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Abstract. The term proxy certificate is used to describe a certificate that is is-
sued by an end user for the purpose of delegating responsibility to another user
so that the latter can perform certain actions on behalf of the former. Such cer-
tificates have been suggested for use in a number of applications, particularly
in distributed computing environments where delegation of rights is common. In
this paper, we present a new concept callexbf-carrying proxy certificateOur
approach allows to combine the verification of the validity of the proxy certifi-
cate and the authorization decision making in an elegant way that enhances the
privacy of the end user. In contrast with standard proxy certificates that are gener-
ated using standard (public-key) signature schemes, the proposed certificates are
generated using a signature scheme for which the validity of a generated signature
proves the compliance of the signer with a credential-based policy. We present a
concrete realization of our approach using bilinear pairings over elliptic curves
and we prove its security under adapted attack models.
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1 Introduction

The concept of proxy certificates, first formalized in [16], allows an end user to delegate
some responsibility to another user, called agent, so that the latter can perform certain
actions on behalf of the former. A proxy certificate is a certificate that, in contrast with
the public-key certificates issued by trusted certification authorities (such as X.509 cer-
tificates), is generated by an end user. It represents the signature of the end user on a
message that typically contains the identity of the end user himself, the public key of the
agent and a set of statements defining the terms of the delegation. It allows the agent
to authenticate with other users as if he was the end user when performing the dele-
gated actions. Proxy certification has been suggested for use in a number of applications
particularly in distributed computing environments where delegation of rights is quite
common. Examples include grid computing [6], mobile agents for e-commerce [8], and
mobile communication [7]. More recently, an X.509 certificate profile for proxy certifi-
cates was proposed in [19].

Whenever an agent wants to perform an action on behalf of an end user, he must
prove that he is authorized by the end user to perform the action on his behalf. This is



achieved by providing a valid proxy certificate and proving the possession of the private
key corresponding to the agent’s public key specified by the certificate. Furthermore, the
agent has to prove that the end user is compliant with the authorization policy associated
to the action he wants to perform. An increasingly popular approach for authorization
in large-scale open environments like the Internet consists in using policies fulfilled
by digital credentials. Basically, a digital credential is composed of a set of statements
about certain user and the signature of this set by a trusted entity (called credential
issuer). In this context, a commonly taken approach consists in that the agent provides
a set of end user’s credentials fulfilling the authorization policy (called a qualified set
of credentials for the policy). The entity that is in charge of making the authorization
decision is called the verifier. On one hand, the verifier has to check the validity of each
of the received credentials. On the other hand, he has to check that the received set of
credentials fulfills the authorization policy associated to the requested action.

The standard approach is not satisfactory for three reasons: first, verifying the va-
lidity of the proxy certificate and the validity of the different credentials separately is a
burden for the verifier. Second, we believe that managing the end user’s credentials and
proving his compliance with an authorization policy should not be the role of the agent.
Third, proving the compliance with a credential-based policy through the disclosure of a
qualified set of credentials is not optimal from a privacy point of view. More precisely, it
is not compliant with the privacy principle of data minimization (called the data quality
principle in OECD guidelines [10]) that states that only strictly necessary information
should be collected for a given purpose. For instance, assume that the authorization
policy requires the possession of at least one credential belonging to a set of multiple
credentials. Then, according to the data minimization principle, the verifier should not
know more than the fact that the end user is compliant with the policy. In other words,
the verifier should not know which specific credential fulfilling the authorization policy
is held by the end user.

In this paper, we introduce a novel form of proxy certificates cgdkef-carrying
proxy certificatesIn contrast with standard proxy certificates that are generated using
standard (public-key) signature schemes, the proposed certificates are generated using a
signature scheme for which the validity of a generated signature proves the compliance
of the signer with a credential-based policy. Using this special form of proxy certifi-
cates, the end user does not disclose any of his credentials. He uses them to generate a
proof of compliance with the verifier’'s authorization policy. Besides, the agent does not
have to deal with the end user’s credentials. He just provides his proof-carrying proxy
certificate (in addition to proving the possession of the private key corresponding to
the agent’s public key specified by the certificate). Finally, the verifier will just need to
verify the validity of the received proxy certificate with respect to his policy i.e. the ver-
ification of the validity of the proxy certificate and the authorization decision making
are performed in a logically single step.

The signature scheme used for the generation of proof-carrying proxy certificates
should be unforgeable as for standard signature schemes. Furthermore, the scheme has
to fulfill a privacy property called credential ambiguity in order to fulfill the data min-
imization principle i.e. the validity of a the signature on the proof-carrying proxy cer-
tificate proves that the end user is compliant with the authorization policy. However, if



multiple qualified sets of credentials can fulfill the policy, the verifier should not know
which specific one is held by the end user. In the following, an application scenario is
described as an illustration of our approach.

Application Scenario. Consider the following scenario: a researcher (end user) wants

to perform some operations on various hosts on a scientific computation oriented grid
environment. The operations can be executed independently, can depend on each other,
or can be executed only at specific periods of time. From his laptop the researcher
wants to submit a number of requests to the destination hosts and have the operations
executed while he is doing other things including being offline. For each request, an
authenticated connection needs to be established with the corresponding destination
host. An authorization policy is associated to the operations and the researcher has to
prove his compliance with the policy in order for the operations to be authorized to be
executed. The researcher delegates the management of the different operations to one
or more agents.

Currently, authorization in grid environments is identity-based. The researcher whose
public/private key pair is denotégk;, sk,) holds an X.509 certificate binding his global
identity to his public key. In order to make the agent act on his behalf, he generates for
the agent a random pair of keys denotgdk,,sk;). Then, he issues an X.509 proxy
certificate [19] associated to the generated key pair. The certificate contains in addition
to the agent’s public kepk,, a set of statements indicating the valid operations that the
agent is allowed to perform on behalf of the researcher, as well as a restricted valid-
ity period. The authentication of the agent is therefore based on its key pair, the proxy
certificate generated by the researcher and the public-key certificate of the researcher.
Authorization to perform a specific task is based on the identity of the researcher (taken
from his X.509 certificate) as well as on the statements within the proxy certificate.

As explained in [6], an identity-based approach to authorization and authentication
for large grids "will not provide the scalability, flexibility, and ease of management
that a large grid needs to control access to its sensitive resources”, while a property-
based approach where properties are carried by digital credentials is more appropriate.
In scientific grids for instance, properties may include whether the requesting agent
is acting on behalf of a professor, a student or an administrator; whether the agent is
acting on behalf of a member of a particular research project whose membership list
is not maintained locally; whether the agent is acting on behalf of a researcher from
academy or industry; etc.

In the credential-based approach, the agent needs to prove that its owner (the re-
searcher) is compliant with a specific credential-based authorization policy in order for
the operations to be executed. Using standard credential systems such as X.509 attribute
certificates, the agent needs to have access to the credentials of its owner to provide the
necessary authorization arguments. For example, assume that a policy requires the re-
searcher to be either a research staff member of comfamycompanyY. Suppose
that the researcher is employed by companyherefore he has been issued a creden-
tial credy (associated to his public keyk,). In addition to the proxy certificate, the re-
searcher gives to the agent the credewtiedly . During authentication and authorization
phase, the agent submits in addition to its proxy certificate, the researcher’s credential
credi. The remote host where the operation needs to be executed does the following:



(1) check the validity of the proxy certificate using the public kdy, (2) check the va-

lidity of credy using the public key of the 'trusted’ credential issuer, (3) check whether
the provided credential fulfills the authorization policy for the requested operations. If
all the validity checks are successful, the task is executed. Otherwise, an error message
is returned.

Using proof-carrying proxy certificates allows to combine the verification of the
validity of the proxy certificate and the authorization decision making in a way that
improves the privacy of the researcher. In fact, instead of using a standard signature
scheme, the researcher generates the agent’s proxy certificate by running an advanced
signature algorithm on input of his private kg, his credentiatred; and the credential-
based policy ¢red; or cred)’. The new proxy certificate carries in addition to delega-
tion rights, the authorization arguments necessary for the execution of the operations.
Hence, instead of performing three validity checks, the remote host needs just to verify
the validity of the proxy certificate with respect to the policyedy or cred;’ using the
researcher’s public kegk,. Furthermore, thanks to the credential ambiguity property,
the remote host will not know whether the agent is acting on behalf of a comfany
companyy.

Contributions and Organization of the Paper. In this paper, we present the concept of
proof-carrying proxy certificates that allows to combine the verification of the validity
of the proxy certificate and the authorization decision making in a way that enhances
the privacy of the end user. After discussing the related work in Section 2, we pro-
vide a comprehensive overview of the proof-carrying proxy certification mechanism in
Section 3. In Section 4, we provide precise definitions for the algorithms specifying a
proof-carrying proxy certification scheme. Then, we define the related security models,
namely unforgeability and credential ambiguity. In Section 5, we describe a provably
secure construction of proof-carrying proxy certification scheme based on bilinear pair-
ings over elliptic curves. In Section 6, we summarize the paper and discuss current and
future research work.

2 Related Work

The intuition behind the concept of proof-carrying proxy certificates comes originally
from proof-carrying codes [15]. The latter is a technique that can be used for safe exe-
cution of untrusted code. In a typical scenario, a code receiver establishes a set of safety
rules that guarantee safe behavior of programs, and the code producer creates a formal
safety proof that proves, for the untrusted code, adherence to the safety rules. Then,
the receiver is able to use a proof validator to check that the proof is valid and hence
the untrusted code is safe to execute. By analogy with proof-carrying codes, a proof-
carrying authentication mechanism based on higher-order logic was presented in [1]:
the client desiring access must construct a proof using his attribute certificates, and the
server will simply check the validity of the proof. The logic-based approach leads to a
simple and efficient solution that integrates different authentication frameworks includ-
ing X.509 and SPKI/SDSI. However, it cannot be used in the context of proof-carrying
proxy certification because it does not provide a signhature scheme fulfilling the required
properties.



Providing a privacy preserving proof of compliance with a credential-based policy
is a problem that has been studied in recent literature. In [2], the authors exploit crypto-
graphic zero-knowledge proofs to allow requesting users to prove their adherence with a
credential-based policy. The proposed solution provides better privacy guarantees than
our concrete implementation of proof-carrying proxy certificates as the users may prove
their compliance while preserving their anonymity. However, as the described protocol
requires interaction between the credentials holder (end user) and the verifier, it can not
be directly used to implement proof-carrying proxy certificates. An interesting line for
future research would be to exploit the Fiat-Shamir heuristic [9] to transform their inter-
active protocols into a signature scheme that could be used to implement proof-carrying
proxy certificates.

The concept of self-certified signatures presented in [13] shares with proof-carrying
proxy certificates the idea of combining signature’s validity verification with certifica-
tion information verification: the signer (end user) first generates a temporary signing
key (analog to the agent’s private key) using his long-term signing key and his public-
key certification information together. Then, he signs a message and certification in-
formation using this temporary signing key. In the verification stage both the signature
on the message and certification are checked together. Self-certified signature was ex-
tended to multi-certification signature in which multiple certificates are verified together
with the signature. The multi-certification signature scheme described in [13] could be
used to construct proof-carrying proxy certificates for which policies are restricted to
conjunctions of credentials. However, they cannot support disjunctions of credentials
while respecting the credential ambiguity property. Thus, the signature scheme used
in proof-carrying proxy certification could be seen as a generalization of self-certified
signatures that supports both disjunctive and conjunctive authorization structures.

Our pairing-based signature scheme for proof-carrying proxy certificates is based
on the policy-based signature scheme proposed in [4]. The latter allows to generate a
signature on a message so that the signature is valid if and only if the signer is compliant
with a credential-based policy written in standard normal form. However, it cannot be
used to implement proof-carrying proxy certificates as it suffers from collusion attacks.
In fact, in addition to the legitimate signer, any collusion of credential issuers or end
users who are able to collect a qualified set of credentials for the policy according
to which the message is signed can generate a valid signature. Besides, the scheme
is not satisfactory as it is not supported by formal security arguments. In this paper,
we propose a scheme that solves the collusion problem and provides a formal security
analysis based on reductionist proofs, thus fulfilling the security requirements of proof-
carrying proxy certificates.

3 Proof-Carrying Proxy Certification

In this section, we provide a general description of our approach as well as the notations
used along the paper. We define the different components of a proof-carrying proxy
certification scheme, including our policy model. Then, we describe how the proof-
carrying proxy certificates are created and used.



3.1 Setting the Context

The setting for proof-carrying proxy certification comprises four types of players: end
users, credential issuers, agents and verifiers (service providers). We consider a public
key infrastructure where each end user holds a pair of kpks sk,). An end user

is identified by his public keypk,. The public key does not has to be bound to the

end user’s name/identity (through public-key certification) as for standard PKI systems
such as X.509. In fact, in large-scale open environments, the identity of an end user is
rarely of interest to determining whether the end user could be trusted or authorized
to conduct some sensitive transactions. Instead statements about the end user such as
attributes, properties, capabilities and/or privileges are more relevant. The validity of
such statements is checked and certified by trusted entities called credential issuers.

We consider a set of credential issuérs- {l4,...,In}, where the public key of
I, for k € {1,...,N}, is denotedR¢ while the corresponding master key is denoted
s«. We assume that a trustworthy value of the public key of each of the credential is-
suers is known by the end users. Any credential iskuerl may be asked by an end
user to issue a credential corresponding to a set of statements. The requested credential
is basically the digital signature of the credential issuer on an assertion dex¥ted
The assertion contains, in addition to the set of statements, the end user’s public key
pky, as well as a set of additional information such as the validity period of the cre-
dential. As the representation of assertions is out of the scope of this paper, they will
simply be encoded as binary strings. Upon receiving a request for generating a creden-
tial on assertiorAPk, a credential issud first checks the validity of the assertion. If
it is valid, thenly executes a credential generation algorithm and returns a credential
denotedc(RK,Ap“U). Otherwise |l returns an error message. Upon receiving the cre-
dential¢(Rg, APk), the end user may check its integrity usigs public keyRy. The
process of checking the validity of a set of statements about a certain entity is out of the
scope of this paper.

Each service provider defines an authorization policy for each action on a sensi-
tive resource he controls. We consider credential-based policies formalized as mono-
tone boolean expressions involving conjunctions (ANDand disjunctions (ORY/)
of credential-based conditions. A credential-based condition is defined through a pair
(Ix, APkt) specifying an assertioAP ¢ {0,1}* (about an end user whose public key
is pky) and a credential issuét € I that is trusted to check and certify the validity of
APk An end user whose public key s, fulfills the condition(l,, APk) if and only
if the end user has been issued the credegtRl, AP%). We consider policies written
in standard normal forms, i.e. written either in conjunctive normal fob®KR) or in
disjunctive normal formm@NF). In order to address the two standard normal forms, we
use the conjunctive-disjunctive normal for@{NF) introduced in [18]. Thus, a policy
denotedPolPX is written as follows:

mj *
PolPle = AT [V 3 [ (o AT, wherel € 1 and AT € 0,1}

Under theCDNF notation, policies written i€NF correspond to the case wheng; = 1,

for alli, j, while policies written inDNF correspond to the case where= 1.
Let ¢j, . j.(PolP) denote the set of credentiaﬂ$c(RKi‘ji_k,Aip:-‘i“k) wiim for some

{iie{1,...,m}}",. Theng;, jn.(PolP%) is a qualified set of credentials fBolPk.



3.2 Creating and Using Proof-Carrying Proxy Certificates

When an end user wants to interact with a service provider (verifier) through an agent,
he first generates a pair of keypka, sky) for the agent. Then, he specifies the content
of the proxy certificate - a message, dendidcontaining the end user’s public key
pky, the public key of the agemtk; and the delegation constraints. Finally, the end user
generates a signature on the content of the proxy certificate using a dedicated signature
algorithm. The latter takes as input the message to be signed, the private key of the end
usersk,, the policy of the service providdtolPk: with respect to the end user’s public
key pky, and a qualified set of credentials for the pol'(qyﬂjm(Polp"U).

When the agent decides to interact with the verifier, he provides his proof-carrying
proxy certificate along with a proof of possession of the privateskgyorresponding
to the public keypk, contained in the proxy certificate. The verifier first checks the
delegation constraints specified by the proxy certificate to be sure that the agent is al-
lowed by the end user to perform the requested action on his behalf. Then, he checks the
validity of the signature on the content of the proxy certificate using the adequate verifi-
cation algorithm. This algorithm takes as input the proof-carrying proxy certificate, the
end user’s public keyk,, and the authorization polidyolPk. At the end, the verifier
obtains a proof that the agent whose public kegkgis allowed by an end user whose
public key ispk, to perform the action on his behalf and that the end user is compliant
with the authorization policy specified by the verifier.

The signature and verification algorithms used for the creation and verification of
proof-carrying proxy certificates must fulfill two security requirements:

— Unforgeability: the signature on a proof-carrying proxy certificate must not be valid
with respect to policyPolPk if the signer does not use the private kel or a
qualified set of credentials for polidolPX. In other words, the agent cannot obtain
avalid proof-carrying proxy certificate with respect to polRylPk: from a user that
does not have access to the private &gy and the end user cannot generate a valid
proof-carrying proxy certificate with respect to poliBglP% if he does not have
access to a qualified set of credentials for the policy.

— Credential ambiguity: in the case where there exists multiple qualified sets of cre-
dentials for policyPolP%, a valid proxy-carrying proxy certificate must not reveal
which specific set of credentials has been used to generate the certificate.

4 Definitions

Following the functional description provided in Section 3, we give in this section pre-
cise definitions for the algorithms used during the proof-carrying proxy certification
process. In addition, we formally define the corresponding security models.

4.1 Algorithms

A proof-carrying proxy certification scheme (in sh@CPC) is specified by six algo-
rithms: System-Setyssuer-SetupUser-SetupCredGen SignandVerify.



System-SetupOn input of a security parametlerthis algorithm generates the system
public parameter® including the different spaces, groups and public functions that
will be referenced by subsequent algorithms.

Issuer-Setup This algorithm generates a random master &egnd the corresponding
public keyRy for credential issuelk € I.

User-Setup This algorithm generates a random private kkyand the corresponding
public key pky.

CredGen On input of the public keyr¢ of a credential issudg € I and an assertion
APki ¢ [0,1}*, this algorithm generates the credentjdR,, APk) using the master key
S« associated t6y.

Sign. On input of a messagd, a pair of keyg pky, sk;), a policyPolPk and a qualified

Verify. On input of a messagd, a signatures, a public keypk, and a policyPolPk,
this algorithm returnsl” (for true) if o is a valid signature o according to policy
PolP%. Otherwise, it returng. (for false).

The algorithms described above have to satisfy the standard consistency constraint i.e.

0 =SignM, pky, sk, PolPk ¢j, i (PolPX)) = Verify(M, o, pky, PolP) = T

4.2 Security Models

A PCPC scheme has to fulfill the security requirement of unforgeability and the privacy
requirement of credential ambiguity.

Unforgeability. The standard acceptable notion of security for standard signature schemes
is existential unforgeability against chosen message attacks [11]. Therefore, we require
the same security notion for proof-carrying proxy certification schemes. The definition

of existential unforgeability should naturally be adapted to the advanced form of signa-
ture used by proof-carrying proxy certificates.

Existential unforgeability foPCPC schemes is defined in terms of an interactive game,
played between a challenger and an adversary. The game consists of threeSetages:
QueriesandForgewhich we describe below.

— Setup On input of a security parameterthe challenger does the following: (1) Run
algorithm System-Setupp obtain the system public paramete®s (2) Run al-
gorithm Issuer-Setupnce or multiple times to obtain a set of credential issuers
I ={l4,...,In}, (3) Run algorithmUser-Setugo obtain a public/private key pair
(pks,sk), (4) Give to the adversary the paramet@sthe public keypk and the
public keys of the different credential issuers included.in

— Queries The adversary performs adaptively a polynomial number of oracle queries
which we define below. By "adaptively”, we mean that each query may depend on
the challenger’s replies to the previously performed queries.

— Forge. Once the adversary decides tkateriesis over, it outputs a messadh, a
policy Polrpkf, a signatures;, and wins the game Werify (Mg, o7, pks, Polfpl“) =T.



During theQueriesstage, the adversary may perform queries to two oracles controlled
by the challenger. On one hand, a credential generation oracle dé€re@@en-O On

the other hand, a signature oracle den@agh-O. While the oracles are executed by
the challenger, their input is specified by the adversary. The oracles are defined below:

— CredGen-O On input of a credential issugg € I and an assertioAPk ¢ {0,1}*
(associated to a key p&ipky,sk,) chosen by the adversary), run algoriti@red-
Genon input of the tuplél,, APk) and return the resulting credentigRe, APk).

— Sign-0. On input of a messadd and a policyPolPk, first run algorithmCredGen
once or multiple times to obtain a qualified set of credentigls_j,,(PolP¥) for

o )m

PolPX, then run algorithnSignon input of(M, pk;, sk, PolP%, ¢j, _j,.(PolP)) (for

someji € {1,...,m} fori =1,...,m) and return the resulting output.

The oracle queries made by the adversary du@uogriesare subject to some restric-
tions depending on the type of adversary. In fact, we distinguish two types of attackers:

— Insider: the adversary is given, in addition to the parameters provided by the chal-
lenger duringSetup the private keyslk. An adversary of this type is not allowed
to obtain (through queries to oradredGen-Q a qualified set of credentials for
the forgery poIicyPopr"‘. This type of attackers corresponds to entities that are not
compliant with a policy and that try to generate a valid signature w.r.t the policy.

— Outsider: the adversary is given, in addition to the parameters provided by the chal-
lenger duringSetup the master keys of the different credential issuers included in
I. An adversary of this type does not have access to the privatsikand do not
need to perform queries to oraclredGen-O This type of attackers corresponds
to entities that might have access to a qualified set of credentials for the policy but
do not have access to the corresponding public key.

Obviously, an adversary, be it insider or outsider, is not allowed to perform a query to
oracleSign-Oon the tuple(My, PolP).

The game described above is denoiett-PCPC-CMAX, whereX = | for insider ad-
versaries and = O for outsider adversaries. A formal definition of existential unforge-
ability against chosen message attacksPfoPC schemes is given below. As usual, a
real functiong is said to be negligible ifi(k) < Tllo for any polynomialf.

Definition 1. The advantage of an adversagf in the EUF-PCPC-CMAX game is de-
fined to be the quantity Adv = Pr[.2* wing. A PCPC scheme i€UF-PCPC-CMA*
secure if no probabilistic polynomial time adversary has a non-negligible advantage in
the EUF-PCPC-CMAX game.

Credential Ambiguity We define credential ambiguity against chosen message attacks
for PCPC schemes in terms of an interactive game (denGie@dPCPC-CMA), played
between a challenger and an adversary. The game consists of three Segp&hal-
lengeandGuesswvhich we describe below.

— Setup On input of a security parameterthe challenger does the following: (1) Run
algorithmSetupto obtain the system public paramet@q2) Run algorithmssuer-
Setuponce or multiple times to obtain a set of credential issuets{l4,...,In},



(3) Give to the adversary the paramet@ras well as the public and master keys of
the different credential issuers includediin
— Challenge The adversary chooses a messklgg a pair of keyq pke, skn) and a

policy Polfﬁch on which he wishes to be challenged. The challenger does the follow-
ing: (1) Fori =1,....m, pick at randorr]'iCh €{1,...,m}, (2) Run algorithnCred-
Gen mtimes to obtain the qualified set of credentiajl&mj%](Polfr'fC“), (3) Run

algorithmSignon input the tuplgMch, pkeh, Skeh, POlchangh,_,_ jcmh(p0|3‘]‘ch)) and re-
turn the resulting output to the adversary.

— GuessThe adversary outputs atudlg, ..., jm), and wins the game if the equality
(jihv ceey Jr(’:nh) = (jlv ceey Jm) holds.

Definition 2. The advantage of an adversafyin the CrA-PCPC-CMA game is defined
to be the quantity Ady= Max; {|Pr[ji = j" — %\}, where the parameters;rare those

defined by the challenge policy I?,fﬂ“ A PCPC scheme i<rA-PCPC-CMA secure if
no probabilistic polynomial time adversary has a non-negligible advantage icrthe
PCPC-CMA game.

5 Concrete Implementation

In this section, we describe a concrete implementation of proof-based proxy certificates.
Our implementation is based on bilinear pairings over elliptic curves. Our scheme owes
much to the work on pairing-based signature and ring signatures presented in [14, 20,
21]. After describing our concrete algorithms, we analyze their consistency and effi-
ciency. Then, we prove their security in the random oracle model.

5.1 Description

Before describing the algorithms defining ®@PC scheme, we define algorithBDH-
Setupas follows:

BDH-Setup Given a security parametkr generate a tupléy, G1,Go, e,P) where the
mape: G1 x G1 — Gz is a bilinear pairing(G1,+) and (G, *) are two groups of the
same ordeq, andP is a random generator @&1. The generated parameters are such
that the following mathematical problem are hard to solve:

— Computational Diffie-Hellman ProblenCDHP): given a tuple(P,a-Pb- P) for
randomly chosen, b € Z;;, compute the valuab- P.

— (k+ 1)-Exponent Problemk(+ 1EP): given the tuplg(P,a-P,a?-P,...,ak-P) for
a € Zg, computea*"* . P.

Note We recall that a bilinear pairing satisfies the following three properties: (1) Bilin-
ear: forQ,Q € Gy and fora,b € Z{, e(a-Q,b- Q') = &(Q, Q)?, (2) Non-degenerate:
e(P,P) # 1 and therefore it is a generator®$, (3) Computable: there exists an efficient
algorithm to compute(Q, Q') forall Q,Q € G;. ¢

OurPCPC scheme consists of the algorithms described below.
System-SetupOn input of a security parametkrdo the following:



1. Run algorithmBDH-Setupon inputk to generate output, G1, G2, e, P)
2. Define three hash functiondy : {0,1}* — G4, Hy: {0,1}* — Zy andH;: G, — Ly
3. Let? = (q,G1,G2,e P, Ho,H1, Ha).

Issuer-SetuplLet I = {l,...,In} be a set of credential issuers. Each credential issuer
Ix € I picks at random a secret master kRye Zg and publishes the corresponding
public keyR¢ = s - P.

User-Setup This algorithm picks at random a private ke, € Zg and computes the
corresponding public kepk, = sk, - P.

CredGen On input of the public keyr, of issuerly € I and assertioPk € {0,1}*,
this algorithm outputg(Re, APK) = s - Ho(APK:),

Sign. On input of a messagd, a pair of keyg pky, sk;), a policyPolPk and a qualified

1. Fori=1,...,m, do the following:
(a) Pick at randony; € G1, then computes j,+1 = e(PY;)
(b) Forl =ji+1,...,m,1,.... ji—1 modm + 1), do the following:

i. Computer;; = ﬂkm¥lle(RKi,|,k7H0(Ail?ll(jf<))
ii. Pick at randonY;| € G1, then compute; |11 =¢e(PYi)) *Tilj
(c) ComputeY j; =Y — Hy(M{|xj; [[ml]i|fi) - (Z:ljli C(RKi,ji‘wAi‘?;u,k))
2. ComputeY =3, 5 Y, j, then comput& = (sk; +Hz(Y)) " *-P
3. Returno = ([ ]%4]",Y,2)

1 (M [[mifif]1)

Verify. Letg = ([[xi,j]Tll]{';l,Y,Z) be a signature on messaljeaccording to policy
PolP% and public keypk,. To check the validity oy, do the following:

1. Computet; | = ﬂrkrljle(RKirj‘wHo(Ai‘?;‘f’k)) (forj=1,....mandi=1,....,m)
2. Computeng = e(pky +Ha(Y)-P,Z)

Hy(M]|%i i jlli
3. Computeas = 24 [[1i%, %,j] andaz = e(RY) « [T, n?‘:lthjl( I3 )
4. If ag = e(P,P) anda; = ay, then returnT, otherwise return_

The intuition behind our signature algorithm is as follows: each conjunction of con-
ditions AQ&(IKLLWA{?TQ is associated to a tag ;. For each index, the set of tags
{Ti,j}?ll is equivalent to a set of ring members. The signature key of the ring mem-

ber corresponding to the tag; consists of the credentia{s;(RKi‘j.k,Af'fk)}ﬂljl. Thus,

the generated signature corresponds to a set of ring signatures which validity can be
checked using the global 'glue’ valie The latter can be computed only by a user hav-
ing access to a qualified set of credentials for poRoyPk. The element represents

the [21] short signature oY using the private kegk,. Therefore,c proves that the
entity whose public key ipk, is compliant with policyPolP%. Note that we can use

any standard signature scheme to generate the ¥alue



5.2 Consistency and Efficiency

Our PCPCscheme satisfies the standard consistency constraint thanks to the following
statements:

= e(pky+Ha(Y) -P.Z) = e((sky+ Ha(Y)) - P, (sky+ Ha(Y)) " - P) = e(P,P) (1)

H1(M||%; il _
Ti)jl( HX,J”mH'HJ) :Xi,j+l*e(PaYi,j) l(Where(i,m-&-l:Xi,l) (2)

o = A% rl I—I1 Hl M|x;, JHmH|HJ } (Where)\ _ e(P,Y))

m m-1
= Ax I—|[ I_l Xitj+1*e(P,Yi.j)71*Xiﬁl*e(P,Yi’m)il]
=1 1=

:)\*r‘rllx”*l—ll PY|J) ]

m

|—||'|1><.J P PR AP ST TE (3)

= l

The essential operation in pairing-based cryptography is pairing computations. Our sig-
nature algorithm requires a total pf"; m + 3" 5 ., m j pairing computations. Note

that the values;, does not depend on the signed mesddgdhus, they can be pre-
computed by the end user, cached and used in subsequent signatures involving the cor-
responding credential-based conditionsQRk”.k,Af,‘fQ. On the other hand, our verifi-
cation algorithm requires a total of3y " ; zrj“‘:lm,j pairing computations. Although
pairing computations could be optimized as explained in [5], the performance of our
signature and verification algorithms still need to be improved. This is the main focus
of our current research work.

Let I; denote the bit-length of the bilinear representation of an element of gepup
(i=1,2). Then, the bit-length of a signature produced byR@PC scheme is equal to
(3™, m).I2+2.11. Note that the signature’s length does not depend on the vaiyes

5.3 Security

In the following, we provide the security results related toaPC scheme.

Notation Given the notation used in Section 3, the maximum values that the quantities
m, m andm j can take are denoted, respectivety,, > 1,m, > 1 andm, > 1. We
assume that these upper-bounds are specified during system setup.

Theorem 1. Our PCPC scheme i€UF-PCPC-CMA' secure in the random oracle model
under the assumption tha@DHP is hard. In fact, let4° be anEUF-PCPC-CMA' ad-

versary with advantage Adv > € when attacking ouPCPC scheme. Assume that ad-
versary4° has running time 4o and makes at most.queries to oracle CredGen-O,



gs queries to oracle Sign-Opueries to oracle land g queries to oracle il Then,
there exists an adversarg® the advantage of which, when attacking CDHP, is such
that

Advz. > 9/ (10095 ™ 1™ 11("™))

For g > Max{2m,,my,2my0sa1 } ande < 32(q; + 1 —my,my)/q, its running time is
tge < (32q;|_+4)t;40/8.

Proof. Proof of Theorem 1 follows the method described in [12], which is based on
the oracle replay technique [17]. Informally, by a polynomial replay of the attack with
different random oracles, we allow the attacker to forge two signatures that are related so
that the attacker is able to solve the underlying hard prob@DHP). The details of our

proof are given in [3]. Note that our security reduction does not depend on the parameter
m,. On the other hand, it depends exponentially on the parametgrandm, which

needs further improvement. Finally, note that the ID-based ring signature presented
in [21] is not supported by any security arguments. Our proof could be easily adapted to
realize the missing proofs. In fact, the ID-based ring signature of [21] is almost similar
to our signature algorithm applied in the particular case where the policies are such that
myy=my=1.

Theorem 2. Our PCPC scheme i§UF-PCPC-CMAC secure in the random oracle model
under the assumption thatik1EP is hard.

Proof. The security of our schenCPC in the EUF-PCPC-CMAC game is equivalent

to the security of the short signature scheme presented in [21]. In fact, the outsider
adversary succeeds in forging a proof-carrying proxy certification if and only if it suc-
ceeds in generating a valiticorresponding to a vali€[x ;]\ ,]™,,Y) associated to the

pair of keys(pk,sk). As the adversary has access to the master keys of the different
credential issuers, its is able to generate a valid tqmj]g"zl]{‘;l,Y) corresponding

to any policy associated tok;. Therefore, the adversary needs to be able to generate a
[21] short signature o using the protected private ksi¢. The short signature of [21]

is proved to be secure in the random oracle model under the assumption tkiet EHie
problem is hard.C]

Theorem 3. Our PCPC scheme i€rA-PCPC-CMA secure in the random oracle model.

Proof. LetMcn be the message agh = ([x]1L,];, Yo", Z°") be the signature which
the adversary is challenged on in th&\-PCPC-CMA game. OuPCPC scheme is such
that the following holds

H1 Mh [y [ mlil|j—1)

Loxh=ePYij 1)+ , for j # jf"+ 1 andx®" e(PY)

o1
2. YN =55 2jen Y+ Y —Hl(MchHXﬁTich”mHIHJi )- (T I:J' (R Lichic’ Ajeni))]

SinceY; andY; j_; are chosen at random frof;, andH; is assumed to be a random
oracle, we have tha;fh andY®" are uniformly distributed G, andG, respectively. If
(j1,---,jm) is the tuple output by the adversary in theA-PCPC-CMA game, then we
havePr[j; = j¢ ], fori=1,....m O



6 Conclusion

In this paper, we presented the concept of proof-carrying proxy certificates. The idea is
to generate the proxy certificate using a special signature scheme for which the validity
of the generated signature proves the compliance of the signer with a credential-based
policy. The proof adheres to the privacy principle of data minimization i.e. in the case
where there exists multiple qualified sets of credentials for a policy, the proof does not
reveal which specific set has been used to generate the signature. To implement our ap-
proach, we developed a concrete proof-carrying proxy certification scheme using bilin-
ear pairings over elliptic curves. We defined formal security models for proof-carrying
proxy certification schemes and proved the security of our construction under the de-
fined models in the random oracle model. We are currently developing an experimental
implementation framework for proof-carrying proxy certificates in the context of grid
computing. The integration of well established credential standards (e.g. SPKI, SAML)
is one of our goals. We are also working on improving the performance of our construc-
tion in terms of both computational and bandwidth consumption costs, and preparing
and in-depth analysis of such costs. As discussed in the related work, an interesting
line for future would be the construction of a proof-carrying proxy certification scheme
based on the well known zero-knowledge proof of knowledge protocols.
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