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Abstract

The perspective taken in this report is to provide background information on
recent efforts toward the convergence of computer science (both theoretical, deal-
ing with algorithm complexity, and applied, dealing with the implementation of
algorithms) and micro-economics techniques. We term computational economics
the science that explores the intersection of economics and computation. Similarly
to [33], our intent is to offer the tools for systems’ engineers to design algorithms
capable of supporting the desired system-wide goals taking into account the pres-
ence of selfish elements. We take the stance that selfishness is an obstacle to system
designers goals and survey techniques such as payments and digital reputation, to
name a few, as a way to overcome this obstacle. We define a unified framework to
describe computational economics problems applied to computer networks.
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1 Introduction

The constantly increasing attention raised by communication systems stems
from their ability to exploit existing network infrastructures (such as the Interenet)
to build inter-connected collections of computers capable of offering services that
allow the interaction between software agents or between individuals (e.g. users).
Recent work in wireless communication systems further pushed the requirements
for individuals interaction offering systems capable of autonomously organize and
communicate eliminating the need to rely on a pre-deployed infrastructure.

A large part of research in computer-science is concerned with protocols and
algorithms that allow the formation of inter-connected systems and that regulate the
interaction among the parties involved in their execution. The parties participating
in such mechanisms can be humans, but they can also be software agents that act
in their owners interests, allowing to increase the number and complexity of these
mechanisms even further.

From a computer science perspective, one unusual aspect of the resulting sys-
tems is that the designer has no direct control over one of the systems core compo-
nents, namely the behavior of the agents. With the emergence of the Internet (both
in its two declinations, wire-line and wireless) as the platform for computation,
the implicit assumption that the elements participating in the system will act as
instructed - neglecting the faulty or malicious ones - does not hold anymore. Sys-
tem components (for examples computers that build and use the Internet) belong to
different individuals or organizations and will likely do what is most beneficial to
their owners. These elements will pursue their own self-interest, rather than follow
any prescribed behavior. This opportunistic behavior can prevent the realization
of the systems potential benefits, which are determined by the system designers’
goals. The only solution is to design systems relying on mechanisms able to guide
the system operating point to a desirable one in spite of the strategic behavior of the
system components. Strategic behavior calls for an integration effort that combines
techniques from economics - specifically, from game theory (GT) and mechanism
design (MD) - into computer science.

The perspective taken in this report is to provide background information on
recent efforts toward the convergence of computer science (both theoretical, deal-
ing with algorithm complexity, and applied, dealing with the implementation of
algorithms) and micro-economics techniques. We term computational economics
the science that explores the intersection of economics and computation.

Similarly to [33], our intent is to offer the tools for systems’ engineers to de-
sign algorithms capable of supporting the desired system-wide goals taking into
account the presence of selfish elements. We take the stance that selfishness is an
obstacle to system designers goals and survey techniques such as payments and
digital reputation, to name a few, as a way to overcome this obstacle. We define a
unified framework to describe computational economics problems applied to com-
puter networks.
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2 Mechanism design: tradition and evolutions

Game theory has developed powerful tools for modeling and analyzing strate-
gic decision making in systems with (multiple) autonomous actors. These tools,
when tailored to computational settings, provide a foundation for the analysis of
selfish behavior on computer systems and their operation in equilibrium. While
game theory aims at explaining what happens when independent individuals act
selfishly, mechanism design deals with how to design systems so that certain sys-
tem wide properties (for example, efficiency, stability, and fairness) emerge in equi-
librium from the interaction of individuals that hold private information about their
preferences.

The field of mechanism design aims to study how privately known preferences
of multiple individuals can be aggregated towards a ”social choice”. However,
aggregating the preferences of self-interested players is complicated by the fact
that they will misreport their preferences if this is to their benefit. MD allows to
study how to aggregate preferences in such a way that the system wide properties
defined by the mechanism designer are obtained in spite of such strategic behavior.

In the following we provide a formal definition of traditional MD theory us-
ing models introduced in [33]. The interested reader can refer to the seminal
works [18, 34, 36] for an authoritative introduction to game theory and mechanism
design. We refer to traditional mechanism design to emphasize the evolution that
this field has witnessed in recent years. The convergence of traditional MD with
theoretical computer science has brought up what Nisan in its seminal work with
Ronen called algorithmic mechanism design (AMD). Shenker and Feigenbaum
further pushed the ideas of AMD to address the problems introduced by distributed
systems, giving birth to distributed algorithmic mechanism design (DAMD). Re-
cent work by Conitzer [8–10] shifted the notion of complexity behind AMD to the
complexity of the actual design process of a mechanism. [10] introduces a new
class of problems that go under the name of automated mechanism design (Auto-
MD) that define possibility results as well as algorithms for the automatic design
of mechanisms that traditionally have been designed manually.

Before delving into what traditionally has been defined as mechanism design
in the following we provide some background information on game theorertical
notations and definitions that will be used in the remainder of the report.

2.1 Some Basic Definitions from Game Theory

A game can be defined by a tuple 〈V, {Si}, {ui}〉, where:

• V = {v1, v2, . . . , vn} denotes the set of players.

• Si denotes the set of strategies si available to player vi.

• ui(s) denotes the utility (or payoff ) of player vi under the outcome s, where
s = {s1, s2, . . . , sn} is a collection of the strategies played by the individual
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players in an instantiation of the game (each player playing one strategy).
Instead of utility, one can define a cost ci(s), in which case the players strive
for minimization instead of maximization.

Let s−i = {s1, . . . , si−1, si+1, . . . , sn} denote an i-residual outcome, i.e., an out-
come that includes the strategies of all players but vi.

Definition 1 A strategy si is a best response to s−i iff ui(s−i + {si}) ≥ ui(s−i +
{s′i}), ∀s′i ∈ Si : s′i �= si.

Definition 2 An outcome s is a pure Nash equilibrium iff for all vi ∈ V , ui(s−i +
{si}) ≥ ui(s−i + {s′i}), ∀s′i ∈ Si : s′i �= si. A similar definition applies when
considering costs ci(s), the only difference being in the direction of the inequality.

In other words, an outcome is a pure Nash equilibrium if all nodes select best
responses concurrently. Under such an outcome, no node can “deviate” unilaterally
and increase its profit.

2.2 Traditional Mechanism Design

Consider a distributed system composed of n individuals (or agents). Each
individual i ∈ I is characterized by a utility function that defines the preference
ordering an agent has over the possible outcomes of the system. The outcomes are
determined by the mechanism and defined by the system designer.

Formally, for a set of possible outcomes O each player has a utility function
ui : O → 	, where ui ∈ U . Each agent holds private information θi ∈ Θi that
influence its preferences over the outcome of the system (θi is also known as the
type of individual i).

Summarizing, agent i with type θi has utility ui(θi, o) for o ∈ O. In this defi-
nition we let outcomes define also (eventual) payments made by the mechanism.

Definition 3 Mechanism1 : A mechanism is defined by tuple M = (Σ, g) that
takes into account a strategy space Σ (i.e., the set of possible actions adopted by
the agents) and an outcome rule g(σ) ∈ O (i.e., the algorithm that defines the
system outcomes) for σ = (σ1, σ2, ..., σn) ∈ Σ|n|. A strategy σi(θi) ∈ Σ defines
the actions selected by agent i for all possible types θi. Hence, the mechanism is
specified by the strategy space, the outcome rule and the individuals types.

Traditional MD can be sketched using the representation in Figure 1. The
elements involved in the execution of a mechanisms are the system components
and a special entity called the center, which is traditionally considered as a trusted
third party executing the mechanism.

1The notation used in this report follows the one defined by Parkes in [12]. Alternative notations
are used in [17, 33], but they do not fully grasp the roles of the entities involved in a mechanism.
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Figure 1: Sketch of a traditional Mechanism Design setting

In the previous definition we assume that agents are rational and that they
select the best-response strategy to maximize their utility in equilibrium with other
agents. In this case, no agents can benefit from any unilateral deviation from the
equilibrium. Another important assumption we make is that the mechanism can
implement and commit to the outcome rule. It is worth noticing that the set of
possible outcomes O defines also eventual payments.

The general definition of a mechanism can be declined into an optimization
problem, whereby the outcome rule is reduced to the optimization of an objective
function, which represents the “goal” of the system designer.

The goal in traditional MD is to design a system in which rational agents inter-
act in a way that leads to equilibriums with desired system wide properties. These
properties are encapsulated in the social choice function (SCF)f : Θ → O, which
defines the system outcomes for each possible set of agent types. For example,
if the mechanism designer’s goal is to achieve efficiency in the system by maxi-
mizing the total utility gained across all agents, then f(θ) = maxo∈O

∑
ui(θi, o).

Thus, the system designer is confronted with the problem of determining a set of
outcomes o ∈ O that maximizes the sum of the utility gained by every individuals
taking part in the system, given that individuals will act rationally. The designers
problem can be translated into an incentive allocation problem that guides agents’
strategies in a way that allows the implementation of a particular SCF.

2.2.1 Quasi-linear mechanisms

An important class of problems related to traditional MD are those in which
the utility function that characterizes individuals is quasi-linear. In this context the
outcome space O can be factored into a set of system states O∗ (or allocations) and
a set of payment states P ⊆ 	n that represent a vector of payoffs (or penalties). For
a particular outcome o = (o∗, p), agent i’s utility function factors into ui(θi, o) =
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vi(θi, o
∗) + pi, where vi : O∗ → 	 represents the agent’s valuation function for

each system state and pi is the payment (if positive, taxation, charge or penalty if
negative) made by the center.

For quasi-linear mechanism there is a class of mechanisms called Vickrey-
Clarke-Groves (VCG). We dedicate section 2.2.5 to introduce VCG mechanisms
as they play an important role in applied MD.

It is important to note that although the mechanism (O∗, P ) is chosen by the
system designer, the model that describes the interactions and the preferences of
individuals is supposed to reflect reality. We argue that in addition to what was
noted by [17], i.e., the solution concepts that apply to the strategy selected by the
agents should be tailored to a specific setting, also the system model (i.e., the utility
function) should reflect the context in which agents interact. We will come back
on this issue in section 2.5.

2.2.2 Properties of traditional mechanisms

Many properties of a mechanism are stated in terms of the properties of the
SCF function that the mechanism implements.

Definition 4 Pareto optimality : a SCF function f(θ) is pareto optimal is for every
o
′ �= f(θ), and for all types θ = (θ1, ..., θn),

ui(o
′
, θi) > ui(o, θi) ⇒ ∃j �= i ∈ I | uj(o

′
, θj) < uj(o, θj)

Informally, the implementation of an outcome is not Pareto-dominated by any
other outcome, so no other outcomes make one agent better-off while making other
agents worse-off.

Definition 5 Efficiency : a SCF function f(θ) = (o∗(θ), p(θ)) is efficient if for all
agent types θ = (θ1, ..., θn),

n∑

i=1

vi(o∗, θi) ≥
n∑

i=1

vi(o
′
, θi),∀o

′ ∈ O

The implementation of an efficient outcome maximizes the total value gained across
the agents.

Definition 6 Budget Balance : a SCF function f(θ) = (o∗(θ), p(θ)) is budget-
balanced, if for all θ = (θ1, ..., θn),

n∑

i=1

pi(θ) = 0
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Budget balance imposes that payments are not injected into or removed from the
system. The budget balance property can be relaxed, so that the total transfer to the
system is non-negative: the mechanism does not run a loss.

A SCF function f(θ) = (o∗(θ), p(θ)) is weakly budget-balanced, if for all
θ = (θ1, ..., θn),

n∑

i=1

pi(θ) ≥ 0

The budget-balance property is fundamental in systems that must be self-sustaining
and require no external entity to input money or central authority to collect pay-
ments. Yet, budget balance often conflicts with other desiderata, such as efficiency.

Definition 7 Individual Rationality : Another important property of a mechanism
is individual-rationality which allows an agent to decide to participate in a mech-
anism. Essentially, individual-rationality places constraints on the level of utility
that an agent receives from participation.

The most natural definition of individual-rationality (IR) is interim IR, which states
that the utility to an agent, given prior beliefs about the preferences of other agents,
is at least the utility gained from not participating to the mechanism. In a mech-
anism in which the agent’s utility from participation must be at least equal to the
maximum utility gained by non participating to the mechanism for all possible
types of agents in the system, then individual-rationality is named ex post IR. Fi-
nally, ex ante IR states that the agent’s utility for participation to the mechanism,
averaged over all possible preferences, must be at least its utility without partici-
pating, also averaged over all possible preferences. In this case, an individual must
choose to participate before it even knows its own preferences.

2.2.3 Equilibrium solution concepts

The game theory literature contains a very rich set of solution concepts that
cannot be fully explored in this report. The designer’s role is to prove the existence
of an equilibrium of the system and to compute it. Hence, the feasibility of a mech-
anism greatly depends on the equilibrium concept used to find the solution (in GT
terms) to the game the mechanism imposes to the agents. The game specification
can be further enriched by specifying the context in which individuals interact; the
system can be modeled by a repeated game or a single-shot game, for example, or
by taking into account agents’ collusion, agents’ knowledge about other individu-
als’ preferences, etc...

As a mechanism implements the SCF f in equilibrium, in the following we
present the three most useful solution concepts, each successively requiring stronger
assumptions about agents.
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Definition 8 Dominant strategy equilibrium : Each agent has a best-response
strategy no matter what strategy the other agents select. Formally, we have

σ∗
i = arg max

σi

ui(θi, g(σi(θi), σ−i(θ−i))),∀σ−i, θ−i

A dominant-strategy equilibrium provides a robust solution concept because no
information is required about individuals rationality or types distribution for an
agent to select the strategy to be played.

Definition 9 Ex-post Nash equilibrium : An ex post Nash equilibrium requires
common knowledge about agents rationality but doesn’t require any knowledge
about type distributions: agents will not deviate from the selected strategy even
once other agents types are known. Formally,

σ∗
i = arg max

σi

ui(θi, g(σi(θi), σ∗
−i(θ−i))),∀θ−i, θi ∈ Θi

where σ∗
−i(θ−i) denotes the equilibrium strategies played by other agents.

Definition 10 Bayesian Nash equilibrium : The Bayesian-Nash equilibrium is the
weakest solution concept adopted in MD. Every agent must hold both beliefs about
other agents rationality and correct beliefs about the distribution on types of other
agents. Formally,

σ∗
i = arg max

σi

Eθ−i
[ui(θi, g(σi(θi), σ∗

−i(θ−i))],∀θi ∈ Θi

In a Bayesian Nash equilibrium each agent selects a best-response strategy to max-
imize its expected utility given its beliefs about the distribution over types, as long
as the other agents also play an equilibrium strategy.

In [17], the authors further question the usefulness of traditional solution con-
cepts and illustrate the possibility of exploiting adaptive learning techniques, used
in the context of repeated games as introduced in [30]. We stress that game defi-
nitions and solution concepts must be tailored to the specific context in which the
system designer operates. Game theory is a rich and evolving discipline that al-
lows, as an additional example, to study the evolution of systems with techniques
akin to genetic programming: recent advances in autonomic systems capable of
adapting to changing environments suggest that solution concepts by which only
the “fittest” strategy survives in a system is another research direction that mecha-
nism designers are going to undertake.

In section 2.3 we explore the additional constraints that derive from the quest
for realistic communication models. So far we intrinsically assumed individuals
capable of fully understanding the protocols that govern their interactions and abide
with them. We assumed cost-free, fault-less communications between agents and
with the center. This assumption is not realistic in the specific context of computer
networks. We assumed static agent population, as opposed to open systems in
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which a dynamic population might interact. Again, this is not realistic when mod-
eling complex systems, such as peer-to-peer content distribution systems, wherein
peer population evolves in flash-crowds bursts.

In reality, individuals involved in a mechanism and modeled by game theory
have often constraints on their resources. MD has traditionally taken the conserva-
tive view that agents will always choose the action that is in their own best inter-
est –the assumption of perfect rationality. Fundamental results in traditional MD
theory that we discuss in the following section relies heavily on this assumption.
However, this assumption may be overly conservative, in that agents may not al-
ways have the computational resources to find the action that is in their own best
interest –that is, their rationality is bounded. Note that a realistic model of individ-
uals does not always entail worse results. In their work, Conitzer et al. [11] showed
that there can be significant benefits if the strict requirements imposed by perfect
rationality are relaxed.

Moreover, game theory relies mostly on equilibrium notions wherein the opti-
mal action for an individual to take depends on the actions of the other individuals,
so that in general there is no clear ex ante optimal strategy. These equilibrium
notions are known as solution concepts. Many solution concepts have been pro-
posed in the literature, but the study of how to compute strategies according to
these solution concepts has received only limited interest until recently. Knowing
how to compute game-theoretic strategies has obvious applications to the design
of software algorithms and agents. Furthermore discovering that some equilibria
are easier to compute than others, may help resolve the well-known equilibrium
selection problem: agents involved in a decision process are faced to the selection
of which solution concept to implement, which implies that no action can be taken
univocally. Considerations on the computational effort required to find a solution
to a strategic situation have implications for mechanism design. If the solution
concepts are too difficult to compute, then it is unreasonable to expect that agents
will play according to them.

2.2.4 Incentive Compatibility and the Revelation Principle

Incentive compatibility and the revelation principle are important concepts in
MD theory that apply to mechanisms in which the only action available to the
agents is to report to the center their types θi. This kind of mechanism is often
referred to as direct mechanisms.

Definition 11 Direct Revelation Mechanism : A direct-revelation mechanism M =
((Θ1,Θ2, ...,Θn), g(· )) restricts the strategy set Σi = Θi,∀i, and has an outcome
rule g : Θ1,Θ2, ...,Θn → O which selects an outcome g(θ̂) based on reported
preferences (θ̂ = (θ̂1, ..., θ̂n).
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In a direct-revelation mechanism, the strategy of agent i is to report typeθ̂i =
σi(θi), based on its true preferences θi.

As opposed to direct mechanism, the mechanism specified in Definition 3 is
often referred to as indirect mechanism. In this case, the agents no longer directly
reveal their types but instead choose strategies from the space Σ. The strategy
selection is done selfishly in order to maximize the agents’ utility. Note that the
research community has focused mainly on direct mechanisms. The mechanism
designer’s goal is to provide incentives so that the best strategy for an agent is to
tell the truth about their types, i.e., θ̂i = θi following the definition given in Defi-
nition 11.

Definition 12 Truth Revelation : A strategy σi ∈ Σi is truth-revealing is σi(θi) =
θi,∀θi ∈ Θi.

Following what has been argued in [17], we question that direct mechanisms
will play the same role in real-world implementations of MD theory as they played
in the game theoretical literature. Revelation of private information, though guided
by appropriate incentives provided by the system designer, can be unacceptable in
the broader context of computer networks, e-commerce, e-voting systems to name
a few, where privacy concerns can be deciding factors in favor or against a tech-
nology. In these contexts, the goal of MD is to allow agents’ to compute a strategy
that depends on private preferences without revealing anything that could disclose
sensitive information. The cryptographic community provides a large number of
security protocols that can be considered mechanisms themselves (in the game
theoretical sense) such as secure multi party function evaluation, zero-knowledge
proof protocols, rational-exchange protocols, etc, [17]. We argue that cryptog-
raphy should be considered also from the perspective of a helper technology to
guarantee privacy, data confidentiality, data integrity, etc, for applications that rely
on traditional MD theory.

In an incentive-compatible (IC) mechanism the equilibrium strategy profile
σ∗ = (σ∗

1 , σ
∗
2 , ..., σ

∗
n) has every agent reporting its true preferences to the mecha-

nism.

Definition 13 Bayesian-Nash incentive-compatibility : A direct-revelation mech-
anism M is Bayesian-Nash incentive-compatible if truth-revelation is a Bayesian-
Nash equilibrium of the game induced by the mechanism.

Definition 14 Strategy proofness : A direct-revelation mechanism M is strategy-
proof if it truth-revelation is a dominant-strategy equilibrium.

Strategy-proofness is a very useful property, both game-theoretically and com-
putationally. Dominant-strategy implementation is very robust to assumptions about
agents, such as the information and rationality of agents. Computationally, an agent
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can compute its optimal strategy without modeling the preferences and strategies
of other agents.

A simple equivalence exists between the outcome function g(̂θ) in a direct-
revelation mechanism, which selects an outcome based on reported types θ̂ and
the social choice function f(θ) implemented by the mechanism, i.e. computed in
equilibrium.

Definition 15 Incentive-compatible implementation : An incentive-compatible
direct-revelation mechanism M implements the social choice function f(θ) =
g(θ), where g(θ) is the outcome rule of the mechanism. In an incentive-compatible
mechanism the outcome rule is precisely the social choice function implemented by
the mechanism.

The revelation principle for dominant strategy implementation states that any
social choice function than is implementable in dominant strategy is also imple-
mentable in a strategy-proof mechanism. In other words it is possible to restrict
attention to truth-revealing direct-revelation mechanisms.

Theorem 1 Revelation Principle : Suppose there exists a mechanism (direct or
otherwise) M that implements the social-choice function f(· ) in dominant strate-
gies. Then f(· ) is truthfully implementable in dominant strategies, i.e. in a strategy-
proof mechanism. The interest reader can refer to [36] for the proof of the theorem.

The revelation principle suggests that to identify which social choice func-
tions SCF are implementable in dominant strategies, we need only identify those
functions f(· ) for which truth-revelation is a dominant strategy for agents in a
direct-revelation mechanism with outcome rule g(· ) = f(· ).

With the revelation principle in hand it is possible to prove impossibility results
over the space of direct-revelation mechanisms, and construct possibility results
over the space of direct-revelation mechanisms. However, the revelation principle
ignores computational considerations and should not be taken as a statement that
it is sufficient to consider only direct-revelation mechanisms in practical mecha-
nism design. The revelation principle states what can be achieved, what cannot be
achieved, but without stating the computational structure to achieve a particular set
of properties. All equilibrium and outcome calculations are moved to the center,
and we assume the agents can report their complete types, and that communications
are cost-free.

In the following section we provide a practical example of a class of effi-
cient, strategy-proof direct-revelation mechanisms, often called Grooves mecha-
nisms [7, 20, 40], or VCG mechanisms.
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2.2.5 Generalized VCG mechanisms

A class of direct-revelation, strategy-proof mechanisms, called VCG mecha-
nisms, has been widely used to derive fundamental possibility results. VCG mech-
anisms have found many applications in networking (in particular, routing) prob-
lems. VCG mechanisms maximize the social welfare, that is, select the outcome
that maximizes the total value across all agents.

Consider partitioning the outcome space into an allocation choice k and pay-
ments p. Outcome o = (k, p) defines a choice k ∈ K in the space of feasible
choices K and payments p = (p1, · · · , pn) by (or to) agents. For instance, the
choice set can describe all feasible resource allocations to agents. As is common
in most auction theory [36], we restrict our attention to quasi-linear mechanisms
whereby ui(θi, o) = vi(θi, k) + pi, where vi(θi, k) defines the value of allocation
k to agent i given its type θi.

In the VCG mechanism the center receives claims θ̂i from agents about their
valuations and calculates the allocation choice k∗ that maximizes

∑n
i=1 vi(k∗, θ̂i).

Each agent makes payment vi(k, θ̂i) − (V (N) − V (N i)), where V (N) is the to-
tal reported value of k∗ and V (N i) is the total reported value of the choice that
would be implemented without agent i. The payment terms align an agents incen-
tives with that of the mechanism and make truth-revelation a dominant strategy.
In equilibrium, each agent receives as utility the marginal value that it contributes
to the system. In other words, the VCG mechanism, requires an agent to pay the
externality that its presence imposes on the other agents.

Unfortunately, general mechanisms such as the VCG mechanism invariably
come with certain drawbacks. For example, the VCG mechanism is not budget-
balanced: the agents’ payments do not necessarily sum to 0, so that some of the
payments must be collected by an outside party (or burned). If the budget must
be balanced, it is in general impossible to create a truthful mechanism that always
chooses the efficient outcome.

One important impossibility result, the Myerson-Satterthwaite theorem [25],
shows that no efficient and balanced mechanism can exist in many simple settings.
So, any indirect mechanism that implements an efficient allocation in equilibrium
must also implement the payments defined in a VCG mechanism [36].

In general, if we choose to retain budget balance, we must accept some effi-
ciency loss. Approaches to addressing the budget-balance problem include adjust-
ing payments to get close to VCG payments but retain budget balance [37], and
retaining truthfulness but explicitly clearing exchanges suboptimally to sacrifice
some efficiency in return for budget balance [26].

2.3 Algorithmic Mechanism Design

Traditional MD theory provides tools that can be applied if a centralized ap-
proach and “ideal” models can be accepted. However real systems impose modi-
fications to the way individuals compute, communicate and interact. For example,
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in a computer network setting, agents don’t have the unbounded computational
power that might be required to calculate their preferences for all possible out-
comes or calculate equilibrium strategies. The mechanism infrastructure in a cen-
tralized mechanism might be unable to compute the outcome because the problem
might be intractable, and communication between agents and the infrastructure
might not necessarily be cost-free and could also be error-prone. Furthermore,
real computer networks are dynamic, both because of physical characteristics and
because of varying agent population. Nisan and Ronen [33], and Feigenbaum and
Shenker [16] catalyzed the research aiming at studying the impact of computational
complexity of traditional mechanism design.

Before exploring the definitions of complexity addressed in [15, 16, 33], we
focus on the origin of computational complexity of traditional MD.

Much of classic mechanism design is driven by the revelation principle (see
Theorem 1), which states informally that only direct-revelation mechanisms need
to be studied since every mechanism can be translated into a direct mechanism. It
is interesting to notice that direct mechanisms convert decentralized problems into
centralized ones. In a direct-revelation mechanism agents are restricted to send-
ing a single message to the mechanism, where that message makes a claim about
the preferences of the agent over possible outcomes. The transformation assumed
in the revelation principle from indirect mechanisms (e.g. an iterative auction) to
direct-revelation mechanisms (e.g. a sealed-bid auction) assumes unlimited com-
putational resources, both for agents in submitting valuation functions, and for the
mechanism in computing the outcome of a mechanism. However, it can become
impractical for an agent to compute and communicate its complete preferences to
the mechanism, and for the mechanism to compute a solution to the centralized
optimization problem.

We characterize the computation in a mechanism within two distinct levels:

• At the agent level:

– Valuation complexity, that defines the computation required to select
the best-response strategy in general or to provide preference informa-
tion within a quasi-linear mechanism;

– Strategic complexity, that defines the ”modeling capabilities”, i.e., the
knowledge about other agents involved in the system, available to an
agent required to compute the best-response strategy;

• At the infrastructure level:

– Outcome rule-determination complexity, that defines the computa-
tion required for the mechanism infrastructure to compute an outcome
rule given the information provided by agents;

– Communication complexity, that defines the amount of communica-
tion (in number of messages) between agents and the mechanism re-
quired to compute an outcome.
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Focusing on the infrastructure level, the central question is to determine which
problems are easy and which are hard in relevant computational models. Infor-
mally, an AMD problem can be considered ”easy” if it can be solved in a manner
that is both incentive-compatible and computationally tractable. In this work we
focus on the role of the interplay between incentive compatibility and computa-
tional complexity on hardness of a mechanism. Thus, a more useful distinction is
made by defining an AMD problem to be canonically hard [17] if each of these
two requirements can be satisfied individually, but they cannot be satisfied simul-
taneously.

One can also consider hardness of AMD problems by using notions of com-
putational tractability that are appropriate in a centralized computational model.
In this sense, Nisan and Ronen [33] initiated the study of AMD by adding com-
putational tractability to the set of concerns that must be addressed in the de-
sign of incentive-compatible mechanisms. Succinctly stated, Nisan and Ronen’s
contribution to the mechanism-design framework is the notion of a (centralized)
polynomial-time mechanism, i.e., one in which M(· ) is polynomial-time com-
putable. However, as illustrated in [17], canonically hard AMD problems still
remain elusive.

Recently, Feigenbaum et. al. [16] [15] introduce the network-complexity crite-
rion which evaluates a mechanism M(·) in isolation based on its absolute compu-
tation and communication requirements. The notion of protocol compatibility [15]
indicates a relative definition of complexity which requires a mechanism to be a
simple extension of a widely deployed, standard protocol (i.e., a protocol that has
been designed without accounting for individuals misbehavior). The mechanism
M(·) must have the same general algorithmic structure as the standard protocol
and must not require substantially more computation, communication, local stor-
age, or any other resource expenditure than the standard, regardless of whether
the standard has high or low absolute network complexity. Protocol compatibil-
ity addresses two aspects of practical feasibility: computational tractability and
deployability.

Approaches to resolve this tension between game-theoretic and computational
properties include:

• Approximation methods. These methods let the (centralized) mechanism
compute approximate outcomes based on agents’ strategies while preserving
the same game-theoretic properties of the original mechanism;

• Distributed computation. In this approach the outcome-rule (i.e., the algo-
rithm) of a mechanism is computed without relying on a centralized infras-
tructure;

• Compact preference representation languages. This approach study the ques-
tion of how to provide agents with compact methods to express their pref-
erences in order to avoid unnecessary details (thus minimizing the commu-
nication complexity) and make the problem of computing optimal outcomes
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more tractable;

• Dynamic mechanisms. Instead of requiring single-shot direct-revelation, this
approach allows agents to provide incremental information about their pref-
erences for different outcomes and solve easy problem instances without
complete information revelation.

The challenge is to make mechanisms computationally feasible without sacri-
ficing useful game-theoretic properties, such as efficiency and strategy-proofness.
In the following section we explore recent efforts towards the design of mecha-
nisms for distributed settings.

2.4 Distributed Algorithmic Mechanism Design

The centralized computational model of [33] is not adequate for the study of
computer networks, where not only are the agents distributed, but so are the re-
sources (e.g., bandwidth and storage). For example, Internet-based mechanisms
involve distributed algorithms and any measure of their computational feasibility
must reflect their distributed nature.

DAMD theory is still in its infancy and different definitions of distributed
mechanisms appeared in the literature. In this section we illustrate two representa-
tive examples of a distributed setting: in the first case we consider mechanisms in
which the role of a (computational) center can no longer be assumed, whereas in
the second case we focus on the (distributed) communication structure that charac-
terize the environment in which agents interact with a center.

In one attempt to address the issue of distributing the role of the computa-
tional center present in traditional MD and in AMD, Feigenbaum et. al. [16] adopt
the concept of network complexity (see Section 2.3) and define a mechanism that
satisfies the typical constraints of a distributed setting. The distributed algorithm
executed over a network should limit the total number of messages sent over the
network (ideally, this should be linear in the network size), the maximum number
of messages sent over any one link in the network (ideally, this should be constant,
to avoid hot spots), the maximum size of a message, and the local computational
burden on agents. More generally, the theory of distributed implementations deals
with DAMD in which the role of the center is replaced by self-interested individ-
uals that are used to compute g(θ) and p(θ). The same agents are involved in
the game created by the distributed mechanism and the goal is to bring computa-
tion, communication, and information revelation into an equilibrium. The resulting
strategy space available to agents is expanded with respect to what has been dis-
cussed in Section 2.2. The two main problems one is faced to when designing a
distributed mechanism are related to computation, whereby it is hard to determine
the outcome (i.e., execute in a distributed fashion the algorithm g(· )) of the mech-
anism without a center to receive types and calculate g(θ) and p(θ), and the actual
execution of the mechanism, that is to enforce the outcome of the mechanism and
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making sure agents (that replace the center not only for computation) make pay-
ments.

The issues that arise from the fact that the players in a mechanism are part of a
distributed system are not only caused by the lack of a centralized component that
bears the costs related to computation and that makes (or receives) payments. In
a computational environment, mechanisms (protocols) are run by individuals that
are connected by a communication network. However, the theory of mechanism
design ignores this aspect, and in fact implicitly assumes a very simple communica-
tion network where each agent is directly connected to the center. This assumption,
which is not realistic in most computational settings, is crucial for the mechanism
design literature: as it was pointed out be Monderer and Tennenholtz in [31] its
adaptation to general computational settings is non-trivial. In their work Mon-
derer and Tennenholtz study the implications of the transition from mechanisms
to protocols in communication networks. The nodes of a network are modeled as
selfish agents involved in a mechanism. In this setting, a new game-theoretic fea-
ture (which expands the strategy space available to each individual) arises because
agents may have the ability to modify the messages sent by other agents to the
center. The goal of the system designer is to develop a mechanism that make such
malicious behavior irrational for the agents.

Summarizing, the main focus of existing work has been on creating mech-
anisms whose outcome has various desirable game-theoretic and computational
properties and in which agents have an incentive to correctly behave. Perhaps
surprisingly, the traditional literature assumes participating agents to act selfishly,
possibly untruthfully, if it is to their advantage, whereas the mechanism center is
usually assumed to be honest and trustworthy, even when it has an incentive to
be untruthful (e.g., by overstating the second-highest bid in Vickrey auctions if it
gains a fraction of the selling price). As observed by Shenker [17] and by Brandt
and Sandholm [3] the study of cryptographic (secure) protocols has several points
in common with mechanism design. Moreover, decentralized trust requirements by
which agents do no longer have to rely on a single center for controlling the mech-
anism, constitute an important intersection between DAMD and security schemes.
As pointed out in [3], the computation of the outcome can be distributed across
several distinct centers in order to eliminate a single point of failure. This is just
a straightforward application of concepts akin to secure multi party computation,
wherein threshold cryptography can be applied to generate shares of a secret infor-
mation that have no utility if taken individually, but their ”union” can be used to
reconstruct the original information.

Computational complexity that characterize the execution of a mechanism and
the distributed implementation of such mechanism are not the only questions that
need to be addressed to apply game-theoretic principles to computer networks. In
the following section we explore the problems and the techniques that deal with
the complexity of designing such mechanism.
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2.5 Automated Mechanism Design

Mechanism design has traditionally been a addressed as a manual exercise
wherein the mechanism designer uses experience and intuition to hypothesize that
a certain outcome-rule is desirable, while attaining the SCF imposed on the sys-
tem. Canonical mechanisms designed for specific settings are limited in number
but have many desirable properties. These mechanisms do not rely on an a-priori
knowledge of the utility functions that characterize the individuals involved in the
mechanism (e.g., the VCG mechanism [7, 20, 40]), or they can be applied to any
probability distribution over the utility functions of the agents (e.g., the dAGVA
mechanism [13] and the Myerson auction [32]). However, these general mecha-
nisms also have significant drawbacks, as identified in [38]:

• The most famous and most broadly applicable general mechanisms, VCG
and dAGVA, only maximize social welfare. If the designer is self-interested,
as is the case in many electronic commerce settings, these mechanisms do
not maximize the designer’s objective;

• These mechanisms only allow for payment maximization. In practice, the
designer may also be interested in the outcome per se. For example, in
a bandwidth allocation problem the designer may care for which player a
wireless channel is reserved to.

• It is often assumed that payments can be used to tailor the agents’ incentives,
but this is not always practical or feasible. For example, when the players
involved in a mechanism are software agents, it might be more desirable to
construct mechanisms that do not rely on the ability to make payments, be-
cause many software agents do not have the infrastructure to make payments,
or the infrastructure cannot be deployed.

• The most common mechanisms assume that the agents have quasilinear pref-
erences (see Section 2.2). Under this restrictive assumption, the valuation
function vi only depends on agents’ types and not on payments. Moreover
individuals do not strategize on other agents’ payments.

In sharp contrast to manual mechanism design, Conitzer and Sandholm [8]
introduced a new approach called automated mechanism design where the mech-
anism is automatically created from a computationally-light algorithm. This ap-
proach has several advantages that stem from the possibility of applying AMD
and DAMD results to broader settings. Furthermore, automated MD can yield
better mechanisms (in terms of outcomes and/or stronger non-manipulability guar-
antees, [9–11]) than canonical mechanisms because of their ability to capitalize on
the (probabilistic) information about the agents’ preferences, whereas canonical
mechanisms ignore that information.
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3 Future research directions

While we suggest to refer to [38] for an extensive introduction to automated
MD, we conclude the theoretical introduction to mechanism design and its declina-
tions by adding a new degree of freedom in the design of mechanisms for computer
networks.

Recent requirements in networked systems call for the design of protocols
supporting autonomicity [19], whereby systems must be able to adapt in an au-
tonomous and self-organized way to external stimuli such as dynamic network
conditions, attacks, etc.

If the game-theoretic literature provides extensive examples of refinements of
traditional MD aiming at solving problems raised by realistic settings (computa-
tional limitations, distributed environments) we propose the challenge of designing
mechanisms in which the social choice function (SCF), which defines the ultimate
goal of the system designer, is dynamically adjusted by the agents themselves. The
idea is to have an auto-regulated system in which the SCF could change in time
depending on the evolution of the system.

Here we suggest some potential research directions to achieve what could be
defined as autonomic mechanism design. For agents to take collective decisions
on the social choice function that regulates the system we identify the following
non-exhaustive list of requirements:

• Context-awareness: for the SCF to be adjusted to changing conditions, agents
need a feedback loop to infer the system state. Note that relevant information
on system state need to be specified: e.g., the number of agents in the sys-
tem, the level of congestion that characterize the communication network,
geographical position of agents, etc... System state information can be local
or global, depending on the complexity and costs associated to the protocol
used to capture the system state. Once the system state available, a (dis-
tributed) protocol binding the system state to a new SCF is required.

• Collective decision-making protocols: these protocols are necessary for agents
to agree on the SCF representative for the system state. We envision a
(distributed) voting scheme to reach a quorum on a new SCF. The voting
scheme should take into account the communication network used to prop-
agate agents votes (preferences) on the SCF. Indeed, messages containing
voting information could be dropped and tampered with, depending on the
paths they take to reach all intended destinations.

There are some problems that remain elusive though: how can the designer im-
pose, during the system bootstrap, a finite set of SCFs agents are allowed to adopt
during the system lifespan? Moreover, traditional security issues are relevant in
the current context: the important decision to adopt one or another SCF should not
be manipulated by adversaries that may attack the system. Also trust negotiation
mechanisms should be in place to weight the decisions taken by a group of peers.
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A trusted peer should have more influence than an untrusted peer in the decisions
taken by the group.

Note also that agents could strategize during the decision making process: the
features introduced by self-adapting the SCF to the system state should preserve
the original game-theoretic properties of the mechanism.

Ultimately, the study of what goes under the name of the “Price of anarchy”
represents another fertile ground for research: how does the uncoordinated decision
making process compare to a centralized version of self-adaptation?

4 Application to communication systems

In this section we survey recent efforts made in the networking community
that apply computational economics principles to computer networks. Instead of
providing a mere description of the different approaches, we focus on the motiva-
tion that calls for the use of analytical tools akin to game theory and mechanism
design. With the aim of defining a common denonominator that amalgamates dif-
ferent problems under the same theoretical perspective we use a unified notation
to define the mechanisms presented in the following sections. Furthermore, we
emphasize the game-theoretic assumptions made in each approach and discuss on
their impact for a realistic deployment of such schemes.

The focus of this section is to survey methods used by computer-scientists to
design or validate mechanisms and protocols taking into account possible devia-
tions from the prescribed behavior of the actors involved in the execution of these
protocols. This section does not fully explore the contribution to the game-theoretic
literature made by researchers that pioneered the area of computational economics
from a computer-science perspective. [17] provides a good overview of recent work
that introduced new concepts in mechanism design and game theory in order to ful-
fill computational requirements dictated by the particularly difficult setting offered
by computer networks.

4.1 MAC

In this section we present an overview of a recent effort [4] toward the study
of the impact of selfish users in a CSMA/CA network. The authors focus on the
problem of autonomous and independent users controlling the random deferment
period (i.e., the contention window) that regulates access to the medium in a wire-
less network. Selfish users are designated as the suers whoa re ready to tamper
with their wireless interface in order to increase their own share of the common
transmission resource.

The conflictual situation which at the same time wireless nodes and system
designers face to is addressed within a game theoretical framework. Each node
of the network is modeled as a player, the throughput enjoyed by a node is its
payoff and the size of its contention window represents its strategy. In this context
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[4] study the impact of ”cheater” nodes that modulate their contention window to
obtain the best throughput and propose a detection and punishment mechanism
against those players who exhibit a non-cooperative behavior.

The basic assumptions made in [4] limit the scope of the proposed solution
to cellular networks in which all nodes are static and are within the same radio
range. The authors also assume the existence of a security infrastructure to provide
authentication services to the nodes.

The utility function that describes users’ preferences over a possible set of sys-
tem outcomes, and that specifically corresponds to the throughput perceived by a
node ni, is derived from Bianchi’s [2] throughput model for the 802.11 protocol.
The throughput ri perceived by a node ni depends on the access probability τi (that
is related to the contention window) selected by ni and on the access probability
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T s, T c represents respectively the node’s idle period, the average time to transmit
a packet and the average time spent in the collision period. [4] shows that the pres-
ence of cheater nodes impose to the system an equilibrium which leads the system
to stall: all player’s payoff except for one most likely equals zero (ri = 0) whereas
the cheater fully enjoys the common spectrum. This result is known as the tragedy
of the commons in economics.

To overcome this undesired result, the authors study the properties of a fair
and optimal solution to the CSMA/CA game that has the following properties: the
solution should be unique; the solution should result in a fair distribution of the
system throughput; and the solution should result in the system optimal allocation
of the available capacity. To derive such a solution [4] relies on the Nash bargaining
framework from cooperative game theory [18]. The authors show that such an
efficient and fair solution exists, and that it is achievable under the context of an
optimization problem.

Having derived and calculated a desired operating point for the system is the
first step toward the definition of a distributed mechanism that would enforce such
an ideal equilibrium. The authors present a dynamic model that extends the Nash
bargaining framework to allow players to interact in a repeated way. Repeated
interaction is essential for the proposed detection and punishment mechanism to
work properly. Indeed, nodes are asked to continuously monitor the activity of all
other nodes and take an eventual punishment action in retaliation to past selfish be-
havior. In practice the punishment action greatly differs from the ideal punishment
function that characterizes the utility function for a node ni in the repeated game.
The authors resort to selective jamming techniques to punish misbehaving nodes
and rely on an imperfect (due to the randomness of the wireless channel) detection
technique.

A more realistic model should take into account errors both during the detection
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and the punishment phase. Furthermore, a centralized solution, which would be
realistic under the cellular network model, could avoid the computational burden
for the nodes (in the proposed solution nodes are constantly involved in operations
that are costly as compared to the normal activity of carrier sensing) and reduce
detection errors.

4.2 Truthful Routing

In this section we focus on recent efforts toward truthful and cost-efficient rout-
ing protocols for wireless networks. While we refer the reader to [15–17] for a thor-
ough overview of the seminal works in truthful routing, in this section we address
a variation of the VCG [7,20,40] mechanism applied to mobile ad hoc networks in
presence of selfish users. Anderegg et. al. propose a novel routing protocol called
Ad hoc-VCG, which represent an alternative to reputation-based mechanisms (we
will illustrate an example of reputation-based cooperation enforcement schemes in
Section 4.3) to provide incentives for node cooperation.

Anderegg et. al. characterize the nodes of an ad hoc network as selfish and
omniscient agents with a privately known type which takes into account a cost-of-
energy parameter ci and the emitting power Pemit required to reach neighboring
nodes when forwarding packets. The omniscient adversarial model assumed by the
authors is the key enabler for the wide range of possible cheating actions available
to the nodes.

The network model assumed in [1] consists in a planar weighted graph in which
selfish users are the nodes while a weight function assign a cost to every edge of the
graph. The ultimate goal of the proposed routing protocol is to find the minimum
cost path from a source of traffic to its destination. The fundamental assumption
that constitutes a substantial deviation from traditional mechanism design is that
agents are not assumed to know their own type. Moreover, selfish agents are as-
sumed not to collude. The traffic model assumes a long time horizon, whereby
long-lived data transfer session take place in the network making attractive for the
nodes to collect as much money as possible in order to pay for sending their own
data.

The routing protocol proposed in [1] belongs to the reactive (source) routing
protocol: nodes initiate a route discovery when they need to send data traffic. Dur-
ing the route discovery phase all nodes append to a route request control packet
their cost (which is the product ciPemit) allowing the destination to compute the
complete network graph and calculate payments for intermediate nodes to relay
data packets. The traffic source receives a route reply control message that include
the more cost-efficient path and the payments due to intermediate nodes. Note
that cost efficiency correspond to energy efficiency in the case of homogeneous
cost-per-energy type. Two models are studied, the first in which the source pays
intermediate nodes their cost for routing plus a premium that make truthful cost
revelation the dominant strategy, the second in which the source only pays for the
true cost of routing while an external entity pays provides incentives for intermedi-
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ate nodes to act cooperatively. In both cases, the ad hoc-VCG protocol inherit one
of the fundamental issues of mechanisms belonging to the VCG family: the routing
protocol is not budget balanced, so an external source has to inject money in the
system, which is not self-sustaining. However, the authors characterize a theoret-
ical upper bound on the total overpayment in the system which is bounded by the
path-loss exponent used for the modeling the wireless channel and the minimum
and maximum cost-per-energy of the nodes.

Though ad hoc-VCG represent a starting point for truthful routing in mobile ad
hoc networks, several research challenges remain elusive: as the authors point out
a pro-active routing protocol could be used instead of a reactive one and several
optimizations that have been proposed in the traditional ad hoc routing literature
have to be investigated to understand their incentive compatibility. As an example,
the use of route caches could reduce the amount of overhead generated by the orig-
inal ad hoc-VCG protocol. Moreover the constantly evolving mechanism design
theory allows truthfulness to be reached through a step-by-step process, increasing
delays on one side but mitigating requirements on external sources of payments.

4.3 Cooperation enforcement

The effects of selfish behavior has been widely studied in the context of mo-
bile ad hoc networks (MANET). MANETs offer a prominent example of coopera-
tive networks whereby the nodes that form and use the network are supposed bear
the cost of network operation and forward packets for the benefit of other nodes.
Initially, ad hoc routing protocols assumed no deviation of the nodes from the pre-
scribed behavior. Traditional security mechanisms to cope with malicious attackers
have been subsequently presented as plugin protocols to support basic routing ser-
vices. However, for example in [28], a much simpler model of node misbehavior
has been showed to have a great impact on network performance. Selfish nodes,
aiming at saving their energetic resources for self-interest purposes, can jeopardize
the network by simply (selectively) ignoring requests to forward packets.

In [29], the authors present an analysis of coalition formation and cooperation
strategies for mobile ad hoc networks. In their work, Michiardi et. al. model
the network both with cooperative and non-cooperative game theory and show that
without appropriate incentives for cooperation the network would settle to an equi-
librium in which no nodes would cooperate.

Furthermore, they introduce a cooperation enforcement mechanism based on
punishment instead of an incentive scheme based on rewards. The mechanism,
named CORE [27], rely on a monitoring mechanism that exploits the broadcast
nature of the wireless medium and base its punishment decisions on a reputation
metric that represents node behavior.

In [29], the authors study for the first time the impact of imperfect monitor-
ing in the iterated version of a classical game, the Prisoners’ Dilemma (PD). The
MANET is modeled as a playground in which random, pair-wise tournaments take
place among the nodes. The important assumption made in their work is that the
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basic stage game (i.e., the PD game) is repeated an unknown number of times, so
that the iterated version falls into the class of infinite horizon games. The CORE
mechanism is modeled as a strategy and is compared to other strategies such as the
tit-for-tat (TFT) strategy to study the properties of a reputation-based strategy as
opposed to a simple history-based strategy.

Strategy comparison is carried out in a numerical way, borrowing concepts
akin to genetic programming: populations adopting different strategies start out
with the same number of players. At each round of the iterated tournament, the
size of the population using a ”loosing” strategy (i.e., that is a strategy that obtain
lower gains, in game theoretical terms) is decreased for the benefit of the ”winning”
strategy. The use of evolutionary game theory allow to study the stability and
robustness of a strategy, as compared to other strategies adopted by the players
in the system. In [29], the authors introduce a misperception noise that causes
players to make mistakes on the history of past moves of their opponents. The
result is that strategies that have been traditionally deemed as optimal (such as
the TFT strategy) diverge in presence of noise, while the CORE strategy, based
on a complex methodology to build the reputation metric used to take punishment
decisions, is robust against monitoring failures.

4.4 Content Distribution

Content distribution received increasing attention in the past and a wide range
of mechanisms designed for efficient transfer of bulk data from one (or multiple)
source to a potentially large set of destinations have emerged in the literature. In
this section we focus on the impact of selfish users on the construction of the logical
structures (overlays meshes or multicast trees) used to distribute the content rather
than on the selfish behavior (often referred to as ”free-riding”) exhibited by users
reluctant to share resources such as bandwidth and storage capacity.

4.4.1 Truthful multicast in selfish wireless networks

In their work [42], Wang et. al. address group communication among a po-
tentially large set of users and study the impact of selfish agents deviating from
the prescribed protocol intended to build and operate a multicast tree. The truth-
ful multicat protocol presented in their paper is composed of a tree structure that
connects the sources and receivers and a payment scheme to the relay nodes in the
multicast tree.

Instead of reinventing the wheel, the authors focus on payment schemes that
enforce truthful revelation of cost associated to an edge in the tree while they rely
on well-known multicast-structures (and algorithms) to actually build the distribu-
tion tree such as the least cost path tree (LCPT), the pruning minimum spanning
tree (PSMT), the virtual minimum spanning tree (VMST) and Steiner trees. Note
that ensuring that each wireless terminal reports its cost truthfully is only one part
of the story of truthful routing, which includes the routing subgame and the for-
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warding subgame. The proposed payment schemes guarantee that (internal) nodes
will also forward packets from the tree root(s) to the destinations.

The fundamental assumptions made to model the multicast problem and to de-
rive a payment scheme derive from the intuition behind VCG payment schemes:
as explained in section 2.2.5, they rely on the dominant strategy solution concept
whereby the utility describing other users in the system, and their corresponding
actions, does not need to be taken into account for an agent to select its strat-
egy. Moreover, as opposed to recent works that consider computationally bounded
agents, in [42] the agents have no computational constraints and they are assumed
not to collude.

The approach taken in [42] follows the principles of mechanism design: the
multicast tree structures are regarded as the output of the mechanism (the allocation
rule) while the payment scheme is used to guide the behavior of the selfish agents
involved in the mechanism toward truthful revelation of their cost with the goal of
maximizing social efficiency.

For a wide range of multicast structures, including both link weighted and node
weighted families, the authors show that classical VCG payments do not guarantee
truth-telling and propose alternative payment schemes (which are variations on the
VCG scheme) to achieve truthful and minimum cost revelation.

It should be noted that the authors focus on a single-shot mechanism and left
for future research the design of payment schemes in the multiple-session case,
whereby the basic mechanism is repeated over time.x

4.4.2 Market-driven bandwidth allocation in selfish overlay networks

In their work [41] Wang et. al. focus on selfish overlays as networks formed by
autonomous nodes that develop their own strategies to maximize their gain rather
than following the prescribed behavior of the overlay creation protocol. [41] pro-
pose a market model for bandwidth allocation in selfish overlay networks to under-
stand which overlay links should be included in a service provisioning network to
connect all upstream nodes (i.e., nodes that have a content to deliver) to all down-
stream nodes (i.e., nodes that want to download a content). Moreover, once those
links are established, the focus on how much bandwidth should be assigned to each
overlay link in order to satisfy the traffic demands of as many downstream nodes
as possible. In their market model, each upstream node has its own specific service
price it prefers to charge its downstream nodes, and such a price is dynamically
adjusted over time in order to maximize its economic revenue and minimize its
empirical loss in the long run.

In their work, Wang et. al. provide a practical solution for strategic nodes
to gradually solve the pricing game, by modeling them as reinforcement learning
agents that are capable of incrementally improving their strategies through trial-
and-error interactions with the external world. Indeed, the fundamental assumption
taken in their work is that they model the market game as a dynamic sequential
move game with incomplete information and imperfect recall.
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The market model is based on an empirical definition of the utility function
associated to each player that has the dual role of service provider and consumer.

The utility function is defined as: ui(t) = ε1log(1 +
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represent respectively the upstream and downstream node set at time t, bij(t) is
the rate (bandwidth) assigned to a data flow from node i to node j, pj(t) is the
unit charge for flows directed to node j while ε1,2 are two relative parameters that
indicate the importance of empirical (i.e., measured) gains or losses in terms of
bandwidth as compared to economical gains or losses.

The bandwidth allocation problem is split in two games: the pricing game and
the trading game. In the pricing game, upstream nodes select their best strategy
that consist in selecting a transmission price. The authors propose a reinforcement
learning technique to help nodes in measuring the outcome of the system for a
given price and to adjust it based on a feedback signal from the system. Once
transmission prices are determined, the downstream nodes select the best upstream
nodes and the session throughput of the one-hop flow. Such decisions are made
based on the respective utilities brought by the upstream candidates.

The game theoretical framework used in [41] is enriched by a social choice
function (SCF) similar in its concept to the one introduced in traditional mechanism
design (see Section 2.2). However, the SCF is used to assess the properties of the
mechanism that derive from the game theoretic formulation of the problem. In par-
ticular, given an overlay network, the distribution of data items, and the demands
from downstream nodes, the optimality of a specific bandwidth allocation scheme
is evaluated with two metrics: the percentage of transmission requests accepted
by the networks and the total end-to-end throughput in the resulting topology. Al-
though the authors do not clearly point out the performance of their market-based
approach to the problem of bandwidth allocation, the proposed methodology con-
stitutes a strong link between game theoretical modeling and traditional mechanism
design.

4.5 Selfish Replication and Caching

In this section we outline some applications of game theory to the modeling of
content networks [23, 24] composed of selfish nodes, i.e., nodes that may cooper-
ate by transferring objects to other nodes upon request, but select the set of locally
replicated objects uncooperatively, aiming strictly at minimizing the cost incurred
by their local clients (more on this cost in the sequel). The content nodes as-
sume the role of the players in the context of replication games, whereas strategies
amount to decisions regarding the set of individual objects selected for replication
by each node. The conflict of interest between the different nodes arises implicitly
(non zero-sum games) as each one would prefer the implementation of a poten-
tially different global object placement (which is the outcome of the game). These
global placements, however, cannot in general be implemented concurrently and

26



therein lies the conflict and the game.

4.5.1 Uncapacitated Replication

Chun et al. [5] have studied the uncapacitated version of selfish replication, in
which the basic assumption is that each node has at its disposal as much storage
as it wishes to utilize (potentially infinite). They consider an object universe O =
{o1, o2, . . . , oN} and assign a placement cost aij for replicating object oj at node
vi. This cost can capture a direct cost for the storage space that the object occupies
as well as indirect costs related to maintaining this replica consistent by fetching
updates from an origin server. They also consider pij as the relative preference of
the local population of vi for oj . Let ms(vi, oj) denote a node that: (1) replicates
oj under the outcome s, and (2) is at minimum distance from vi according to some
(metric) distance function d. Then the cost of vi is defined to be:

ci(s) =
∑

oj∈si

aij +
∑

oj∈(O/si)

pij · d(vi,ms(vi, oj)) (1)

The fundamental assumption that nodes have infinite storage capacity eliminates
any “friction” between objects of different type and permits treating the problem
as if there was only one type of object instead of N distinct ones. Essentially, one
has to come up with a Nash equilibrium replication strategy for a basic game that
involves only one type of object, and then repeat it it across the different (but non
interacting) objects, to obtain a Nash equilibrium for the corresponding multi-type
original problem. The basic game corresponds to a specific object oj and involves
the following (simpler) cost function.

ci(s) = aijsi + pijd(vi,ms(vi, oj))(1 − si), (2)

where si simplifies to a binary decision: 1 if vi replicates oj , and 0 otherwise.
For convenience one can drop the dependence on j and just talk about an ob-
ject o with placement cost a and consider the even simpler cost ci(s) = asi +
d(vi,ms(vi, o))(1− si). For the basic game, Chun et al. [5] showed the following:

• Pure Nash equilibria always exist.

• The price of anarchy (PoA) of the basic game in general graphs with mini-
mum inter-node distance dmin and maximum inter-node distance (diameter)
dmax is: PoA=1 if a ≤ dmin and at least O(n) when a > dmax. Tighter
bounds are given for specific graphs (clique, star, line, and D-dimensional
grid).

One can extend the basic game into a payment game that permits nodes to offer
payments to other nodes as an incentive to replicate objects on their behalf. For the
payment game, Chun et al. [5] showed the following:
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• Any pure Nash equilibrium for the basic game is also pure Nash equilibrium
for the payment game. Also, the cost of a socially optimal solution is the
same for both games since the net payments made cancel out. Consequently
the price of anarchy of the payment game is at least as high as the one for
the basic game.

• In the payment game, the socially optimal solution can always be imple-
mented by a pure Nash equilibrium, i.e., the optimistic price of anarchy is
1.

4.5.2 Capacitated Replication

Laoutaris et al. [22] have studied the capacitated version of selfish replication
in which node vi has already purchased a fixed amount of storage for up to Ci unit-
sized objects and cannot buy more. The consideration of fixed capacity constraints
at all the nodes introduces “friction” between different types of objects, in the sense
that a global placement for one object type affects the feasible global placements
for other object types because the two compete for the common storage at the
nodes involved. Therefore, the capacitated version of selfish replication cannot be
reduced to the study of single type equilibria, as with the basic game of Chun et
al. [5].

In the capacitated version, vi’s strategy si ∈ Si amounts to selecting Cj ob-
jects out of the total N and therefore |Si| =

(N
Cj

)
. The corresponding cost to be

minimized is:
ci(s) =

∑

oj∈O

pij · d(vi,ms(vi, oj)) (3)

Laoutaris et al. [22] showed the following:

• The best response of a node amounts to solving a 0/1 Knapsack problem [35]
by selecting objects according to their “excess gain” which is given by the
product of an object’s popularity and the distance spared by replicating a
local copy of the object (as compared to fetching the previous closest copy
from some remote node). Due to the unit-size assumption, such a 0/1 Knap-
sack problem can be solved optimally in polynomial time through a greedy
strategy.

• Pure Nash equilibria always exist and can be obtained by having the nodes
compute their best responses sequentially.

• Simple distributed solutions for computing such equilibria exist and require
the transmission of rather limited amounts of information (each node to ad-
vertise only its placement (Ci object identities) as opposed to its entire pop-
ularity vector (N pairs of object identity-object popularity)).

The aforementioned capacitated version has also be considered under the view
point of on-line algorithms. Specifically, instead of replication, Laoutaris et al. [21]
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and Smaragdakis et al. [39] have employed caching (i.e., demand driven temporary
storage of objects combined with replacement) and have looked into the problem
of resolving contention in a non-stationary environment (where group membership,
access distance, and popularity may change).

4.6 Selfish Network Creation

Fabrikant et al. [14] have introduced a game that models the creation of Internet-
like networks by selfish agents without central design or coordination. In this game
a player vi is a network node (e.g., an autonomous system (AS)) and its strategy si
is the set of other nodes to which it chooses to establish direct links, each installed
link having cost a. The goal of vj is to minimize the sum of the cost of the links it
purchases and its distances to all other nodes.

ci(s) = a · |si| +
∑

vj∈V

dG[s](vi, vj), (4)

where G[s] denotes the undirected graph that results from the outcome s (the su-
perposition of linking decisions from all nodes). For this network creation game
Fabrikant et al. [14] showed the following:

• Computing the best response of a node is an NP-hard problem (shown through
a reduction from DOMINATING SET).

• For a > n2 PoA is O(
√

a).

• For any ε > 0 there exists a Nash equilibrium with PoA> 3 − ε.

Chun et al. [6] have studied experimentally a generalization of the game of Fab-
rikant et al. [14] by dropping the assumption that all links cost the same and instead
modeling links whose cost is proportional to the distance between two nodes. Us-
ing this model and an iterative best response strategy based on randomized local
search they study the statistical characteristics of the emerged graphs as well as
their resilience to random node failures and intentional attacks.
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