
receiver

Upon reception of packet Pi+1 the receiver extracts the authentication ticket
Tk−i that can be used to authenticate the previously received packet Pi. The
receiver has to verify that the authentication ticket Tk−i corresponds to the
identity IDSENDER specified in the packet Pi. To that effect, the receiver only
has to perform i exponentiations with e that is a small exponent5:

(Tk−i)
ei

=
(
Mek−i

)ei

=
((

Cd
)ek−i

)ei

=
((

Ce−k
)ek−i)ei

= H(IDSENDER)

(1)

5 we omitted the modn notation for sake of simplicity

6

If H(IDSENDER) obtained in expression (1) equals the hash function applied
to the IDSENDER specified in the packet Pi, then the authentication ticket is
valid and it can be used as a key to verify the MAC for packet Pi.
When a sender discloses an authentication ticket, all parties potentially have
access to that ticket and can create a bogus packet and forge a MAC. Therefore,
as packets arrive, the receiver must also verify that their MACs are based on
safe keys, i.e. a key that is only known by the sender, by checking that the
time interval the sender could be in (in the example above, τi+1) is greater than
the time interval corresponding to the disclosed authentication ticket (in the
example above, τi). Receivers must discard any packet that is not safe, because
it may have been forged.

3 Basic security analysis

In this section we propose a basic security analysis of the IB-MAC scheme by
assuming that an attacker (internal or external) trying to break the cryptosys-
tem is actually trying to determine the secret master key safely guarded by the
key distribution center (KDC) by using disclosed authentication tickets collected
over time or by performing a known-plaintext attack. Further, we consider an
attacker who tries to gather a valid authentication ticket by submitting bogus
identity information to the KDC or to generate valid authentication tickets from
past authentication tickets. The reader should note that it is out of the scope of
this section to provide a formal proof of the security of our scheme.

Common modulus attack: to avoid generating a different n = p · q mod-
ulus for each user, one could envision to fix n once and for all. A trusted cen-
tral authority could provide user i with a unique pair < ei, di > from which
user i would form a public key < n, ei > and a secret key < n, di >. At first
glance, a scheme using a common modulus may seem to work: a ciphertext
C = MeA mod n intended for Alice cannot be decrypted by Bob, since Bob does
not possess dA. However the resulting system is insecure: Bob can use his own
exponents < eB , dB > to factor the modulus n. Once n is factored Bob can re-
cover Alice’s private key dA from her public key eA. The demonstration of how
Bob can find the factorization of the common modulus n can be found in [4].
In the IB-MAC system proposed in this paper the common modulus attack is
prevented. By analyzing the KDC setup phase and the sender setup phase, it
is possible to observe that as compared to the typical common modulus attack
scenario described above, no secret keying material is delivered to the users. The
modulus n is used to generate a key d that is securely kept by the KDC. d is
used to encrypt the hashed identity of a user requesting for a master authen-
tication ticket M , unlike with the common modulus attack, and the secret M
provided to each user is not a private key but the result of an encryption with
the private key d. Thus, the attack detailed in [4] can not be perpetrated against
the IB-MAC system.

7

Impersonation through blinding: suppose now that an attacker wishes
to impersonate a party known under the identity ID by gaining access to the
master ticket M for identity ID. The attacker knows that M is computed by
encrypting the hashed identity C = H(ID). Now, the attacker randomly chooses
g and computes C∗ = gek

C. Subsequently, the attacker receives the following
ticket from the KDC: M∗ = (C∗)d mod n. Based on the definition of C∗ we
have: M∗ = (gek

C)d mod n = gek·dCd mod n = g ·M . Thus M can be retrieved
using M = M∗

g . A simple observation however shows the infeasibility of this at-
tack: finding a bogus identifier ID∗ such as H(ID∗) = geC = geH(ID) requires
inverting the one-way hash function H(), which is computationally infeasible.
As a rule, the study of the impersonation attack suggests to perform the initial
authentication of users applying for a master authentication ticket by requesting
the full identifier ID of the user rather than a hashed value of the identifier.

Forging authentication tickets: suppose now that an attacker wishes
to forge an authentication ticket using a previously revealed authentication
ticket. Suppose that a legitimate sender discloses the authentication ticket: Tk =
Mek

ID mod n, where MID is the master authentication ticket for the identifier ID.
It is straightforward to show that finding MID is as hard as breaking the RSA
cryptosystem. However, we want to show that also forging the authentication
ticket Tk−1 by an attacker holding Tk is as hard as breaking the RSA system.

Since Tk−1 = Mek−1

IDSENDER
mod n =

(
Mek

IDSENDER

)e−1

mod n , in order to de-
rive Tk−1 from Tk, the attacker would have to solve the following equation:
T ′k−1 = e

√
Tk mod n , which is again equivalent to breaking the RSA system. On

the other hand, suppose an attacker with identity ID∗ holds the master authen-
tication ticket M∗ = (C∗)d mod n. The attacker also knows C = H(ID), where
ID indicates the identity of a legitimate user. Let x = C∗

C . Now6,

Tk−1 = Mek−1

ID =
(
Cd

)ek−1

=

((
C∗

x

)d
)ek−1

=
(

M∗

xd

)ek−1

but it is evident that the attacker cannot generate the value xd that is needed

to forge the authentication ticket Tk−1. Indeed:
(
xd

)ek−1

= xdek−1
= xe−1

= e
√

x
where d · ek = 1 mod φ(n). Solving the e-th root of x modulo n is as hard as
breaking the RSA system.

4 Performance evaluation

In this section we discuss the performance of the IB-MAC scheme in terms of
computational overhead, message overhead and storage requirements. We use as
a reference the TESLA scheme as it is the natural basis of IB-MAC. At first
6 We omitted the modn notation for sake of simplicity

8

glance TESLA outperforms IB-MAC for the three aforementioned performance
metrics. However, if we focus on an alternative performance metric that we call
bootstrap overhead, that measure the number of messages exchanged by all
entities when a new entity joins the group, IB-MAC shows better performances
as compared to TESLA. The bootstrap cost is particularly interesting for some
applications, as we will discuss in section 5.

Computational overhead: we assume the authentication ticket generation
phase (as well as the TESLA key chain generation) to be executed off-line. In
IB-MAC each ticket verification operation is equivalent to a modular expo-
nentiation with exponent e (see equation 1), which is considered to be a costly
operation. Ticket verification costs could be deemed prohibitive for using IB-
MAC in wireless sensor networks: recent studies propose, however, the use of
public-key cryptography for this type of networks [5, 6]. Conversely, a TESLA
verifier only bears the cost of a hash function execution.
We performed some tests to assess the time needed for a verifier with limited
computational power, such as mobile terminal, to verify IB-MAC authentica-
tion tickets. We studied the cost of IB-MAC ticket generation/verification for
identities derived from IP addresses using a modified version of OpenSSL [1],
cross-compiled for an IPAQ 38xx series with a 400Mhz X-Scale/Arm processor
and Linux operating system. The choice of the hardware platform that we used
for our tests is motivated by a potential application of the IB-MAC scheme that
we present in section 5. Results are presented in table 1, where we assumed
k = 10000. Note that the ticket generation time column refers to the time re-
quired by a user for the generation of k authentication tickets, expressed in
seconds.

RSA key length Ticket generation time [s] Ticket verification [ticket/s]

512 bits 6.82 1465.8

1024 bits 19.06 524.75

2048 bits 63.57 157.3

Table 1. Performance of IB-MAC ticket generation/verification.

Message overhead: we now focus on the overhead imposed by IB-MAC
for every transmitted message. Referring to figure 1, the sender needs to build
a packet including the current message, the MAC of the current message and
the authentication ticket used as a key for the MAC of the previous message.
Each authentication ticket adds an overhead equivalent to the key size used to
generate the master authentication ticket from which subsequent authentication
tickets are derived. Assuming for example a key length of 512bit, each packet
generated by the sender will suffer from a 64 bytes overhead. In TESLA the
message overhead depends on the hash function used to generate the TESLA
keys, and can be assumed to be equivalent to 160bit, that is 20 bytes. TESLA

9

saves more than 30% bandwidth as compared to IB-MAC.

Storage requirements: storage requirements can be a potential issue that
has to be taken into account when designing an authentication scheme for de-
vices with limited storage capacity. Based on a reference implementation of RSA
available in the OpenSSL package, the block size of a cipher text (i.e. an authen-
tication ticket) is equal to the key length. Using a key length of 512-bit, the
authentication ticket is 512-bit long. Thus, space requirements for every mobile
(sender) node to store authentication tickets is equal to: k · key length , where k
is the number of elements of the hash chain, i.e. the total number of authentica-
tion ticket that need to be generated, as imposed by the system parameter k. In
TESLA, the sender entity has to store an hash chain of k elements, each element
being of size 160bit. Again, storage requirements are less demanding than for
the IB-MAC scheme. However, it should be noted that in TESLA the verifier
entity stores the public key certificate of every other sender entity in the system
(N − 1, where N is the number of entities in the group), which can be in the
order of thousands of bytes [1] per certificate (depending on the key size used to
sign the certificate, the length of the certificate chain, etc...). This requirement
is necessary to verify the authenticity of the root element of the hash chain
used by a potential sender.

Bootstrap overhead: bootstrapping security associations between entities
represents a recurrent cost in terms of message exchange that could reduce the
effectiveness of an authentication scheme such as TESLA, especially in dynamic
environments in which new entities frequently join and leave a group. Let us
consider a group of N entities that share a security association, i.e. every entity
is in possession of the public key certificate of every other entity. A new member
joining the group have to send her public key certificate (used to authenticate the
root element of the TESLA hash chain) to every existing group member, while
at the same time she should expect to receive the public key certificate of every
existing member. This translates in a message exchange cost that goes as O(N2):
TESLA does not scale well when the group size is large. In IB-MAC, the boot-
strapping overhead is reduced to zero. IB-MAC tickets are self-authenticating
since the verifier only need to know the public exponent e used by the group
to verify the authenticity of a packet, as explained in section 2.4. When group
joins and leave are expected to be frequent, IB-MAC represents a scalable and
effective tool to bootstrap security associations with a minimum overhead.
Table 2 summarizes the different performance metrics we considered in this sec-
tion. For the sake of simplicity some details have been omitted: the reader should
refer to the corresponding sections to have details of overhead evaluation.

10

Overhead TESLA IB-MAC

Computation (at verifier) 1 hash function 1 modular exp.

Message 20 bytes + (N-1) certificates 64 bytes

Storage k · 20 bytes k · 64 bytes

Bootstrap O(N2) messages 0
Table 2. Performance comparison of IB-MAC and TESLA.

5 IB-MAC for message authentication in mobile ad hoc
networks (MANET)

A challenging requirement for message authentication is raised in the context of
mobile ad hoc networking. As a motivating example, a variety of secure routing
solutions for ad hoc networks have been proposed in the literature (see for ex-
ample, [2] chapter 12). In spite of the large number of solutions, ad hoc routing
does not seem to raise any new security requirement with respect to routing in
classical networks, apart from key management problems that have been often
left aside by current solutions available in the literature. Key management ap-
proaches try to answer the hard question of how to establish security associations
with no a-priori knowledge, no a-priori trust and lack of infrastructure. Several
original key management schemes based on advanced cryptographic constructs
have been suggested in the literature (see [2] for a literature survey) but they all
fall short in meeting the ultimate goal of building a keying infrastructure ”from
scratch” since they all involve a complex (and often unrealistic) key set-up phase.
In this section we describe a key distribution mechanism based on the IB-
MAC scheme that offers authentication services to an infrastructure-less ad hoc
network. The main features of our solution range from relaxed networking in-
frastructure requirements to a scalable and lightweight security bootstrap phase
with respect to network dynamics. The IB-MAC scheme can be coupled, for ex-
ample, with the ARIADNE [7] secure routing protocol. Due to space limitation
we suggest the reader to refer to [8] for a detailed description of a variation of
ARIADNE based on IB-MAC.
Figure 2 shows a typical scenario in which one (or more) KDC offers both naming
and authentication services. During the bootstrap phase, a mobile node (for ex-
ample node NID9) that needs authentication services contacts the closest KDC
and provides initial authentication information. This initial authentication in-
formation can take the form of a secret code printed on a prepaid card that is
delivered by a (automatic) teller, or a secret code printed on tickets delivered at
the entrance of confined areas like shopping malls, airports, conference sites.
By providing the initial authentication information to the KDC, the mobile node
securely receives a unique identifier (that in our case is represented by an IP
address for the ad hoc network) and a master authentication ticket MID. Us-
ing IP addresses as node identities allows exploiting existing addressing mech-
anisms to provide network-wide known and unique node identifiers. However,

11

Fig. 2. Application of IB-MAC for naming and key management in open ad hoc net-
works.

one might consider the scenario in which nodes’ IP addresses might constantly
change due for example to hand overs between different ad hoc networks. More-
over, self-organized addressing schemes might be preferable to the addressing
scheme proposed in this section. In these situations, an additional overhead for
node re-authentication and for the generation of new authentication tickets have
to be taken into account. We will address these issues in our future research,
were we also plan to use cross-layer information (e.g. pseudonyms used in peer-
to-peer applications) to provide a suitable naming service. The IB-MAC system
is robust against impersonation through spoofing, as explained in section 3: fur-
thermore, by introducing a monetary overhead prior to the obtention of a master
authentication ticket, we make bogus authentication ticket generation an expen-
sive operation. For the purpose of this paper we assume that authentication
ticket chains are sufficiently long for the whole duration of the communication
in the ad hoc network.

6 Conclusion

This paper presents an identity based authentication scheme based on a sim-
ple form of identity based cryptography combined with stream authentication
techniques. In our solution, users are able to generate a chain of authentica-
tion tickets using as seed the secret information delivered by a key distribution
center. By removing the reliance on a public key infrastructure, our scheme is
particularly suitable for networks with multiple dynamic sources whereas other
authentication schemes available in the literature suffer from the limitations im-
posed by certificate management requirements. In addition, there is no need for
any organizational structure among users or between users and the KDC. We
also provide a basic security analysis of our scheme and show through various

12

attacks that breaking our scheme is equivalent to breaking the basic RSA algo-
rithm. A basic performance evaluation of IB-MAC is also provided.
Furthermore, we present an interesting application of the IB-MAC scheme in pro-
viding a lightweight and scalable key distribution service for ad hoc networks.
As compared to other solutions available in the literature, our scheme trades-off
an increased computational and message overhead with relaxed requirements
in terms of networking infrastructure while offering a security bootstrap phase
that does not entail a burdensome credential exchange between all nodes due to
network dynamics.

References

1. Openssl, available from http://www.openssl.org.
2. S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic. Mobile ad hoc networking.

IEEE Press, Wiley and Sons, US, 2004.
3. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message

authentication. Lecture Notes in Computer Science, 1109, 1996.
4. Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the

American Mathematical Society (AMS), 46(2):203–213, 1999.
5. G. Gaubatz, J-P. Kaps, and B. Sunar. Public-key cryptography in sensor networks-

revisited. In Proceedings of 1st European Workshop on Security in Ad-Hoc and
Sensor Networks (ESAS), Heidelberg, Germany, August 2004.

6. V. Gligor, G. Tsudik, and D. Wagner. Security in ad-hoc and sensor networks.
Panel session in IEEE Symposium on Security and Privacy, May 2005.

7. Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure on-demand
routing protocol for ad hoc networks. In Proceedings of the Eighth Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom), September
2002.

8. P. Michiardi and R. Molva. Identiy based message authentication for dynamic
networks. Research Report RR-pending, Institut Eurecom, 2005.

9. A. Perrig, R. Canetti, D. Tygar, and D. Song. The tesla broadcast authentication
protocol. In RSA Cryptobytes, volume 5, 2002.

10. A. Perrig, R. Canetti, J. D. Tygar, and D. X. Song. Efficient authentication and
signing of multicast streams over lossy channels. In IEEE Symposium on Security
and Privacy, pages 56–73, 2000.

