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Abstract

Existing backoff scheme’s optimization of IEEE 802.11 DCRA® protocol consider only saturated networks
or asymptotic conditions. In real situations, traffic is ¢iyror streamed at low rates so that stations do not operate
usually in saturated regime. In this work, we propose andyaaaa backoff enhancement for IEEE802.11 DCF
that requires information only about the network size arat b quasi-optimal under all traffic loads. We first
analyze the performance of DCF multiple access scheme watharal load conditions in single hop configuration
and we provide an accurate delay statistics model that dengie self-loop probability in every backoff state. We
prove then the short-term unfairness of the binary expaalebackoff used in IEEE802.11 by defining channel
capture probability as fairness metric. Motivated by theuhes on fairness, we introduce the constant-window
backoff scheme and we compare its performance to IEEE8@CH with Binary exponential backoff. The quasi-
optimality of the proposed scheme is proved analyticallgd anmerical results show that it increases, both the
throughput and fairness, of IEEE 802.11 DCF while remainimgensitive to traffic intensity. The analysis is
then extended to consider the finite queuing capacity atsbdéfers using results from the delay analysis. NS2
simulations validate the obtained results.

Index Terms

EEE DCF, binary exponential backoff, short-term fairneggimal constant-window backoff, M/G/1/K queues.EEE
DCF, binary exponential backoff, short-term fairness,jropt constant-window backoff, M/G/1/K queues.l

|. INTRODUCTION AND RELATED WORKS

In the IEEE 802.11 standard for wireless LAN networks [1]g tbrimary medium access scheme is called
"distributed coordination function”(DCF) and it is based @ CSMA/CA protocol with binary exponential backoff
(BEB) retransmission rules. Since the introduction of ttaadard, many works have been interested in the analytical
evaluation of its performance; most of them were based onntbdel of Bianchi [2], and consider saturation
throughput and delay analysis ([3], [4], [5] to cite few).

A. Queuing Analysis

In real networks, packets may be queued at nodes buffer dodfeing handled by the MAC protocol, and
typical data traffics are bursty or streamed at low rates abdfations do note operate usually in saturated regime.
Recent works have addressed the finite load performancexi882.11 DCF with queuing at nodes buffer (queues
with infinite capacity)[6], [7] or with simplifying assumigins [8].
The analysis of queuing model of MAC protocols is a challaggiask, and generally do not permit to obtain
closed-form expressions of quantities of interest. In thigk, we use a two-stage technique to analyze a queuing
model of DCF protocol. In order to acquire closed-form egpien of system performance, a Markov chain model
is first used to analyze the non-queuing operation of theesysiThe traffic load in this case is modeled as a
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probability of having a packet to transmijt this probability is taken into account whenever the protds able to
handle a new packet. In this way,allows us to consider the fact that packet arrivals may oetwytime during
the operation of the system. From the non-queuing model, btairo the service-time statistics corresponding to
a giveng. In the second phase, we consider a queuing model of thensysgiih a given arrival process(t) and
queue lengthK. Thus, the probability of having a packet to transmitorresponds to the probability of having at
least one packet in the queyg In order to link the two models, we use a recursive algorghhat update the
value used in the Markov model to specify the service timésties, to match the resultingy from the queuing
model.

B. Backoff Scheme Optimization

It is well recognized that the key optimization issue of ramdaccess protocols is the design of an optimal
retransmission scheme that keeps access rate to the mualtipkss channel around its capacity. Obviously, an
optimal retransmission scheme must achieve this capanitgruall network conditions and must be distributed.
The optimality of the scheme depends on how accurate is floemation that is has about the multiple access
channel state.

IEEE802.11 DCF uses a BEB retransmission scheme. The BE®&rslnas the advantage of being simple and
does not require cooperation among users or any informatimut the channel state, it tries to blindly adapt the
contention window to the channel congestion level baseg onlits experience, i.e., the contention window is
increased in case of collision and it is reset to its initialue in case of success. Its performances however are
shown to be sub-optimal, in term of the achieved throughplt aeeds several attempts to find approximately the
best contention window, and also in term of short-term fssmas it favors the first successful user to compete
again for the channel with small contention window agairateptially others users with much higher contention
window. Works in [9], [10] have derived specific fairness riteto illustrate this.

The enhancement of the DCF based BEB have been extensivéigsaed in the literature, the proposed schemes
may be categorized into two classes:

1) Blind schemes: as in BEB, there is no need to sense the ehautivity; the change of the contention
window’s length is made upon collision or success but in &diht manner than BEB (MILD [11], FCR
[12], EIED [13] to site few) in order to reach better the opinbackoff window and/or increase short-term
fairness.

2) coherent schemes: here the optimization is made in oodélynamically adapt the contention window to
meet directly some objective optimization condition. THgeative condition is derived from an analytical
model and its verification is made by measuring (estimatsughe specific performance metrics, [14], [15],
[16], [17] to site few. Even if these schemes identify and tiwyreach an optimal operating point of the
system, the way they update the backoff window is not optiasain the blind schemes.

Early in the work of Bianchi [2], the notion of optimal backafindow that optimizes the saturation network
throughput has been introduced. Unfortunately, the catmn of this optimal window requires information about
the network size: and the average duration of collisiof87.,,]. Even ifn could be easily obtained in single-hop
network, channel activity sensing is required to estim@f&.,;] in case of heterogeneous networks where users
employ different physical rates and/or packet sizes.
As DCF provides equal long-term access rate to differentsyseveral studies have shown that DCF is unable
to fairly and efficiently manage heterogeneous networks, [[i3, [19], [20], [21], [14]. As solution, time-based
scheduling [19] have been shown to increase both the thpaigind fairness of the MAC protocol.
In order to achieve trivially time-based scheduling with B@@ is sufficient to normalize the packet duration by
normalizing the packet-size/physical-rate ratio, i.@chephysical rate is to be used with a corresponding packet
size in order to get unique packet duration on the channehande, a priori, fair input to the system. In this case,
we can implement the optimal-window backoff scheme of [2fhwut estimatingE[T.;].
In this work, we consider backoff-window optimization igsaf finite load single-hop networks based on the idea
in [2]. In order to avoid estimating collision durations, wgppose that packet durations are normalized. Obviously,
the optimal backoff-window in this case will depend also loa traffic load. However, we will show that is sufficient
to use the saturation’s optimal window under all loads td@ehnearly the maximum achievable throughput. This
is an extended version of the paper in [22]. Our main contidiog are:e

« New analytical model to consider finite load performance @FDwithout queuing at nodes buffer.

« Proof of the short term unfairness of the binary exponersitileme by using channel capture probability as

fairness metric.
« Accurate delay statistics model considering self-loopbphility on every backoff state.
« Introduction of the optimal constant-window backoff (OC&heme that maximizes the network throughput.
The optimal window depends, among others, on the traffic,laad it is achieved only for arrival rates greater



than a specific threshold. However, we prove in this work thatsaturation optimal window is quasi-optimal
under all traffic loads.

« Deep analysis of the operations of the BEB and OCB schemésrespect to load variations using numerical
results. We show especially that OCB performs better thaB,Bioth in term of throughput and fairness,
while remaining quasi-insensitive to traffic load.

« Analytical model to consider finite queuing capacity of ned@sed on the delay statistics model of the non-
gueuing model. Using results on M/G/1/K queues, we will usecarrsive algorithm to link the delay statistics
produced by a given traffic load to a corresponding arrivabpss (Markovian in our case) and queue length.

The paper is organized as follows. In section Il we introdthee analytical model, we derive the throughput and

the delay statistics, and we show the unfairness of the BEBmemission scheme. In section Il we introduce the
optimal constant window backoff scheme and give bounds ofomeances loss when using only the saturation

window for all arrival probabilities. The performances bettwo schemes are then deeply analyzed in section IV.
The finite capacity queuing model is given is section V, satioh results in section VI and concluding remarks

are provided in section VII.

[I. BINARY EXPONENTIAL BACKOFF SCHEME

The analytical model we use is based on the work in [2] butrelddt to consider general load performance
(with backoff freezing and finite retry limit).
We consider a network af nodes evolving in single hop configuration. The key appration of the Bianchi's
model is to assume that the channel is busy with fixed praibabilindependently from the backoff counter value
(equilibrium point analysis). Each node state is identitigdits backoff window counter and backoff stage. The
backoff counter and stage are modeled as a bidimensionaletistime Markov procesés(t), b(t)) where s(t)
andb(t) denote respectively the backoff stage and the backoff epwaittime instant. If the channel is busy the
backoff counter is frozen for the duration of the currenhsmission. Otherwise, it is decreased when the channel
is sensed again idle. Hence, transitions time of the Markoegss depend on the current state of the channel. To
alleviate this problem, a second approximation is made binidg an average time slot as the unit-time of the
Markov chain. This unit-time is an average of the three pmsdime slot durations that correspond to successful
transmission, collision or idle, weighted by their probipiof occurrence:

Tavg = Pidle0 + psucTeuc + pcochol (1)
o is the idle slot duration. For the basic access mddg, andT,, are given as

Tewe = 26+ H+ E[P]+ SIFS+ Ack + DIFS 2)
Teor = 0+ H+E[P]+ EIFS 3

And for the RTS/CTS access mode
+ACK + DIFS 4)
Teot = 6+ RTS+ EIFS (5)

Didles Psue @Ndp., Will be derived in the following.

When the backoff counter reach@sthe node is allowed to transmit. In case of a collision,
the node must double is contention window to reduce coiligimbability (binary exponential
backoff). Otherwise it resets its contention window to figial value. The scheme defines also
a maximum numbern + 1 of retransmission trials after which the packet is droppat] a
maximum window’s size ordem’'.

Let 7; ; denotes the steady state probability of node to be in baskadfe; with backoff counter
atj.: € {0..m}, j € {0.W;—1} andW; denotes contention window value at stagéccording

to the standard we have:

T P < /
Wi:{QWO for i <m ©)

"' W, for i>m’
where W, is the initial value of the contention window.
To avoid channel capture, each node must wait a random Haithedf after each successful
packet transmission. We add then the new states j), j € {0..W, — 1} to model node’s state



Fig. 1. Markov chain model

during inter-packets transmission(Inter-transmissiaokboff (ITB) states).
In order to consider the non-saturated regime we defias the probability of having a packet
to transmit (all nodes have the sami@, and to keep the analysis tractable we do not consider
for the moment queuing at node’s buffer (each node has atrmamione packet per time). In
a gueuing modely corresponds to the probability of having at least one paickéte buffer.
Others works have addressed the performance analysis dEBOECF under finite load condi-
tions. In [6], [7], the authors analyzed the finite load parfance of 802.11 considering queuing
at nodes buffers. The analysis is more complex so they censjdeues with infinite capacity.
We mention also the work in [8] where the case of users witkerogieneous finite loads and
with small buffers is analyzed. Using the assumptions oflsindfers, the authors in [8] have
modeled the arrival probability as the probability of hayiat least one arrival during the mean
system timeT,,,, which in fact remove the queuing effect as it is true only whie buffer
size is equal to 1.
Here, we proceed differently, from the no-queuing modeapuaterized by the packet availability
probability ¢, we derive the delay statistics and then we relate them térthie capacity queuing
model (section V).
Fig. 1 illustrates the Markov chain model used for the notgug model. After a packet
transmission (success or drop), a hode may transit to th@mMolg states:e

« (0,0): if it chooses0 as backoff value and it has a packet to transmit

(1-p)q

p{(0,0)[(,0)} = 5= i€ {0m -1} ™
P{0,0)[(m,0)} = = ®
« (—1,0): if it chooses0 as backoff value but has no packet to transmit.
Loy = D00 ©
P-10)m0)} = (10)

lextension to heterogeneous arrival case is straightforward [8]



In this case, the node will stay in this state waiting for a r@aket to transmittdle state.
e (—1,7), j € {1.W, — 1}: if it chooses; as backoff value.

160} = S22 e om-y a1
P10} = - 12)

At the end of the ITB (staté—1, 1)), the node may transit to th@,0) state if it has a
packet to transmit. Otherwise, it goes to ftlue state.

p{(0,0[(-1,1)} = (1-p)g (13)
r{(=1L0)I(-1,1)} = (1-p)(1-9q 14
Transitions from thedle state occur at new packet arrival. If the medium is sensedddting

DIFS, the node proceeds directly with packet transmissiod @ansits to the stat€0,0).
Otherwise, it executes the BEB scheme.

p{(0,0/(-1,0)} = (1-p)q (15)
p{0,NI(-1,00} = 57(10 je{0.Wo—1} (16)

Solving the global balance equations leads to the follovsiteady state probabilities
« for the lastm — 1 backoff stages:

. (Wi —j)p’ . o
.5 7Wi(1 _p) To,0 J € {1, W; 1} (17)
4,0 = p17r070 (18)

« for the inter-transmission backoff states:

o (Wo — j) . _

-1, = 7W0(1—p)7r070 VES {1,WO 1} (19)
1 —

T_1,0 = J 400 (20)

« and for the first backoff stage

(Wo —4)p(1 — q)

Wo(]. — ) 70,0 j e {1,WL' — 1} (21)

0,5 =

The normalizing equation and the resulting steady statbafnitity of being in statg0,0) are
given in Egs. (22,23).

WA G (Wo —j)p(1—q) | 1
oa S+ 353 G S W00 L @)

(| wo—p) 1= ™ T+ (1—2p)2[1—p™ T +2™ Wy (1—2p) [p™ T —p™H1]
2(1—p)2(1—2p)

-1
ta-g e ei]] T mew

70,0 = (23)

Wo(1—p)[1—(2p)™ ']+ (1—2p) % [1—p™+1] p(Wo—1) -t
—aa o Q)[zuup) + H

_ m41 -1 )
{ [(W‘)“Q(i”_)g)zp l+(1-9) [P%‘J S+ ]] m' =0 (constant window)

m<m’

The probability of transmission in a given slot is then

_ pm+1

- 1
T = Zﬂ-i’o = 1— p 70,0 (24)
=0




Then the probabilities of busy, idle, success, and colligice given as

p = 1—(1—7)"" (25)
Pidle = (1—7)" (26)
Pswe = nr(l—7)""" (27)
Peol = 1 — pidie = Psuc (28)
and the throughput is defined as
Thrp = Dsucl PsueL 29)

Tavg h PidleO +psucTsuc + pcochol
where L is the data packet length.

A. Delay Satistics

We define packet success delay as the time duration a packstimathe system since it
is being handled by the MAC layer until the reception of acklsmlgment of its successful
reception.

A successful transmission may occur at one of the severibiffastages. Theaverage time that

a packet spends in the first backoff stage before its firsstngssion depends on whether the
packet comes directly from the idle state or from ITB stat@snditioned on being in the first
transmission stagé, 0), this time is

(1-p)rio] &~
Do = 1—q pﬂ——l,O:| Z LDB

70,0

= [1-(0-9@1-p) Dy (30)

Dp denotes the average time that nodes spent in every backtdf sflany analysis of 802.11
delay takeDp equal to7,,, and ignore the self-loop probability on every backoff state. In
fact, Dp is geometrically distributed with parameterand variates depending on the states of
the (n — 1) remaining nodes

Dp = ipk(l —p) (kT +0) = ’w (31)

k=0

whereT denotes the average slot duration seen by a node in backtdf when the channel
is busy. Conditioned on channel busy probabilityl’s is

('n, — 1)7’(1 — T)rLiQ[Tsuc - Tcol] + [1 — (1 - T)nil}Tcol
p

Similarly, for the other backoff stages, tlaserage time that a packet spends in the stage
before its transmission

Ts = (32)

i — 1
Di:Di71+W

Dp +T.o 1 E {lm} (33)

D,_, represents the time that the packet spends in the systehit'ar{ti—1)th. transmission] col
the fact that the last transmission was not successful,z"a?ﬁbDB is the average backoff time at
the current backoff stage. Conditioned on starting transionsat the stat€0, 0), transmission
success probability at theth stage is

pve = T =P) i 0. m) (34)

0,0

The delay of a successful transmission can then be seen asregiE random variable taking
values in the set



{Di" = D; + Teye, 1 =0...m}.
Alternatively, theaverage delay of packet drop is simply

E [Dd'rop} =Dp+Tear (35)

With drop probability (conditioned on starting transméssiat (0, 0) state)

Pdrop = pm+1 (36)

Conditioned on effectively starting packet transmissiansate (0, 0)) success and drop prob-
abilities sum tol

m
Suc

+pdrop =1 (37)

=0

B. Short-Term Fairness

The use of exponential backoff retransmission scheme in180RCF leads to short-term
unfairness. This is mainly because the scheme favors thesticgessful user to transmit again.
There exist several metrics to measure the fairness of a Migol, the most popular is the
one proposed by Jain et al. [23], but it can not be used forytioal purposes.

Many studies have then tried to characterize the short-tammess issue by deriving specific
fairness metrics [9],[10]. In [10], the authors define asnehe distribution of the number
of inter-transmissions that other hosts may perform betvwe® transmissions of a given host.
They derive this metric for IEEE802.11 by considering thalgcally tractable case of two
nodes in saturation conditions and found surprisingly that distribution of the number of
inter-transmissionk is independent of the contention window size. This meansdhanging
the window size has no impact on fairness, so they concluateuhfairness of 802.11 DCF is
not related to the use of the exponential backoff scheme.

In [10], the derivation of the distribution of¢ was possible by approximating the discrete
uniform distribution by a continuous one. In doing so, théhats neglect the collision probability
and so the analysis did not take into account the expondpiekoff scheme which explains
the misleading conclusions.

To prevent analytical difficulties faced when deriving thstdbution of K, we use as metric the
channel capture probability, i.e., the probability thatoal@ sends successfully and consecutively
2 packets. As this probability is smaller the scheme is faffer TDMA this probability is O
as nodes use the channel alternatively). We derive thisabibity also only for the case of two
nodes in saturation and we consider only two backoff stagls.goal is just to have an idea
on the way the protocol performs in this simple scenario.

Consider two nodes and2, and letw? ;; denote thet.th backoff window value chosen by node
i when it enters backoff stage We denote the backoff window size at stagley W; and we
suppose that the two nodes start simultaneously at $tage

The channel may be captured by nodenly in the three following transmission case$l’,
‘1CT’or C11 (Fig. 2). C denotes collision.

The eventll represents a situation where node 1 chooses consecul‘irveljoackoff values
w; , andw? , such that the backoff value; , chosen by node 2 is greater than, + w7 ,. The
probablllty of this event is

p(11) = P(w%o<w§0&wfo<w§0*wio)
—1Wp—1j5—i—1 1 W0271
= Z > 2 5E T ez (38)
i=0 j=i+1 k=0 0

We can see that this probability increases with increagifygand it's independent of the choice
of Wi.
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The eventlC'1 represents a situation where the backoff values chosen tg fhoat the first
backoff stage, and then after a collision at the second Wskage, are smaller than those of
node 2. The probability of this event is

p(1C1) = p(w}o<w%0&wi}0_w%0+w%0&wh<w%1)
1 Wos1Wo—1 1 —1Wp—1
= X 2w Z > e
i=0 j:i+1 =0 j= 7,+1

 (Wo—1)(W; —1)
- AWZ Wy (29)

We observe that this probability decreases with increalipgcollision probability is decreased)

and increases with increasing.

The third event represents a situation where after a amfijshode 1 succeeds to transmit first

its packet, then it goes-back to the first backoff stage aadstnit again before node 2. The

probability of the third event is

1 1 1 1 2 1 1
p(Cll) = plwyp = wy & wiy < wy; & wig < way — wiy)

—-1W;—-1j5—i—-1
Y e

=0 j=i4+1 k=0

wi-1
{ oy Wi <o

3W24WE —3WoWi—1
6Wo W2

Wi > Wy
(40)

We observe again that this probability increases with iasireg 1/;. In fact, after a collision
the first successful node has a smaller contention window the other node so it has more
chance to retransmit again.
The channel capture probability is the sum of probabilitéshe last three events. As we have
seen, the channel capture probability increases with asong 1V, (Fig. 3) which means that
binary exponential backoff scheme is less fair than comndtankoff schemel{; = W;). We
observe also that BEB is fairer for increasing size of thaahiackoff window. The result is
for the case of two nodes but give a general idea on the bahakithe protocol. Intuitively,
if the network size increases, the collision probabilitgreases, and so, the probability that
nodes will alternate transmissions after collision desesaas they have different windows. The
same argument can be used to prove the same behavior foasnmmenumber of backoff stages.
We are then facing a capacity-fairness trade off; after &soah, if the contention window is
increased, the system becomes unfair, but in the same tensothision probability is decreased.
Historically, the BEB scheme was introduced to blindly adéy@ contention window to the
traffic load in order to reduce collisions. Recently, it waswh in [24] that the BEB achieves a
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success probability dfi 2/2 which is lower than the capacity of a constant backoff schémé
for slotted Aloha with uniform retransmission). It is theggitimate to think about a constant
backoff scheme that blindly adapt or that is insensitiveradfit load.

[11. OPTIMAL CONSTANT-WINDOW BACKOFF SCHEME

Motivated by the results on short-term unfairness of BEB, walyare in depth the case of
constant backoff window. In this case, the backoff windowstrnoe optimized to maximize the
throughput and must be fixed to not decrease fairness.

The optimal backoff window can be seen as the transmissiobaility 7,,, below which the
channel utilization is reduced due to high probability okidlots and above which reduction
of throughput is due to high collision probability. The gadlthe optimization is then to adapt
the backoff window to achieve this,. Obviously, under general load conditions, the backoff
window must be optimized with respect to traffic intensiy. However, it is also obvious that
the {7,,} will not be achieved for small arrival rates £ ¢, ¢ is a threshold on arrival rate)
even with the minimal backoff windowX, = 1). For this reason, we propose in this work to
use the optimal backoff window of the saturated regiitig, for all arrival rates. The intuition
behind this choice is that beloy the system is lightly loaded so that the probability of going
into backoff is very small and thus the effect of using a lalfjeis minimal. Aboveg;, the
loss incurred by using a backoff windoW, = W, > W,, is due to the fact that idle slot
probability is higher than the optimal one, but in this cabe packet collision probability is
lower that the optimal one, since in CSMA system the idle slot@ation is small compared to
the collision duration, the loss in the achieved throughpwgmall. In the following, we derive
first the optimal transmission probability, and the arrival rate thresholg. Onceq; identified,
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we show that for arrival rates belloyy almost all transmissions succeed without involving the
backoff scheme, and far > ¢, we give an upper bound on the throughput loss.

A. Derivation of 7., and W,

When we differentiate th& hrp with respect tor, we find that is maximal for transmission
probability 7,,, verifying?
a— (1 —75p)"

Teot
Top = ———— Where a= co
an Teot — O

From Eq.(23) we have for the constant backoff case= 0) in saturation conditionsg(= 1)

(41)

o 2(1 —p) B 2(1 — 7’)"_1
T Wo+i-2p)  Wo-1+201-7)" (42)

The saturation optimal fixed backoff window is then

2(1 — 7op)"

Top

W, =1+ (43)

B. Derivation of ¢

We look now under which condition on the 7,, could not be achieved even with the
minimal allowed value of the backoff windoW, = 1 (no backoff). From Eg. 23 we have for
Wo=1

gp+1—p (49
After some algebra we find that the situation7ok 7,, is possible for
g < q= _ Top(1 = pop) (45)
1 = pop — TopPop
Where po, 1—(1—7p)" ! (46)

In Fig 4, we plot the Optimal transmission probabilities d@he corresponding optimal backoff
windows Vs arrival rates. We can see that for arrival prolttéds ¢ < ¢, the achieved transmis-
sion rates are below the optimal ones even with backoff wandqual tol. We then say that the
system is in lightly loaded regime. Abovg, 7, is achieved by increasing the backoff window.
We observe also that the optimal backoff window increases, first phase, exponentially and
then, in a second phase, slowly converges to the saturappmal window. During the first
phase of increase we say that the system is in transitiomeegihile during the second phase
it is in saturation regime.

In the following, we give bounds on throughput loss when gghe saturation optimal window
under all load rather than the exact optimal window that take account the value of traffic
load.

2The existence and uniquenessrof can be simply verified [2]
3We takeW, = 1 only for analytical purpose, in real system the lowest valuélfwe may take is 2
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Fig. 4. Optimal transmission probabilities and the corresponding optintkoffavindows (normalized to the saturation optimal window)

vs. arrival rates

C. Loss in System Performances
1) Case of ¢ < ¢; : As we have said before, in this case the system is lightly ddad
and almost all transmissions are successful without bacKof see this we can express the

transmission success probability outside the backofé sat

PLE = nro109(1—p)® =n1—q)(1—p)*moo (47)

While total transmission success probability is given as

Psue = n7(1 —p) =n(l - pm+1)7r0,0 (48)

As q < ¢, then we have < 7, wherer; is the transmission probability corresponding to traffic
load ¢;. Thus, we can lower bound the ratio pfZ over p,. as follow

pNB 5
péi > (I—q)(1—p) (49)
Where p, = 1—(1—7)""" (50)

In Fig. 5 we plot this lower bound Vs. network size and we car #wmt aboutd4% of
transmissions success occurs without backoff. We condioeie that the use of the saturation

optimal window in this case has almost no effect on systerfopaances.
2) Case of ¢ > ¢ : In this case ther,, is achieved if the backoff window is optimally

adapted to the arrival rate. The maximum system througlsptiten achieved. Using Eq. 41 we
can express this maximum throughput as follow

(1 — pop) E(P) (51)
(1 - pop)TSuc + popTeot

Thrpmaz =
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lpus  20pus  10ws 50us 364us 416 8184 352 304

TABLE |
PARAMETERS' SET USED FOR NUMERICAL RESULTS

From this last expression of the maximal throughput we catude that the optimal operation
of the protocol is similar to having only one node in satunatcondition who succeed its
transmissions with probability — p,, and fails with probabilityp,,,.

Now, we want to measure the loss in the achieved throughpue itlo not use the optimal
window to achiever,, but only the saturation optimal window. As> ¢,, we haver > 7,, we
can thus upper bound the normalized throughput loss asafollo

Thrpmae — Thrp < Thrpmaz — Thrp:
Th’l"pmaz - Thrpmaz

In Fig. 5 we plot this bound Vs. networks size and we find thatltdss does not excedd:%.

(52)

IV. NUMERICAL RESULTS

In this section, we compare the performance of the IEEE80PDCF based BEB with the
proposed optimal constant backoff (OCB) scheme. Table | suinesathe parameters used for
our numerical results.

A. Throughput

Fig. 6 shows the achieved throughput Vs. packet arrival ooy for network of size
n = 50. The optimal window for OCB scheme in this casel#2 slots. We consider multiple
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BEB cases with different initial backoff window/, = 16, 64, 256. We see then that during the
lightly loaded regime < 1073 in this case), both OCB and BEB (independently fro¥p)
perform similarly and increase their channel utilizatiothaincreasingg. During the transition
regime (073° < ¢ < 1072%), we observe that the BEB throughput is slightly higher thaa t
OCB one. Finally in the saturation regime ¥ 10-3%), and depending ofil,, the throughput
achieved by BEB scheme decreases and then saturates, whi®®QB throughput saturates at
a higher value.

To understand the operation of the two schemes, we plot in(Fj§) the repartition of success
probability (is the successful transmissions occur friahe state or from backoff states?), the
collision probability and the idle probability Vs. packatigal probability ¢. We consider the
case ofl¥, = 64 for BEB. For both schemes we observe that during the 1st phaseess and
collision probabilities increase with increasing load lehdle probability remains almost equal
to 1 which means that the system is lightly loaded. As reslltsuccess is almost from the
idle state which means that almost all packets are transmitredtlyi at their arrivals without
any backoff delay. In the 2nd phase, for the BEB scheme, thesiool probability continues
to increase with load while idle probability starts to dexses seriously. BEB begins then to
have significant transmission success from the backofé stéiile success from thelle state
saturates. At the end of this phase, the two success pralesbdre equal. The same phenomena
is observed for OCB, except the idle probability that decreadso but remains close 1o and a
less significant success from backoff states which meansbmast all success is still produced
atidle state.

To explain this and how the difference in success probgl#ipartition produces the small dif-
ference in the channel utilization, we can say that during tifansition phase, the probability of
busy slot at packet arrival increases for the two schemesy $tart then to execute occasionally
their backoff procedures. As the BEB scheme begins with divelp small value ofiV, its
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Fig. 7. Repartition of Success probability of the BEB Scheme

busy slot probability is bigger than for OCB (the users are dwayed for a long time), so it
enters more frequently into backoff states, but as the sysestill lightly loaded, it succeeds
its transmission without excessive backoff delay (the pahdackoff windows (fromW, to
Winaz) 1S SUfficient to statistically multiplex efficiently all aess demands). The OCB scheme
operates differently; as its backoff window is biggeB4?2), its busy slot probability is smaller
than for BEB (high idle probability), so it enters less freqthg the backoff state. But in the
same time, as the system is lightly loaded, even if the systelays far enough the unlucky
users who find the system busy at their packet arrival, tharelas not used frequently during
this time which explains the small loss in channel utiliaati

During the 3rd phase, the total success probability of thee dshemes saturate as well as idle
and collision probabilities (and so the throughput). Fa BEB, success from backoff states
continues to increase with load becoming the only significaurce of transmission success.
While for the OCB scheme, success from backoff states become$iccant only at values of
q approaching 1. The degradation of throughput of BEB can be ase failure of the scheme
to adapt its window to access demands (high collision pritibgb The OCB scheme is more
efficient during this phase, as its backoff window is taitbfer a saturated regime. Even if it
continues to delay unlucky user for a longer time than BEB, tm@nael utilization get higher
as the load increases.

Another important observation is that even if BEB achievaghér success probability than
OCB, the resultant throughput is lower! This gives us a moreipeeidea on the philosophy of
the scheme; In fact, OCB fixes the optimal window in order topk&@nsmission probability
in an optimal level. At this optimal level loss due to idletslas equal to loss due to collision.
Below this optimal level, idle slot probability increasesil@success and collision probabilities
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decrease. Above the optimal transmission level, successases but also collisions. In carrier
sense multiple access scheme, idle slot duration is shibvder collision, the scheme tries then
to equalize the duration of idle and collision events whiciplains the large value for the
contention window and so the smaller success probability.

OCB seems then to operate at optimal level regardless ofctriatfensity except during the
transition phase. In Fig. 9, we compare the throughput aellisoy OCB to the one achieved
by exactly optimizing the backoff window to the traffic logd As predicted by the bounds in
section (llI-C), we observe that the loss of OCB is small forretwork size considered, and
is located on a small interval that corresponds to the triansphase.

To illustrate better the superiority of OCB aver BEB, we plot op fLO the achieved throughput
of the two schemes in saturation vs. network size. We obstiateOCB performs better than
BEB at all network size. We observe also that BEB operatesrdiftey depending on its initial
backoff window value. We can see that every valuéi@fhas only a limited interval of network
sizes where it performs optimally which shows the inabilifyBEB to adapt efficiently the
backoff window to the access demands.

B. Delay & Fairness

Fig. 11 depicts the normalized achieved delay (to packestréssion timel,.) Vs. packet
arrival probability. We observe a logical behavior withpest to the throughput, i.e., no excess
delay in the non-backoff regime, delay of OCB slightly greategan BEB in the transition
regime and lower in saturation regime. Moreover, we can lsae@CB packet’s mean delay at
saturation approximate®) x T.,., which is the delay of a pure TDMA scheme with 50 users in
saturation.

To illustrate the BEB unfairness, we use the Jain’s fairnesex relative to the delay. The
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Jain’s fairness can be related to the delay statistics &safol
1

var(D)
t BoP

(53)

-/ .
Jain's index =

Fig. 12 pictures the Jain index for the same setting as puslyioWe can see that OCB is less
fair than BEB during the transition phase but much more faigaturation regime. We observe
also that during the transition phase, the system can notgtee equal service time even with
the exact window OCB scheme. As the system is not really lgatsther unloaded, packets got
service depending on the system'’s state at their arrivad:tiocky users got immediate service
while others are delayed. During the saturation regime, O€&limes fairer as all packet get
access from backoff states while BEB remain unfair due tonitsnisic unfairness.

V. BUFFEREDTERMINALS MODEL

In real networks, packets may be queued at node’s bufferdéieing handled by the MAC
protocol. It is then necessary to include the queuing delayé characterization of the system
performance. In section II-A, we have derived the delayidites of the protocol for a given
packet availabilityg. We consider now each terminal with a queue of gigke— 1) packets, the
probability ¢ corresponds then to the probability that the queue is notyemp
We assume that packet arrivals at each terminal is Poigs@nacess with mean, hence each
node buffer can be modeled as a finite capacity single sewveuey)//G/1/K. The number
of packet in the system at the embedded points corresponditite time instants just after a
job completion (successful transmission or drop) forms akigha chain. We define the packet
service time as the packet success delay in case of sudcwasigmission or the packet drop
delay in the contrary case. The average packet service tirttedMAC layer is then
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n= Z Dfucp;suc + Ddroppd'rop (54)
1=0
Let (r{,7) denote respectively the steady state probability of lp¥ipackets in the queuing
system at departure instants, and at arbitrary instangs{0... K — 1}. And let Q;{j denotes
the system transition probabilities upon departure, westiaen [25]

d o Qg 0 S k S K -2 =0
Qo.x 172;1{_—02% E—=K—1 J =
(55)
a _ Qp—j+1 J—1<k<K-2 ‘ _
(56)
Wherea,, represents the probability of havirigarrivals during a service time
m ADfuC k B suc sue ADdTOp k B dro
gk = Z QD) il ) e M s +7( il ) e P ppdmp (57)
i=—1
The global balance equations and the normalization camddre given as follow
K—1 K—-1
=Y mMQix , 1= m (58)
j=0 k=0
Therefore, the steady state probabilities at arbitraryaints are given by
M=l kef0.. . K—1} (59)

T +p
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wherep = A\u is the queue load.
The probability of having at least one packet in the queudas t

And the blocking probability is

1
T +p
To specify the service time distribution using results oftes 11-A we need to identify the
packet availability probability;. In the same time, to specify the packet arrival probabfliom
the queuing analysis we need to identify the service timgildigion!
To resolve this problem, given an input rateand a queue lengtlk” — 1, we use a recursive
algorithm to estimate the corresponding arrival probabiji
Starting with an initial guesg,, on the arrival probability, we derive the service time disition,
then we use the queuing analysis to identify the producesaamprobability ¢,.;(Eq. 60). If
the difference between the input probability, and the output probability,,; is greater than
a threshold,q;, is replaced withg,,; and the operation is repeated. Otherwise the search is
stopped.
Convergence in ensured since the case,@f > ¢;, (respectivelyq,.. < ¢;») means that even
with a lower estimate of arrival probability,, and so a lower estimate of the service time, the
system is more loaded which indicates that the search musinces on the direction af,,;
(respectively, even with an upper estimate of the servioe tihe system is less loaded so the
search must also continue in the directionggf;).
The average queue length can then be expressed as

Tk =1—

(62)

K
N = Z ky, (62)
k=0

The mean packet service time (including MAC delay) by

W N(p;\rﬂg) (63)
And the end-to-end throughput as
Thrpe = nA(1 — 7k ) (1 — Parop) (64)

VI. SIMULATION RESULTS

In this section we validate our analytical results with N82twvork Simulator) simulations.
We use the same parameters as previously, the queue lerigkieisequal t&0 and we consider
now the RTS/CTS access mode. The optimal constant windowisrcise is363 slots. In Fig.
13, we plot the achieved throughput under BEB and OCB schemedate arrival rate. First,
we observe that results from analytical model are almosaleiguthat from simulations which
validates, not only our queuing model, but also our non-qugemodels and our delay statistics
model. Second, we can see that BEB performances are closattoftdCB which means that
even if BEB collision probability is higher than that of OCB, tphenalty in throughput is very
small since collision duration is reduced by the use of RTS®&ndshaking. Fig. 14 depicts
the corresponding mean packet service time (including iggedelay) and shows clearly the
existence of the three operating modes (no-backoff, tiansand saturation regimes). In fig. 15,
we plot the delay Jain’s fairness index Vs. packet arrived.réVe observe again that during the
no-backoff regime the two schemes are fair, at transitiggmme the two schemes are less fair,
and finally at saturation the two schemes becomes again lfachvis different from our previous
observation when we analyze the delay fairness. This is dube fact that at saturation, the
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queuing delay is much more higher than the mac delay. Tatridltes the short-term unfairness
of the BEB scheme, we plot in fig. 16 the throughput Jain’s &smindex using the sliding
window method [9]. The data arrival rate is taken equaldbits/s, the network is then in

saturation regime. We observe that OCB is relatively fairneaé short time horizon, and is
much fairer than BEB.

VIlI. CONCLUSION

In this paper, we investigated the performance of the IEEE. 1D DCF multiple access
scheme under general load conditions in single-hop cordigurs and we proposed a backoff
scheme enhancement that is quasi-optimal under all traffinclidons. First, we presented a
Markov chain model to analyze finite load situations with@ohsidering queuing at nodes
buffer from which we derived an accurate delay statisticel@hoWe derived then the size of
the optimal constant window that maximizes the networkughput in saturation regime. Then,
we used this window for all traffic loads and we proved thatdhstem operate quasi-optimally
independently from the traffic load. Numerical results hslvewn that OCB performs better than
BEB both in term of throughput, delay, and short-term faisn&¥e have extended then the study
to consider finite queuing capacity at nodes buffer, and we klaveloped a recursive algorithm
to alleviate the complexity of the analysis. Finally, weigtated our results by NS2 simulations
where we show clearly the superiority of OCB over BEB. OCB requjust information about
the network size. This information is easier to obtain ingrhop networks, and its coherence
time is larger compared to other parameters (backlog statwe nodes, or any other information
measured from the channel state).
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