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Abstract. In this paper, we derive a new normalisation technique for Frequency Domain Adaptive Filtering (FDAF) algorithms.
FDAF algorithms are well-known for their low computational complexity and for their decorrelating property that allows the use of
di�erent step sizes for each adaptive weight, yielding a uniform convergence of all the modes of the input signal. In these algorithms,
normalisation is done by recursively estimating the power of each frequency bin. By introducing a normalisation based on an orthogonal
projection (as is the case for the A�ne Projection algorithm), we derive new frequency domain adaptive �ltering algorithms and show by
means of simulation that the convergence speed is improved.

1 Introduction

Because of their important reduction in computational com-
plexity, Frequency Domain Adaptive Filter (FDAF) algo-
rithms [Shy92] are very attractive. This fact may be of great
importance for real-time applications where long Finite Im-
pulse Response (FIR) �lters are needed as in the case of
Acoustic Echo Cancellation (AEC). FDAF algorithms also
have the advantage of working in the spectral domain where
the signals are approximately decorrelated. In fact, this
property allows the use of di�erent step sizes for each adap-
tive weight yielding an approximately uniform convergence
of all the modes of the input signal. In basic FDAF al-
gorithms, the adaptive �lter of length N is updated every
N input signal samples and FFTs of order 2N (N in the
unconstrained case) are performed. Hence, the processing
delay which is equal to the size block and the length of
FFTs can be prohibitive in AEC applications. In order to
reduce the delay inherent to the block strategy updating
and to work with FFTs of reasonable lengths, the impulse
response is segmented in small blocks. This was the key in-
gredient in the derivation of the Multidelay Filter (MDF)
algorithms [SP90]. Moreover, by using Weighted Overlap
and Add (WOLA) reconstruction technique, the GMDF�
algorithm [MtAG95] was derived and showed enhanced ini-
tial convergence and tracking behaviour.
In these algorithms, normalisation is done by recursively es-
timating the power of each frequency bin. The aim of our
work is to show that the convergence speed of the MDF and
the GMDF� algorithms can be enhanced when a convenient
normalisation of the gradient is introduced. The main idea
is based on the introduction of a pseudo-inverse matrix in
the adaptive algorithm which leads to a projection at each
update of the deviation �lter onto a particular spectral sub-
space. We have applied this idea to the well-known FDAF al-
gorithms based on Overlap-Add method (FDAF-OLA) and
Overlap-Save (OLS) method. In the two algorithms, our
normalisation technique leads to two new frequency domain
adaptive algorithms that are the FDAF-Projection OLA

(FDAF-POLA) and FDAF-POLS algorithms. After the
derivation of these two algorithms, we show how to apply the
new normalisation scheme to the MDF algorithms and then
to the GMDF� algorithm. Simulations done in various sit-
uations prove that the new normalisation scheme improves
the convergence. Moreover, this normalisation allows an eas-
ier tuning of the adaptive algorithm parameters when com-
pared with the classical normalisation scheme where conver-
gence speed is very sensitive to the choice of the forgetting
factor of the exponential window (or the length of the rect-
angular window) and the initial value of the power. In fact,
the new algorithms have only one parameter to �x which is
the step-size.
In what follows, we will begin our discussion by the deriva-
tion of the the new normalisation scheme for the FDAF-OLA
and FDAF-OLS algorithms.

2 The FDAF Projection Algorithms

2.1 The FDAF Projection OLA Algorithm

Consider an adaptive transversal �lter, WN;k whose zero-
padded DFT of order 2N is W f

2N;k = F2N�
T
NWN;kN ,

�N = [ IN 0N�N ] (FM is the DFT matrix of or-
der M : (FM)lm = exp(�j2�(l�1)(m�1)=M)) and con-
sider the diagonal matrix whose main diagonal is the
DFT of the current N -block input data padded with

N zeros: X
f

2N (k) = diagfF2N�
T
N [xkN � � � xkN+N�1]

T g.
The OLA technique leads to the use of the follow-

ing input transformed matrix: Xf

2N (k) = X
f

2N (k) +


X
f

2N (k�1) = diagfX0(k) � � �X2N�1(k)g, (
 diagonal with
(
)ll = (�1)l+1). With these conventions, the output �l-
ter may be expressed in the frequency domain as: Y f

2N (k) =

Xf

2N (k)W
f

2N;k and the corresponding inverse DFT (IDFT) is
the time domain output �lter where only the �rst N compo-
nents correspond to the linear convolution of the input data
and the adaptive �lter (the other components correspond to



circular convolution). Hence, the FDAF-OLA algorithm is
given by [Shy92]:

Y f

2N (k) = Xf

2N (k)W
f

2N;k

yN (k) = �NF
�1
2N Y

f

2N (k)
eN (k) = dN (k)� yN (k)

E2N (k) = F2N�
T
NeN(k)

m = 0; : : : ; 2N�1
Pm(k) = �Pm(k�1) + (1��)jXm(k)j

2

�k = � (diagfP0(k); � � � ; P2N�1(k)g)
�1

W f

2N;k+1 = W f

2N;k + �XfH

2N (k)�kE2N (k)

(1)

where � = F2N�
T
N�NF

�1
2N is the constraint matrix that

forces the last N components of the frequency domain adap-
tive �lter to be zero (� = IN in the unconstrained case),
dN (k) = [ dkN � � �dkN+N�1 ]

T is the N -block desired sig-
nal and 0 < � < 1 is the forgetting factor. In general,
W2N;0 = 02N and Pm(0) = �, m = 0 : : : 2N�1 (� > 0).
In the noiseless case and when the unknown �lter W of

2N is

time-invariant, the frequency deviation �lter is V f

2N;k+1 =

W f

2N;k+1 � W of

2N = �
�
I �XfH

2N (k)�k�X
f

2N (k)
�
V f

2N (k).

In order to have a recursive projection scheme for the
deviation vector, we introduce a normalisation matrix
�k = ��Tk. The deviation �lter becomes: V f

2N;k+1 =

�
�
I � �XfH

2N (k)�Tk�X
f

2N (k)
�
V f

2N;k . Now, if we want to

have a projection onto the orthogonal subspace (� = 1) to

the column space of XfH

2N (k)�, we clearly have to choose

Tk to be the inverse of
�
�Xf

2N(k)X
fH

2N (k)�
�
but this last

matrix is singular (� is not full-rank). Hence, we take its
pseudo-inverse:

Tk =
�
�Xf

2N (k)X
fH

2N (k)�
�y

= F 1
N

�
F 1H

N Xf

2N (k)X
fH

2N (k)F 1
N

��1
F 1H

N ;
(2)

where F2N =
�
F 1
N F 2

N

�
=
�
F 1
N 
F 1

N

�
. With the introduc-

tion of the pseudo-inverse, the �lter update equation be-
comes:

W f

2N;k+1 = W f

2N;k + (3)

��XfH

2N (k)�F 1
N

�
F 1H

N Xf

2N (k)X
fH

2N (k)F 1
N

��1
F 1H

N E2N (k) :

Now, notice that �F 1
N = F 1

N ,
1
2N F

1H

N E2N (k) = eN (k) and
1
2N F

1H

N Xf

2N(k)X
fH

2N (k)F 1
N is a real Toeplitz symmetric ma-

trix with the �rst row being the �rst N components of the

IDFT of the main diagonal of Xf

2N (k)X
fH

2N (k). Therefore,
the inversion of this matrix is performed e�ciently by using
the Levinson algorithm whose computational complexity is
2N operations per sample. It could also be done using the
doubling Levinson algorithm whose computational complex-
ity is O((log(N))2) operations per sample. Note that the N
correlation lags obtained through this operation could be
directly computed in the time domain by performing the
circular correlation of the input data block of length 2N .
Hence the FDAF-Projection OLA (FDAF-POLA) algorithm

is given by the following set of equations:

Y f

2N (k) = Xf

2N (k)W
f

2N;k

yN (k) = �NF
�1
2N Y

f

2N (k)
eN (k) = dN (k)� yN (k)

rN (k) = �NF
�1
2NX

f

2N (k)X
fH

2N (k)12N
Levinson Procedure :
Input: frN (k); eN (k)g ; Output: fzN (k)g
Z2N (k) = F2N�

T
NzN(k)

W f

2N;k+1 = W f

2N;k + ��XfH

2N (k)Z2N (k) ;

(4)

where 1M = [ 1 � � � 1 ]T :

2.2 The FDAF Projection OLS Algorithm

When using OLS sectioning, the input transformed data ma-
trix is: Xf

2N(k) = diagfF2N [xkN�N � � �xkN+N�1 ]T g. In the
OLS sectioning method, only the last N + 1 components
of the IDFT of Xf

2N (k)W
f

2N;k correspond to a linear convo-
lution. In order to avoid circular convolution for the gra-
dient, the error vector must be padded with N zeros in a
di�erent way than in the FDAF-OLA algorithm. Denotinge�N = [0N�N IN ], the FDAF-OLS algorithm is given by the
same set of equations as the one of the FDAF-OLA algo-
rithm (1), except the fact that �N is replaced by e�N .
In this case, the deviation �lter (in the noiseless case) is

V f

2N;k+1 = �
�
I �XfH

2N (k)�k
e�Xf

2N (k)
�
V f

2N;k where e� =

F2N e�TN e�NF2N . Let us introduce the normalisation matrix
�k = �e�Tk . In order to have a recursive projection scheme,
we choose:

Tk =
�e�Xf

2N (k)X
fH

2N (k)e��y
= F 2

N

�
F 2H

N Xf

2N (k)X
fH

2N (k)F 2
N

��1
F 2H

N ;
(5)

so that the deviation vector is projected onto the orthogonal

subspace (� = 1) to the column space of XfH

2N;k
e�. Note that

in the case of the FDAF-POLA algorithm, the projection
was done onto the orthogonal subspace to the column space

of XfH

2N;k�. Note also that because Xf

2N (k) is diagonal, we
have:

F 2H

N Xf

2N(k)X
fH

2N (k)F 2
N = F 1H

N 
Xf

2N(k)X
fH

2N (k)
F 2
N

= F 1H

N Xf

2N(k)X
fH

2N (k)F 1
N ; (6)

hence, the matrices to invert are the same for the OLA and

OLS methods. With e�F 2
N = F 2

N and 1
2N F

2H

N = eN (k), the
FDAF-Projection OLS (FDAF-POLS) algorithm is �nally
given by the same set of equation as the one of the FDAF-
OLA algorithm (4) except that �N is replaced by e�N . By
comparing the numerical complexities of the FDAF-P al-
gorithms and the corresponding FDAF algorithms, we see
that FDAF-P algorithms use an additional FFT of length
2N to compute the N correlation lags rN (k) and perform a
generalized Levinson algorithm which costs 2N operations
per sample. We will see that this additional complexity will
be smaller with the MDF and GMDF� algorithms. Note
also the similarity of the new algorithms with the so-called
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Figure 1: Comparison of FDAF-OLA ('-.') and FDAF-
POLA ('{') algorithms (N = 256; � = 1).

Self-Orthogonalizing Block Adaptive Filter (SOBAF) algo-
rithm [PMCG86] where the correlation lags are computed
recursively in the time-domain. The new algorithms could
be seen as the SOBAF algorithm where the correlation lags
are estimated through the DFT in place of classical recur-
sive schemes (exponential or sliding window).
We have simulated the FDAF-POLA and FDAF-POLS al-
gorithms in various situations. Our conclusion is that the
projection scheme yields to faster convergence speed.
In Fig.(1), we give the learning curve (averaged over 128
samples) for the FDAF-OLA and the FDAF-POLA algo-
rithms. The input is a correlated noise, and a white noise
is added to the desired signal so that the SNR is 30 dB.
N = 256, � = :7 for the two algorithms and � = :7, � = 100
for the FDAF-OLA algorithm. As one can see, the FDAF-
POLA algorithm converges faster than the FDAF-OLA al-
gorithm.
However, FDAF algorithms are not used in practice when
the �lter length is relatively large as is the case for AEC ap-
plications. This is due to the large delay which is inherent to
these algorithms since adaptation is done every N samples.
In what follows, we will apply the projection scheme to the
MDF algorithm which overcomes the delay drawback.

3 The MDF Projection Algorithm

In [SP90], the MDF algorithm is introduced. The main fea-
ture of this algorithm is to allow a 
exible delay. This is
done by segmenting the adaptive �lter inM blocks of length
L (M = N

L
). This technique reduces the delay and allows

a more frequent updating of the adaptive �lter (M times
more than in the FDAF algorithms). In the MDF algo-
rithms, FFTs of length L are computed. This fact leads
to a smaller quantization error if compared with FFTs of
length N and permits a more e�cient use of the hardware
since DSP chips are in general optimized for relatively small
size FFTs (FFTs are typically of order 256). In what fol-
lows, we shall only concern ourselves with the OLS section-
ing method. The extension to the OLA method or to the
unconstrained methods being straightforward.
In the MDF-OLS algorithms, we consider the transformed
data matrix: Xf 1

2L (k) = diagfF2L[xkL�L � � �xkL+L�1]
T g. De-

�ne: W f m

2L;k = F2L�[WkL(mL) � � �WkL(mL+L�1)]
T , the fre-

quency domain output �lter of length L is computed as:

Y f

2L(k) =

MX
m=1

Xf m

2L (k)W f m

2L;k = X
f

2N (k)W
f

2N;k ; (7)

where the (2L � 2N) data matrix is: X
f

2N (k) =

[Xf 1
2L (k) � � �X

f M

2L (k)] andW f

2N;k = [W f 1
2L;k � � �W

f M

2L;k ]
T . Note

that Xf (m+1)
2L (k) = Xf m

2L (k�1) ; 1 � m < M , so only one
FFT of length 2L need to be computed at time kL, theM�1
FFTs corresponding to the previous blocks of length L being
stored in memory. The MDF algorithm is given by the same
set of equations as those of the FDAF algorithm, except for
the normalization which is done by averaging over every M
blocks (see [SP90]):

X
f (m+1)
2L (k) = Xf m

2L (k�1) ; 1 < m �M

Y f

2L(k) =

MX
l=1

Xf l

2L(k)W
f l

2L;k

yL(k) = e�LF�12L Y
f

2L(k)
eL(k) = dL(k)� yL(k)

E2L(k) = F2Le�TLeL(k)
Pm+1
2L (k) = Pm

2L(k�1) ; m = 1 : : :M�1 (8)

PM
2L(k) = Xf 1

2L (k)X
f 1H

2L (k)12L

�2L(k) = ��2L(k�1) + (1��)

MX
l=1

P l
2L(k)

�k = �
�
diagf�1(k); � � � ; �2L�1(k)g

��1
W f l

2L;k+1 = W f

2L;k +�XfH

2L (k)�kE2L(k) ; l = 1 : : :M:

The computational complexity of the MDF-OLS algorithm
is 4N

L
+
�
3 + 2N

L

�
FFT (2L)

L
operations per sample where

FFT (L) is the number of operations needed for comput-
ing an FFT of order L. The adaptive �lter update can be
rewritten in the following form:

W f

2N;k+1 = W f

2N;k +	XfH

2N (k)�kE2L(k) ; (9)

where

	 =

2
664

� 0 � � � 0
0 � � � � 0
...

...
. ..

...
0 0 � � � �

3
775 ; (10)

is the (2N � 2N) constraint matrix. The deviation �lter is:

V f

2N;k+1 = 	
�
I �XfH

2N (k)�ke�Xf

2N (k)
�
V f

2N;k . In order to

realize the projection scheme, we take �k = �e�Tk with:

Tk=
�e�D2L(k)e��y=F 2

2L

�
F 2H

2L D2L(k)F
2
2L

��1
F 2H

2L ; (11)

where:

D2L(k) = X
f

2N (k)X
fH

2N (k) = D2L(k�1) +

Xf 1
2L (k)X

f 1H

2L (k)�Xf M

2L (k�1)Xf M
H

2L (k�1) ; (12)

and D2L(k) is simply initialized by D2L(0)12L = 02L. Hence
the MDF Projection OLS (MDF-POLS) algorithm is given
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Figure 2: Comparison of the MDF-OLS ('-.') and
MDF-POLS ('{') algorithms (N = 256; � = 1).

by:

X
f (m+1)
2L (k) = Xf m

2L (k�1) ; 1 < m �M

Y f

2L(k) =

MX
l=1

Xf l

2L(k)W
f l

2L;k

yL(k) = e�LF�12L Y
f

2L(k)
eL(k) = dL(k)� yL(k)

D2L(k) = D2L(k�1) +Xf 1
2L (k)X

f 1H

2L (k) (13)

�Xf M

2L (k�1)Xf MH

2L (k�1)
rL(k) = �LF

�1
2L D2L(k)12L

Levinson Procedure :
Input: frL(k); eL(k)g ; Output: fzL(k)g

Z2L(k) = F2Le�TLzL(k)
W f l

2L;k+1 = W f l

2L;k+��X
f lH

2L (k)�kE2L(k) ; l = 1 : : :M:

The complexity of the MDF-POLS algorithm is 4N
L

+�
4 + 2N

L

�
FFT (2L)

L
+ 2L operations per sample, i.e., 2L +

FFT (2L)
L

operations more than the MDF-OLS algorithm.
Fig.(2) gives the MSE evolution for the MDF-OLS and
MDF-POLS algorithms, in this simulation the input was
a highly correlated signal (AR(20) model) and a white noise
was added to the desired signal with SNR=30 dB. N = 256,
L = 64, � = 1 for the two algorithms and � = :9, � = 100
for the MDF-OLS algorithm. This situation shows clearly
the convergence improvement of the projection algorithm.

4 The GMDF Projection Algorithm

The MDF algorithm can be seen as a particular case of a
more general scheme, namely the GMDF� algorithm. The
main idea of this algorithm is the introduction of a param-
eter � that controls the overlap between successive input
blocks of length L. In fact, for fast convolution, there is no
need to overlap successive input blocks but within an adap-
tive �ltering framework, this overlapping factor allows the
adaptive �lter to be updated every R = L=� samples,i.e., �
times more than in the MDF algorithm. For the GMDF�
algorithm, the new normalisation technique is done in the
same way as for the MDF algorithm and leads to the GMDF
Projection � (GMDFP�) algorithm. Simulations in station-
ary environments showed us the convergence enhancement
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Figure 3: Comparison of the GMDF4 ('-.') and the
GMDFP4 ('{') algorithms (N = 512; � = :7).

of the GMDFP� algorithm. However, with an input speech
signal, we were confronted with the noise ampli�cation phe-
nomenon that is due to the ill-conditioning of the covariance
matrix. In this case, we have regularized the matrix by sim-
ply replacing rL(1) by rL(1)+� where � is a small real posi-
tive number. Fig.(3), gives the MSE evolution in the case of
speech signal input. N = 512,L = 128, � = :5, � = :1 for the
GMDFP4 algorithm and � = :95, � = 10 for the GMDF4
algorithm. It is clearly shown that the GMDFP4 algorithm
performs better.

5 Concluding remarks

We have derived new frequency domain adaptive algorithms
by introducing a new normalisation scheme based on a pro-
jection approach. This normalisation improves the conver-
gence speed of the classical frequency domain algorithms.
Unfortunately, this kind of projection su�ers from noise am-
pli�cation. One possible approach to combat the noise is
to regularize the covariance matrix by simply adding a con-
stant diagonal matrix. Another possibility is to use an expo-
nential window for the computation of the correlation lags.
Noise ampli�cation and analysis of the new algorithms are
the subjects of our ongoing research.
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