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Abstract

Existing backoff scheme’s optimization of IEEE 802.11 DCF MAC protocol consider only saturated networks
or asymptotic conditions. In real situations, traffic is bursty or streamed at low rates so that stations do not operate
usually in saturated regime. In this work, we propose and analyze a backoff enhancement for IEEE802.11 DCF
that requires information only about the network size and that is quasi-optimal under all traffic loads. We first
analyze the performance of DCF multiple access scheme undergeneral load conditions in single hop configuration
and we provide an accurate delay statistics model that consider the self-loop probability in every backoff state. We
prove then the short-term unfairness of the binary exponential backoff used in IEEE802.11 by defining channel
capture probability as fairness metric. Motivated by the results on fairness, we introduce the constant-window
backoff scheme and we compare its performance to IEEE802.11DCF with Binary exponential backoff. The quasi-
optimality of the proposed scheme is proved analytically and numerical results show that it increases, both the
throughput and fairness, of IEEE 802.11 DCF while remaininginsensitive to traffic intensity. The analysis is
then extended to consider the finite queuing capacity at nodes buffers using results from the delay analysis. NS2
simulations validate the obtained results.

Index Terms

EEE DCF, binary exponential backoff, short-term fairness,optimal constant-window backoff, M/G/1/K queues.EEE
DCF, binary exponential backoff, short-term fairness, optimal constant-window backoff, M/G/1/K queues.I

I. I NTRODUCTION AND RELATED WORKS

In the IEEE 802.11 standard for wireless LAN networks [1], the primary medium access scheme is called
”distributed coordination function”(DCF) and it is based on a CSMA/CA protocol with binary exponential backoff
(BEB) retransmission rules. Since the introduction of the standard, many works have been interested in the analytical
evaluation of its performance; most of them were based on themodel of Bianchi [2], and consider saturation
throughput and delay analysis ([3], [4], [5] to cite few).

A. Queuing Analysis
In real networks, packets may be queued at nodes buffer before being handled by the MAC protocol, and

typical data traffics are bursty or streamed at low rates so that stations do note operate usually in saturated regime.
Recent works have addressed the finite load performance of IEEE802.11 DCF with queuing at nodes buffer (queues
with infinite capacity)[6], [7] or with simplifying assumptions [8].
The analysis of queuing model of MAC protocols is a challenging task, and generally do not permit to obtain
closed-form expressions of quantities of interest. In thiswork, we use a two-stage technique to analyze a queuing
model of DCF protocol. In order to acquire closed-form expression of system performance, a Markov chain model
is first used to analyze the non-queuing operation of the system. The traffic load in this case is modeled as a
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probability of having a packet to transmitq, this probability is taken into account whenever the protocol is able to
handle a new packet. In this way,q allows us to consider the fact that packet arrivals may occuranytime during
the operation of the system. From the non-queuing model, we obtain the service-time statistics corresponding to
a givenq. In the second phase, we consider a queuing model of the system with a given arrival processλ(t) and
queue lengthK. Thus, the probability of having a packet to transmitq corresponds to the probability of having at
least one packet in the queueq0. In order to link the two models, we use a recursive algorithms that update theq
value used in the Markov model to specify the service time statistics, to match the resultingq0 from the queuing
model.

B. Backoff Scheme Optimization
It is well recognized that the key optimization issue of random access protocols is the design of an optimal

retransmission scheme that keeps access rate to the multiple-access channel around its capacity. Obviously, an
optimal retransmission scheme must achieve this capacity under all network conditions and must be distributed.
The optimality of the scheme depends on how accurate is the information that is has about the multiple access
channel state.
IEEE802.11 DCF uses a BEB retransmission scheme. The BEB scheme has the advantage of being simple and
does not require cooperation among users or any informationabout the channel state, it tries to blindly adapt the
contention window to the channel congestion level based only on its experience, i.e., the contention window is
increased in case of collision and it is reset to its initial value in case of success. Its performances however are
shown to be sub-optimal, in term of the achieved throughput as it needs several attempts to find approximately the
best contention window, and also in term of short-term fairness as it favors the first successful user to compete
again for the channel with small contention window against potentially others users with much higher contention
window. Works in [9], [10] have derived specific fairness metric to illustrate this.
The enhancement of the DCF based BEB have been extensively addressed in the literature, the proposed schemes
may be categorized into two classes:

1) Blind schemes: as in BEB, there is no need to sense the channel activity; the change of the contention
window’s length is made upon collision or success but in a different manner than BEB (MILD [11], FCR
[12], EIED [13] to site few) in order to reach better the optimal backoff window and/or increase short-term
fairness.

2) coherent schemes: here the optimization is made in order to dynamically adapt the contention window to
meet directly some objective optimization condition. The objective condition is derived from an analytical
model and its verification is made by measuring (estimating)some specific performance metrics, [14], [15],
[16], [17] to site few. Even if these schemes identify and tryto reach an optimal operating point of the
system, the way they update the backoff window is not optimalas in the blind schemes.

Early in the work of Bianchi [2], the notion of optimal backoff window that optimizes the saturation network
throughput has been introduced. Unfortunately, the calculation of this optimal window requires information about
the network sizen and the average duration of collisionsE[Tcol]. Even if n could be easily obtained in single-hop
network, channel activity sensing is required to estimateE[Tcol] in case of heterogeneous networks where users
employ different physical rates and/or packet sizes.
As DCF provides equal long-term access rate to different users, several studies have shown that DCF is unable
to fairly and efficiently manage heterogeneous networks [18], [7], [19], [20], [21], [14]. As solution, time-based
scheduling [19] have been shown to increase both the throughput and fairness of the MAC protocol.
In order to achieve trivially time-based scheduling with DCF, it is sufficient to normalize the packet duration by
normalizing the packet-size/physical-rate ratio, i.e., each physical rate is to be used with a corresponding packet
size in order to get unique packet duration on the channel andhence, a priori, fair input to the system. In this case,
we can implement the optimal-window backoff scheme of [2] without estimatingE[Tcol].
In this work, we consider backoff-window optimization issue of finite load single-hop networks based on the idea
in [2]. In order to avoid estimating collision durations, wesuppose that packet durations are normalized. Obviously,
the optimal backoff-window in this case will depend also on the traffic load. However, we will show that is sufficient
to use the saturation’s optimal window under all loads to achieve nearly the maximum achievable throughput. This
is an extended version of the paper in [22]. Our main contributions are:•

• New analytical model to consider finite load performance of DCF without queuing at nodes buffer.
• Proof of the short term unfairness of the binary exponentialscheme by using channel capture probability as

fairness metric.
• Accurate delay statistics model considering self-loop probability on every backoff state.
• Introduction of the optimal constant-window backoff (OCB)scheme that maximizes the network throughput.

The optimal window depends, among others, on the traffic load, and it is achieved only for arrival rates greater
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than a specific threshold. However, we prove in this work thatthe saturation optimal window is quasi-optimal
under all traffic loads.

• Deep analysis of the operations of the BEB and OCB schemes with respect to load variations using numerical
results. We show especially that OCB performs better than BEB, both in term of throughput and fairness,
while remaining quasi-insensitive to traffic load.

• Analytical model to consider finite queuing capacity of nodes based on the delay statistics model of the non-
queuing model. Using results on M/G/1/K queues, we will use arecursive algorithm to link the delay statistics
produced by a given traffic load to a corresponding arrival process (Markovian in our case) and queue length.

The paper is organized as follows. In section II we introducethe analytical model, we derive the throughput and
the delay statistics, and we show the unfairness of the BEB retransmission scheme. In section III we introduce the
optimal constant window backoff scheme and give bounds on performances loss when using only the saturation
window for all arrival probabilities. The performances of the two schemes are then deeply analyzed in section IV.
The finite capacity queuing model is given is section V, simulation results in section VI and concluding remarks
are provided in section VII.

II. B INARY EXPONENTIAL BACKOFF SCHEME

The analytical model we use is based on the work in [2] but extends it to consider general load performance
(with backoff freezing and finite retry limit).
We consider a network ofn nodes evolving in single hop configuration. The key approximation of the Bianchi’s
model is to assume that the channel is busy with fixed probability p independently from the backoff counter value
(equilibrium point analysis). Each node state is identifiedby its backoff window counter and backoff stage. The
backoff counter and stage are modeled as a bidimensional discrete-time Markov process(s(t), b(t)) wheres(t)
andb(t) denote respectively the backoff stage and the backoff counter at time instantt. If the channel is busy the
backoff counter is frozen for the duration of the current transmission. Otherwise, it is decreased when the channel
is sensed again idle. Hence, transitions time of the Markov process depend on the current state of the channel. To
alleviate this problem, a second approximation is made by defining an average time slot as the unit-time of the
Markov chain. This unit-time is an average of the three possible time slot durations that correspond to successful
transmission, collision or idle, weighted by their probability of occurrence:

Tavg = pidleσ + psucTsuc + pcolTcol (1)

σ is the idle slot duration. For the basic access mode,Tsuc andTcol are given as

Tsuc = 2δ + H + E[P ] + SIFS + Ack + DIFS (2)

Tcol = δ + H + E[P ] + EIFS (3)

And for the RTS/CTS access mode

Tsuc = 4δ + H + E[P ] + 3SIFS + RTS + CTS

+ACK + DIFS (4)

Tcol = δ + RTS + EIFS (5)

pidle, psuc andpcol will be derived in the following.
When the backoff counter reaches0 the node is allowed to transmit. In case of a collision,
the node must double is contention window to reduce collision probability (binary exponential
backoff). Otherwise it resets its contention window to its initial value. The scheme defines also
a maximum numberm + 1 of retransmission trials after which the packet is dropped,and a
maximum window’s size orderm′.
Let πi,j denotes the steady state probability of node to be in backoffstagei with backoff counter
at j. i ∈ {0..m}, j ∈ {0..Wi−1} andWi denotes contention window value at stagei. According
to the standard we have:

Wi =

�
2iW0 for i ≤ m′

2m′

W0 for i ≥ m′
(6)

whereW0 is the initial value of the contention window.
To avoid channel capture, each node must wait a random backoff time after each successful
packet transmission. We add then the new states(−1, j), j ∈ {0..W0 − 1} to model node’s state
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Fig. 1. Markov chain model

during inter-packets transmission(Inter-transmission backoff (ITB) states).
In order to consider the non-saturated regime we defineq as the probability of having a packet
to transmit (all nodes have the sameq1), and to keep the analysis tractable we do not consider
for the moment queuing at node’s buffer (each node has at maximum one packet per time). In
a queuing model,q corresponds to the probability of having at least one packetin the buffer.
Others works have addressed the performance analysis of 802.11 DCF under finite load condi-
tions. In [6], [7], the authors analyzed the finite load performance of 802.11 considering queuing
at nodes buffers. The analysis is more complex so they consider queues with infinite capacity.
We mention also the work in [8] where the case of users with heterogeneous finite loads and
with small buffers is analyzed. Using the assumptions of small buffers, the authors in [8] have
modeled the arrival probability as the probability of having at least one arrival during the mean
system timeTavg, which in fact remove the queuing effect as it is true only when the buffer
size is equal to 1.
Here, we proceed differently, from the no-queuing model parameterized by the packet availability
probabilityq, we derive the delay statistics and then we relate them to thefinite capacity queuing
model (section V).
Fig. 1 illustrates the Markov chain model used for the no-queuing model. After a packet
transmission (success or drop), a node may transit to the following states:•

• (0, 0): if it chooses0 as backoff value and it has a packet to transmit

p{(0, 0)|(i, 0)} =
(1 − p)q

W0
i ∈ {0, m − 1} (7)

p{(0, 0)|(m, 0)} =
q

W0
(8)

• (−1, 0): if it chooses0 as backoff value but has no packet to transmit.

p{(−1, 0)|(i, 0)} =
(1 − p)(1 − q)

W0
(9)

p{(−1, 0)|(m, 0)} =
1 − q

W0
(10)

1extension to heterogeneous arrival case is straightforward [8]
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In this case, the node will stay in this state waiting for a newpacket to transmit;Idle state.
• (−1, j), j ∈ {1..W0 − 1}: if it choosesj as backoff value.

p{(−1, j)|(i, 0)} =
(1 − p)

W0
i ∈ {0, m − 1} (11)

p{(−1, j)|(m, 0)} =
1

W0
(12)

At the end of the ITB (state(−1, 1)), the node may transit to the(0, 0) state if it has a
packet to transmit. Otherwise, it goes to theIdle state.

p{(0, 0|(−1, 1)} = (1 − p)q (13)

p{(−1, 0)|(−1, 1)} = (1 − p)(1 − q) (14)

Transitions from theidle state occur at new packet arrival. If the medium is sensed idle during
DIFS, the node proceeds directly with packet transmission and transits to the state(0, 0).
Otherwise, it executes the BEB scheme.

p{(0, 0|(−1, 0)} = (1 − p)q (15)

p{(0, j)|(−1, 0)} =
pq

W0
j ∈ {0..W0 − 1} (16)

Solving the global balance equations leads to the followingsteady state probabilities•
• for the lastm − 1 backoff stages:

πi,j =
(Wi − j)pi

Wi(1 − p)
π0,0 j ∈ {1, Wi − 1} (17)

πi,0 = piπ0,0 (18)

• for the inter-transmission backoff states:

π−1,j =
(W0 − j)

W0(1 − p)
π0,0 j ∈ {1, W0 − 1} (19)

π−1,0 =
1 − q

q
π0,0 (20)

• and for the first backoff stage

π0,j =
(W0 − j)p(1 − q)

W0(1 − p)
π0,0 j ∈ {1, Wi − 1} (21)

The normalizing equation and the resulting steady state probability of being in state(0, 0) are
given in Eqs. (22,23).

π0,0

"
mX

i=0

pi +

mX
i=0

Wi−1X
j=1

(Wi − j)pi

Wi(1 − p)
+

W0−1X
j=1

(W0 − j)p(1 − q)

W0(1 − p)
+

1 − q

q

#
= 1 (22)

π0,0 =

8>>>>>>>>><>>>>>>>>>:
�

W0(1−p)[1−(2p)m′+1]+(1−2p)2[1−pm+1]+2m′

W0(1−2p)[pm′+1
−pm+1]

2(1−p)2(1−2p)

+(1 − q)
h

p(W0−1)
2(1−p)

+ 1
q

ii
−1

m ≥ m′h
W0(1−p)[1−(2p)m+1]+(1−2p)2[1−pm+1]

2(1−p)2(1−p)
+ (1 − q)

h
p(W0−1)
2(1−p)

+ 1
q

ii
−1

m ≤ m′h
(W0+1−2p)[1−pm+1]

2(1−p)2
+ (1 − q)

h
p(W0−1)
2(1−p)

+ 1
q

ii
−1

m′ = 0 (constant window)

(23)

The probability of transmission in a given slot is then

τ =
mX

i=0

πi,0 =
1 − pm+1

1 − p
π0,0 (24)
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Then the probabilities of busy, idle, success, and collision are given as

p = 1 − (1 − τ)n−1 (25)

pidle = (1 − τ)n (26)

psuc = nτ(1 − τ)n−1 (27)

pcol = 1 − pidle − psuc (28)

and the throughput is defined as

Thrp =
psucL

Tavg

=
psucL

pidleσ + psucTsuc + pcolTcol

(29)

whereL is the data packet length.

A. Delay Statistics

We define packet success delay as the time duration a packet lasts in the system since it
is being handled by the MAC layer until the reception of acknowledgment of its successful
reception.
A successful transmission may occur at one of the several backoff stages. Theaverage time that
a packet spends in the first backoff stage before its first transmission depends on whether the
packet comes directly from the idle state or from ITB states.Conditioned on being in the first
transmission stage(0, 0), this time is

D0 =

�
1 −

q(1 − p)π−1,0

π0,0

�W0−1X
j=1

j

W0
DB

= [1 − (1 − q)(1 − p)]
W0 − 1

2
DB (30)

DB denotes the average time that nodes spent in every backoff state. Many analysis of 802.11
delay takeDB equal toTavg and ignore the self-loop probabilityp on every backoff state. In
fact, DB is geometrically distributed with parameterp and variates depending on the states of
the (n − 1) remaining nodes

DB =

∞X
k=0

pk(1 − p)(kTB + σ) =
pTB + (1 − p)σ

1 − p
(31)

whereTB denotes the average slot duration seen by a node in backoff state when the channel
is busy. Conditioned on channel busy probabilityp, TB is

TB =
(n − 1)τ(1 − τ)n−2[Tsuc − Tcol] + [1 − (1 − τ)n−1]Tcol

p
(32)

Similarly, for the other backoff stages, theaverage time that a packet spends in the stagei
before its transmission

Di = Di−1 +
Wi − 1

2
DB + Tcol i ∈ {1 . . . m} (33)

Di−1 represents the time that the packet spends in the system until it’s (i−1)th. transmission,Tcol
the fact that the last transmission was not successful, andWi−1

2
DB is the average backoff time at

the current backoff stage. Conditioned on starting transmission at the state(0, 0), transmission
success probability at thei.th stage is

psuc
i =

πi,0(1 − p)

π0,0
= pi(1 − p) i ∈ {0 . . . m} (34)

The delay of a successful transmission can then be seen as a geometric random variable taking
values in the set
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{Dsuc
i = Di + Tsuc, i = 0 . . . m}.

Alternatively, theaverage delay of packet drop is simply

E [Ddrop] = Dm + Tcol (35)

With drop probability (conditioned on starting transmission at (0, 0) state)

pdrop = pm+1 (36)

Conditioned on effectively starting packet transmission (at state(0, 0)) success and drop prob-
abilities sum to1

mX
i=0

psuc
i + pdrop = 1 (37)

B. Short-Term Fairness

The use of exponential backoff retransmission scheme in 802.11 DCF leads to short-term
unfairness. This is mainly because the scheme favors the first successful user to transmit again.
There exist several metrics to measure the fairness of a MAC protocol, the most popular is the
one proposed by Jain et al. [23], but it can not be used for analytical purposes.
Many studies have then tried to characterize the short-termfairness issue by deriving specific
fairness metrics [9],[10]. In [10], the authors define as metric the distribution of the number
of inter-transmissions that other hosts may perform between two transmissions of a given host.
They derive this metric for IEEE802.11 by considering the analytically tractable case of two
nodes in saturation conditions and found surprisingly thatthe distribution of the number of
inter-transmissionK is independent of the contention window size. This means that changing
the window size has no impact on fairness, so they conclude that unfairness of 802.11 DCF is
not related to the use of the exponential backoff scheme.
In [10], the derivation of the distribution ofK was possible by approximating the discrete
uniform distribution by a continuous one. In doing so, the authors neglect the collision probability
and so the analysis did not take into account the exponentialbackoff scheme which explains
the misleading conclusions.
To prevent analytical difficulties faced when deriving the distribution ofK, we use as metric the
channel capture probability, i.e., the probability that a node sends successfully and consecutively
2 packets. As this probability is smaller the scheme is fairer (for TDMA this probability is 0
as nodes use the channel alternatively). We derive this probability also only for the case of two
nodes in saturation and we consider only two backoff stages.The goal is just to have an idea
on the way the protocol performs in this simple scenario.
Consider two nodes1 and2, and letwk

i,j denote thek.th backoff window value chosen by node
i when it enters backoff stagej. We denote the backoff window size at stagei by Wi and we
suppose that the two nodes start simultaneously at stage0.
The channel may be captured by node1 only in the three following transmission cases: ‘11’,
‘1C1’or C11 (Fig. 2). C denotes collision.
The event11 represents a situation where node 1 chooses consecutively two backoff values

w1
1,0 andw2

1,0 such that the backoff valuew1
2,0 chosen by node 2 is greater thanw1

1,0 +w2
1,0. The

probability of this event is

p(11) = p(w1
10 < w1

20 & w2
10 < w1

20 − w1
10)

=

W0−1X
i=0

W0−1X
j=i+1

j−i−1X
k=0

1

W 3
0

=
W 2

0 − 1

6W 2
0

(38)

We can see that this probability increases with increasingW0 and it’s independent of the choice
of W1.
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Fig. 2. Channel capture by node 1

The event1C1 represents a situation where the backoff values chosen by node 1 at the first
backoff stage, and then after a collision at the second backoff stage, are smaller than those of
node 2. The probability of this event is

p(1C1) = p(w1
10 < w1

20 & w1
20 = w1

10 + w2
10 & w1

11 < w1
21)

=

24 1

W0

W0−1X
i=0

W0−1X
j=i+1

1

W 2
0

3524W1−1X
i=0

W1−1X
j=i+1

1

W 2
1

35
=

(W0 − 1)(W1 − 1)

4W 2
0 W1

(39)

We observe that this probability decreases with increasingW0 (collision probability is decreased)
and increases with increasingW1.
The third event represents a situation where after a collision, node 1 succeeds to transmit first
its packet, then it goes-back to the first backoff stage and transmit again before node 2. The
probability of the third event is

p(C11) = p(w1
10 = w1

20 & w1
11 < w1

21 & w2
10 < w1

21 − w1
11)

=

24 1

W0

W1−1X
i=0

W1−1X
j=i+1

j−i−1X
k=0

1

W0W 2
1

35
=

8>><>>: W2
1 −1

6W2
0

W1
W1 ≤ W0

3W2
1 +W2

0 −3W0W1−1

6W0W2
1

W1 > W0

(40)

We observe again that this probability increases with increasingW1. In fact, after a collision
the first successful node has a smaller contention window than the other node so it has more
chance to retransmit again.
The channel capture probability is the sum of probabilitiesof the last three events. As we have
seen, the channel capture probability increases with increasing W1(Fig. 3) which means that
binary exponential backoff scheme is less fair than constant backoff scheme (W1 = W0). We
observe also that BEB is fairer for increasing size of the initial backoff window. The result is
for the case of two nodes but give a general idea on the behavior of the protocol. Intuitively,
if the network size increases, the collision probability increases, and so, the probability that
nodes will alternate transmissions after collision decreases as they have different windows. The
same argument can be used to prove the same behavior for increasing number of backoff stages.
We are then facing a capacity-fairness trade off; after a collision, if the contention window is
increased, the system becomes unfair, but in the same time the collision probability is decreased.
Historically, the BEB scheme was introduced to blindly adaptthe contention window to the

traffic load in order to reduce collisions. Recently, it was shown in [24] that the BEB achieves a
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success probability ofln 2/2 which is lower than the capacity of a constant backoff scheme(e−1

for slotted Aloha with uniform retransmission). It is then legitimate to think about a constant
backoff scheme that blindly adapt or that is insensitive to traffic load.

III. O PTIMAL CONSTANT-WINDOW BACKOFF SCHEME

Motivated by the results on short-term unfairness of BEB, we analyze in depth the case of
constant backoff window. In this case, the backoff window must be optimized to maximize the
throughput and must be fixed to not decrease fairness.
The optimal backoff window can be seen as the transmission probability τop, below which the
channel utilization is reduced due to high probability of idle slots and above which reduction
of throughput is due to high collision probability. The goalof the optimization is then to adapt
the backoff window to achieve thisτop. Obviously, under general load conditions, the backoff
window must be optimized with respect to traffic intensity (q). However, it is also obvious that
the {τop} will not be achieved for small arrival rate (q ≤ qt, qt is a threshold on arrival rate)
even with the minimal backoff window(W0 = 1). For this reason, we propose in this work to
use the optimal backoff window of the saturated regimeW s

op for all arrival rates. The intuition
behind this choice is that belowqt the system is lightly loaded so that the probability of going
into backoff is very small and thus the effect of using a largeW is minimal. Aboveqt, the
loss incurred by using a backoff windowW0 = W s

op ≥ Wop is due to the fact that idle slot
probability is higher than the optimal one, but in this case,the packet collision probability is
lower that the optimal one, since in CSMA system the idle slot duration is small compared to
the collision duration, the loss in the achieved throughputis small. In the following, we derive
first the optimal transmission probabilityτop and the arrival rate thresholdqt. Onceqt identified,
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we show that for arrival rates bellowqt almost all transmissions succeed without involving the
backoff scheme, and forq ≥ qt we give an upper bound on the throughput loss.

A. Derivation of τop and W s
op

When we differentiate theThrp with respect toτ , we find that is maximal for transmission
probability τop verifying2

τop =
α − (1 − τop)n

αn
where α =

Tcol

Tcol − σ
(41)

From Eq.(23) we have for the constant backoff case (m′ = 0) in saturation conditions (q = 1)

τ =
2(1 − p)

(W0 + 1 − 2p)
=

2(1 − τ)n−1

[W0 − 1 + 2(1 − τ)n−1]
(42)

The saturation optimal fixed backoff window is then

W s
op = 1 +

2(1 − τop)n

τop

(43)

B. Derivation of qt

We look now under which condition onq the τop could not be achieved even with the
minimal allowed value of the backoff windowW0 = 1 (no backoff3). From Eq. 23 we have for
W0 = 1

τ =
q(1 − p)

qp + 1 − p
(44)

After some algebra we find that the situation ofτ ≤ τop is possible for

q ≤ qt =
τop(1 − pop)

1 − pop − τoppop

(45)

Where pop = 1 − (1 − τop)n−1 (46)

In Fig 4, we plot the Optimal transmission probabilities andthe corresponding optimal backoff
windows Vs arrival rates. We can see that for arrival probabilities q ≤ qt the achieved transmis-
sion rates are below the optimal ones even with backoff window equal to1. We then say that the
system is in lightly loaded regime. Aboveqt, τop is achieved by increasing the backoff window.
We observe also that the optimal backoff window increases, in a first phase, exponentially and
then, in a second phase, slowly converges to the saturation optimal window. During the first
phase of increase we say that the system is in transition regime while during the second phase
it is in saturation regime.
In the following, we give bounds on throughput loss when using the saturation optimal window
under all load rather than the exact optimal window that takeinto account the value of traffic
load.

2The existence and uniqueness ofτop can be simply verified [2]
3We takeW0 = 1 only for analytical purpose, in real system the lowest value ofW0 we may take is 2
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Fig. 4. Optimal transmission probabilities and the corresponding optimal backoff windows (normalized to the saturation optimal window)
vs. arrival rates

C. Loss in System Performances

1) Case of q ≤ qt : As we have said before, in this case the system is lightly loaded
and almost all transmissions are successful without backoff. To see this we can express the
transmission success probability outside the backoff state as

P NB
suc = nπ−1,0q(1 − p)2 = n(1 − q)(1 − p)2π0,0 (47)

While total transmission success probability is given as

psuc = nτ(1 − p) = n(1 − pm+1)π0,0 (48)

As q ≤ qt, then we haveτ ≤ τt, whereτt is the transmission probability corresponding to traffic
load qt. Thus, we can lower bound the ratio ofpNB

suc over psuc as follow

P NB
suc

psuc

≥ (1 − qt)(1 − pt)
2 (49)

Where pt = 1 − (1 − τt)
n−1 (50)

In Fig. 5 we plot this lower bound Vs. network size and we can see that about94% of
transmissions success occurs without backoff. We concludethen that the use of the saturation
optimal window in this case has almost no effect on system performances.

2) Case of q ≥ qt : In this case theτop is achieved if the backoff window is optimally
adapted to the arrival rate. The maximum system throughput is then achieved. Using Eq. 41 we
can express this maximum throughput as follow

Thrpmax =
(1 − pop)E(P )

(1 − pop)Tsuc + popTcol

(51)
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δ σ SIFS DIFS EIFS H E[P ] RTS/CTS ACK
1µs 20µs 10µs 50µs 364µs 416 8184 352 304

TABLE I

PARAMETERS’ SET USED FOR NUMERICAL RESULTS

From this last expression of the maximal throughput we can deduce that the optimal operation
of the protocol is similar to having only one node in saturation condition who succeed its
transmissions with probability1 − pop and fails with probabilitypop.

Now, we want to measure the loss in the achieved throughput ifwe do not use the optimal
window to achieveτop but only the saturation optimal window. Asq ≥ qt, we haveτ ≥ τq, we
can thus upper bound the normalized throughput loss as follow

Thrpmax − Thrp

Thrpmax

≤
Thrpmax − Thrpt

Thrpmax

(52)

In Fig. 5 we plot this bound Vs. networks size and we find that the loss does not exceed1.6%.

IV. N UMERICAL RESULTS

In this section, we compare the performance of the IEEE802.11 DCF based BEB with the
proposed optimal constant backoff (OCB) scheme. Table I summarizes the parameters used for
our numerical results.

A. Throughput

Fig. 6 shows the achieved throughput Vs. packet arrival probability for network of size
n = 50. The optimal window for OCB scheme in this case is1392 slots. We consider multiple
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BEB cases with different initial backoff windowW0 = 16, 64, 256. We see then that during the
lightly loaded regime (q ≤ 10−3.5 in this case), both OCB and BEB (independently fromW0)
perform similarly and increase their channel utilization with increasingq. During the transition
regime (10−3.5 ≤ q ≤ 10−2.8), we observe that the BEB throughput is slightly higher than the
OCB one. Finally in the saturation regime (q ≥ 10−3.5), and depending onW0, the throughput
achieved by BEB scheme decreases and then saturates, while the OCB throughput saturates at
a higher value.
To understand the operation of the two schemes, we plot in Fig. (7,8) the repartition of success

probability (is the successful transmissions occur fromidle state or from backoff states?), the
collision probability and the idle probability Vs. packet arrival probability q. We consider the
case ofW0 = 64 for BEB. For both schemes we observe that during the 1st phase, success and
collision probabilities increase with increasing load while idle probability remains almost equal
to 1 which means that the system is lightly loaded. As result,all success is almost from the
idle state which means that almost all packets are transmitted directly at their arrivals without
any backoff delay. In the 2nd phase, for the BEB scheme, the collision probability continues
to increase with load while idle probability starts to decreases seriously. BEB begins then to
have significant transmission success from the backoff state while success from theidle state
saturates. At the end of this phase, the two success probabilities are equal. The same phenomena
is observed for OCB, except the idle probability that decreases also but remains close to1, and a
less significant success from backoff states which means that almost all success is still produced
at idle state.
To explain this and how the difference in success probability repartition produces the small dif-
ference in the channel utilization, we can say that during this transition phase, the probability of
busy slot at packet arrival increases for the two schemes. They start then to execute occasionally
their backoff procedures. As the BEB scheme begins with a relatively small value ofW0, its
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busy slot probability is bigger than for OCB (the users are notdelayed for a long time), so it
enters more frequently into backoff states, but as the system is still lightly loaded, it succeeds
its transmission without excessive backoff delay (the panel of backoff windows (fromW0 to
Wmax) is sufficient to statistically multiplex efficiently all access demands). The OCB scheme
operates differently; as its backoff window is bigger (1392), its busy slot probability is smaller
than for BEB (high idle probability), so it enters less frequently the backoff state. But in the
same time, as the system is lightly loaded, even if the systemdelays far enough the unlucky
users who find the system busy at their packet arrival, the channel is not used frequently during
this time which explains the small loss in channel utilization.
During the 3rd phase, the total success probability of the two schemes saturate as well as idle

and collision probabilities (and so the throughput). For the BEB, success from backoff states
continues to increase with load becoming the only significant source of transmission success.
While for the OCB scheme, success from backoff states becomes significant only at values of
q approaching 1. The degradation of throughput of BEB can be seen as a failure of the scheme
to adapt its window to access demands (high collision probability). The OCB scheme is more
efficient during this phase, as its backoff window is tailored for a saturated regime. Even if it
continues to delay unlucky user for a longer time than BEB, the channel utilization get higher
as the load increases.
Another important observation is that even if BEB achieves higher success probability than
OCB, the resultant throughput is lower! This gives us a more precise idea on the philosophy of
the scheme; In fact, OCB fixes the optimal window in order to keep transmission probability
in an optimal level. At this optimal level loss due to idle slots is equal to loss due to collision.
Below this optimal level, idle slot probability increases while success and collision probabilities
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decrease. Above the optimal transmission level, success increases but also collisions. In carrier
sense multiple access scheme, idle slot duration is shorterthan collision, the scheme tries then
to equalize the duration of idle and collision events which explains the large value for the
contention window and so the smaller success probability.
OCB seems then to operate at optimal level regardless of traffic intensity except during the
transition phase. In Fig. 9, we compare the throughput achieved by OCB to the one achieved
by exactly optimizing the backoff window to the traffic loadq. As predicted by the bounds in
section (III-C), we observe that the loss of OCB is small for allnetwork size considered, and
is located on a small interval that corresponds to the transition phase.
To illustrate better the superiority of OCB aver BEB, we plot in fig. 10 the achieved throughput

of the two schemes in saturation vs. network size. We observethat OCB performs better than
BEB at all network size. We observe also that BEB operates differently depending on its initial
backoff window value. We can see that every value ofW0 has only a limited interval of network
sizes where it performs optimally which shows the inabilityof BEB to adapt efficiently the
backoff window to the access demands.

B. Delay & Fairness

Fig. 11 depicts the normalized achieved delay (to packet transmission timeTsuc) Vs. packet
arrival probability. We observe a logical behavior with respect to the throughput, i.e., no excess
delay in the non-backoff regime, delay of OCB slightly greater than BEB in the transition
regime and lower in saturation regime. Moreover, we can see that OCB packet’s mean delay at
saturation approximates50 ∗Tsuc, which is the delay of a pure TDMA scheme with 50 users in
saturation.
To illustrate the BEB unfairness, we use the Jain’s fairness index relative to the delay. The
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Jain’s fairness can be related to the delay statistics as follow

Jain′s index =
1

1 + var(D)

E[D]2

(53)

Fig. 12 pictures the Jain index for the same setting as previously. We can see that OCB is less
fair than BEB during the transition phase but much more fair insaturation regime. We observe
also that during the transition phase, the system can not guarantee equal service time even with
the exact window OCB scheme. As the system is not really loaded, neither unloaded, packets got
service depending on the system’s state at their arrival time: lucky users got immediate service
while others are delayed. During the saturation regime, OCB becomes fairer as all packet get
access from backoff states while BEB remain unfair due to its intrinsic unfairness.

V. BUFFEREDTERMINALS MODEL

In real networks, packets may be queued at node’s buffer before being handled by the MAC
protocol. It is then necessary to include the queuing delay in the characterization of the system
performance. In section II-A, we have derived the delay statistics of the protocol for a given
packet availabilityq. We consider now each terminal with a queue of size(K − 1) packets, the
probability q corresponds then to the probability that the queue is not empty.
We assume that packet arrivals at each terminal is Poissonian process with meanλ, hence each
node buffer can be modeled as a finite capacity single server queueM/G/1/K. The number
of packet in the system at the embedded points correspondingto the time instants just after a
job completion (successful transmission or drop) forms a Markov chain. We define the packet
service time as the packet success delay in case of successful transmission or the packet drop
delay in the contrary case. The average packet service time at the MAC layer is then
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Fig. 12. Jain fairness Index

µ =
mX

i=0

Dsuc
i psuc

i + Ddroppdrop (54)

Let (πd
k,πk) denote respectively the steady state probability of having k packets in the queuing

system at departure instants, and at arbitrary instants.k ∈ {0 . . . K − 1}. And let Qd
i,j denotes

the system transition probabilities upon departure, we have then [25]

Qd
0,k =

�
αk 0 ≤ k ≤ K − 2

1 −
PK−2

i=0 αi k = K − 1
j = 0

(55)

Qd
j,k =

�
αk−j+1 j − 1 ≤ k ≤ K − 2

1 −
PK−j−1

i=0 αi k = K − 1
1 ≤ j ≤ K − 1

(56)

Whereαk represents the probability of havingk arrivals during a service time

αk =
mX

i=−1

(λDsuc
i )k

k!
e−λDsuc

i psuc
i +

(λDdrop)k

k!
e−λDdrop

pdrop (57)

The global balance equations and the normalization condition are given as follow

πd
k =

K−1X
j=0

πd
kQd

j,k , 1 =

K−1X
k=0

πd
k (58)

Therefore, the steady state probabilities at arbitrary instants are given by

πk =
1

πd
0 + ρ

πd
k, k ∈ {0 . . . K − 1} (59)
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whereρ = λµ is the queue load.
The probability of having at least one packet in the queue is then

q = 1 − π0 (60)

And the blocking probability is

πK = 1 −
1

πd
0 + ρ

(61)

To specify the service time distribution using results of section II-A we need to identify the
packet availability probabilityq. In the same time, to specify the packet arrival probabilityfrom
the queuing analysis we need to identify the service time distribution!
To resolve this problem, given an input rateλ and a queue lengthK − 1, we use a recursive
algorithm to estimate the corresponding arrival probability q.
Starting with an initial guessqin on the arrival probability, we derive the service time distribution,
then we use the queuing analysis to identify the produced arrival probability qout(Eq. 60). If
the difference between the input probabilityqin and the output probabilityqout is greater than
a threshold,qin is replaced withqout and the operation is repeated. Otherwise the search is
stopped.
Convergence in ensured since the case ofqout > qin (respectivelyqout < qin) means that even
with a lower estimate of arrival probabilityqin, and so a lower estimate of the service time, the
system is more loaded which indicates that the search must continues on the direction ofqout

(respectively, even with an upper estimate of the service time the system is less loaded so the
search must also continue in the direction ofqout).
The average queue length can then be expressed as

N =

KX
k=0

kπk (62)

The mean packet service time (including MAC delay) by

W =
N(ρ + πd

0)

λ
(63)

And the end-to-end throughput as

Thrpe = nλ(1 − πK)(1 − pdrop) (64)

VI. SIMULATION RESULTS

In this section we validate our analytical results with NS2 (Network Simulator) simulations.
We use the same parameters as previously, the queue length istaken equal to50 and we consider
now the RTS/CTS access mode. The optimal constant window in this case is363 slots. In Fig.
13, we plot the achieved throughput under BEB and OCB schemes vs. data arrival rate. First,
we observe that results from analytical model are almost equal to that from simulations which
validates, not only our queuing model, but also our non-queuing models and our delay statistics
model. Second, we can see that BEB performances are close to that of OCB which means that
even if BEB collision probability is higher than that of OCB, thepenalty in throughput is very
small since collision duration is reduced by the use of RTS/CTS handshaking. Fig. 14 depicts
the corresponding mean packet service time (including queuing delay) and shows clearly the
existence of the three operating modes (no-backoff, transition and saturation regimes). In fig. 15,
we plot the delay Jain’s fairness index Vs. packet arrival rate. We observe again that during the
no-backoff regime the two schemes are fair, at transition regime the two schemes are less fair,
and finally at saturation the two schemes becomes again fair which is different from our previous
observation when we analyze the delay fairness. This is due to the fact that at saturation, the
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queuing delay is much more higher than the mac delay. To illustrate the short-term unfairness
of the BEB scheme, we plot in fig. 16 the throughput Jain’s fairness index using the sliding
window method [9]. The data arrival rate is taken equal to20Kbits/s, the network is then in
saturation regime. We observe that OCB is relatively fair even at short time horizon, and is
much fairer than BEB.

VII. C ONCLUSION

In this paper, we investigated the performance of the IEEE 802.11 DCF multiple access
scheme under general load conditions in single-hop configurations and we proposed a backoff
scheme enhancement that is quasi-optimal under all traffic conditions. First, we presented a
Markov chain model to analyze finite load situations withoutconsidering queuing at nodes
buffer from which we derived an accurate delay statistics model. We derived then the size of
the optimal constant window that maximizes the network throughput in saturation regime. Then,
we used this window for all traffic loads and we proved that thesystem operate quasi-optimally
independently from the traffic load. Numerical results haveshown that OCB performs better than
BEB both in term of throughput, delay, and short-term fairness. We have extended then the study
to consider finite queuing capacity at nodes buffer, and we have developed a recursive algorithm
to alleviate the complexity of the analysis. Finally, we validated our results by NS2 simulations
where we show clearly the superiority of OCB over BEB. OCB requires just information about
the network size. This information is easier to obtain in single hop networks, and its coherence
time is larger compared to other parameters (backlog state,active nodes, or any other information
measured from the channel state).
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