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Abstract— Cooperative diversity is a rapidly emerging topic for
wireless communications, with ad hoc and hybrid/relay networks
as two main applications so far. In this paper, we investigate
the cooperative diversity concept for MIMO multicell networks,
where the processing must be optimized to account for the vari-
ability of the channel conditions across the cooperative devices.
This can be done via distributed precoding and is realistically
based on channel statistics (average gains, correlations, etc.). We
give a new approach to the previously coined equal diversity
spread principle, through minimization of an approximated
SER expression. Next, we focus on a low-complexity approach
to minimizing a PEP-based performance measure. Gains are
evaluated in a multicell scenario with collaborating base stations.

Index Terms— Cooperative systems, diversity methods, mini-
mum symbol error rate (SER), orthogonal space-time block code
(OSTBC), precoder.

I. INTRODUCTION

MULTIPLE-Input Multiple-Output (MIMO) signal
processing promises substantial increase in wireless

network capacity, through the well-defined multiplexing
and diversity gains [1]–[3]. One way to provide spatial
diversity at both ends of the communication link, is the use
of Orthogonal Space-Time Block Codes (OSTBC) [4], and
a large body of work has been dedicated to precoding and
power allocation for point-to-point MIMO communication
systems, see e.g. [5]–[7].

MIMO systems yield their best for uncorrelated channel
matrix elements, so recent interest focuses on network scenar-
ios providing additional and independent sources of diversity.
These typically include setups where the multiple antenna
elements are distributed over the network, instead of being
localized on a single device. Prominent examples are (i)
the multiuser multicell MIMO setup, where one or more
access points address the data needs of multiple user terminals
simultaneously and in a joint fashion [8]–[10], and by (ii) the
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cooperative diversity setup, where multiple devices collaborate
to combat the detrimental effects of fading [11].

In many cooperative scenarios, single-antenna user termi-
nals function as relays, to help a source terminal reach a target
destination [12]–[17]. Thus, the relaying phase serves as a
trick to broadcast the coded symbols over the spatially scat-
tered transmitters, which then perform distributed processing
towards a common destination. Cooperative diversity schemes
notably include the use of Space-Time Block Codes (STBC),
and the spatial elements of the codewords are distributed over
the antennas of the collaborating devices [13], [17]–[20].

In this paper, we focus on the cooperative processing aspect,
using a distributed OSTBC, ignoring issues associated with the
relay protocol. A relevant example is the downlink cooperative
diversity in a multicell network, where inter-connected base
stations (BS) collaborate to serve one mobile user (MU), and
all participants may be equipped with multiple antennas. Each
BS owns a copy of the codeword intended to the MU. The
results apply to terminal-based relay networks as well. Given
the large-scale separation of the transmitters, the channel
conditions from each BS to the common MU may be different,
unlike the scenario of point-to-point MIMO.

The cooperative diversity scheme should be optimized with
respect to the channel conditions. We tackle this challenge via
distributed precoding, which we optimize based on channel
statistics, rather than on the more overhead-incurring instan-
taneous channel knowledge. We investigate low complexity
approximated algorithms for optimization of the precoder,
with the following main contributions: 1) We generalize the
equal diversity spread principle, first presented in [21], to
multiple transmit antennas, and provide a justification behind
it in the form of a Gaussian approximation that simplifies
the exact Symbol-Error-Rate (SER) expression. 2) We present
an optimization problem and an iterative solution based on
minimizing the Pairwise Error-Probability (PEP). We evaluate
our solutions numerically for a multicell network, where
several BSs cooperate to serve a single MU.

This paper is organized as follows: Section II describes
the system model, and Section III presents the minimum
SER precoding problem. Section IV gives some approaches
to reduced complexity precoder optimization. We present our
simulation results in Section V, and conclude in Section VI.

II. SIGNAL AND CHANNEL MODEL

We consider L spatially distributed base stations, with
Mtl

antennas each, engaged in cooperative downlink com-
munication towards one mobile unit, with Mr antennas. The
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distributed MIMO-system has a total of Mt =
∑L−1

l=0 Mtl

transmit and Mr receive antennas.
The transmit correlation is assumed negligible, thanks to

generous transmit antenna and inter-cell spacing. Terminal
antennas will be correlated, however. The degree of receive
correlation, as well as the path loss and slow fading co-
efficients, are assumed to depend on which BS the signal
originates from. The average channel gains can be equalized,
using slow power control. We consider both equal and unequal
average signal-to-noise ratio (SNR). The BSs are assumed
synchronized upon transmission, via fast links to a central
unit. The channel is flat fading, but results are expected to
carry over to an OFDM setting.

The L BSs collectively transmit a vector of independent
symbols x = [x0, x1, . . . , xK−1]T , obtained from MK bits,
using M -ary, linear and memoryless modulation. Among the
possible cooperation schemes, we choose the cooperative
diversity setup, applying an OSTBC to the vector x, yielding
the B × N matrix C(x). To compensate for the effect of
uneven path loss, we apply linear precoding, given by the
Mt×B matrix F , before launching the codeword. The Mr×N
receive matrix at the MU builds as Y = H F C(x) + V ,
where the Mr×N -sized matrix V is the additive, white noise,
vij ∼ CN (0, σ2

v). After reception, Maximum Likelihood (ML)
decoding, and demodulation is performed. A model of the
chain is shown in Fig. 1.

The overall Mr ×Mt-sized MIMO channel is H = HcP ,
where Hc = [hc0 hc1 · · · hcMt−1 ] represents correlation
and fast fading, while P = diag([

√
ρ0 ,

√
ρ1 , · · · ,

√
ρMt−1])

gives the path loss. If antennas i and k are located on the same
BS, then ρi = ρk. Further decomposition gives vec(Hc) =
R1/2vec(Hw), where R is the global correlation matrix
and Hw ∈ CMr×Mt contains the fast fading coefficients,
(Hw)i,j = hwij

∼ CN (0, 1). The vec-operator stacks the
columns of a matrix into a vector, from left to right.

R = E
[
vec(Hc) vecH(Hc)

]

=

⎡
⎢⎢⎢⎣

Rr0 0Mr×Mr . . . 0Mr×Mr

0Mr×Mr Rr1 . . . 0Mr×Mr

...
...

. . .
...

0Mr×Mr 0Mr×Mr . . . RrMt−1

⎤
⎥⎥⎥⎦ .

(1)

Ri = E[hcih
H
ci

] is the correlation of the i-th transmit path.
We have H =

[
R1/2

r0
hw0 R1/2

r1
hw1 · · · R1/2

rMt−1
hwMt−1

]
P ,

where hwi = [hwi0
, hwi1

, . . . , hwiMr−1
]T represents the fast

fading channel from the i-th transmit antenna to the corre-
lated receiver array. Note that the different transmit antennas
experience different correlation matrices upon reception. The
reason is that the signals from different base stations may see a
very different angular spread at the terminal. Interestingly, this
leads to a practical instance of the non-Kronecker correlation
structure, evoked recently in [22].

The precoder F is optimized by the transmitters, with
access only to long-term statistical channel state information,
given by the path loss and correlation matrices, P and R. The
receiver is assumed to know H perfectly. This is consistent
with a practical multicell signaling overhead.

We let B = Mt and have that, for all generalized complex
orthogonal designs, C(x)CH(x) = a

∑K−1
k=0 |xk|2IMt , where

IMt is the Mt-sized identity matrix and a depends on the
chosen orthogonal design [4]. Now, define the scalar α �
‖HF ‖2

F , where ‖ · ‖F is the Frobenius norm. Using general
results from [21], for our special case, we know that this
OSTBC system with precoder F and channel correlation
matrix R has an equivalent Single-Input Single-Output (SISO)
formulation, where all input symbols xk experience the same
channel gain

√
α and independent noise v

′
k ∼ CN (0, σ2

v/a),
giving the output y

′
k =

√
αxk + v

′
k, k ∈ {0, 1, . . . , K − 1}.

III. MINIMUM SER PRECODING FOR COOPERATIVE

DIVERSITY

From the above SISO formulation, the instantaneous re-
ceived SNR γ is expressed as

γ �
(
aσ2

xα
)/

σ2
v = δα = δ‖HF ‖2

F , δ =
(
a σ2

x

)/
σ2

v . (2)

When all the symbols go through the same channel, the
average SER of the system is [21]

SER � Pr{Error} =
∫ ∞

0

Pr{Error|γ}pγ(γ)dγ =
∫ ∞

0

SERγpγ(γ)dγ ,

(3)
where pγ(γ) is the probability density function (pdf) of SNR
γ, while SERγ is the symbol error probability for a given γ
and bit-to-symbol mapping (e.g. M -PSK).

We want to find F such that the exact SER is minimized,
under a sum power constraint on the transmit block Z �
FC(x). Such a constraint makes engineering sense when we
assume many symmetrically distributed and mobile users. This
is equivalent to an optimized power distribution across the cell,
where each user is allocated the same multicell total power.

With the total power available P , the pooled power con-
straint across all Mt antennas is a K σ2

x Tr{FF H} = P . The
problem of minimizing the SER can then be expressed as:

Problem 1:

min
{F∈CMt×Mt |aKσ2

x Tr{F F H}=P}
SER . (4)

The transmitting antennas are assumed to be uncorrelated
(unlike the receive antennas), and by applying Theorem 1
of [21], we show that the minimum SER precoder F is limited
to the family of diagonal precoders, with real and non-negative
diagonal elements. Note that the authors of that paper did not
consider different path loss specifically, but we observe that
by building scaled correlation matrices R

′
ri

= ρiRri , their
theorem can be made to hold here as well.

The problem of optimal precoding for cooperative diversity
is thus reduced to an optimal power allocation (PA) over Mt

transmit antennas, and implementing this precoder is fully
compatible with distributed processing in each cell (rather than
multicell joint processing). For the PA optimization, we begin
with the SER expression, and then resort to a simpler criterion.

A. Optimal SER Precoder

It is well-known that a simple, closed-form expression of the
exact SER in (3) is not obtainable. Also, minimization of the
SER with respect to the power values f2

i is difficult, as direct
differentiation gives expressions of an order proportional to the
number of antennas MtMr. This makes finding the optimal
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Fig. 1. Block model of a linearly precoded MIMO-system.

PA complicated, but the task is feasible with the iterative
algorithm of [21].

In general, the optimal PA depends on the receive correla-
tion conditions, the path loss ρi and the average SNR. As a
special case, if the SNR-related coefficient δ = aσ2

x/σ2
v → ∞,

with non-zero path-loss and eigenvalues of Ri, then we can
show, using the argumentation of [23], that the optimal PA will
approach the even distribution f2

i = 1/Mt. We now approach
the optimization via a different optimality criterion.

IV. REDUCED COMPLEXITY APPROACHES TO PRECODER

OPTIMIZATION

A. Closed-Form Precoder for Equal Average SNR

Now, assume that slow power control is activated at the
BSs, so the path loss coefficients are equal, while the cor-
relation matrices remain possibly different. We generalize
the equal diversity spread principle, introduced in [21], to
the case of Mt ≥ 2 transmit antennas, and formulate a
closed-form precoder. For efficient notation, define the set
S={0,1, . . . , Mt−1}.

1) The Equal Diversity Spread Principle: Given F diago-
nal and normalize as P/(aKσ2

x) = 1, we have Tr{FF H} =∑Mt−1
i=0 f2

i = 1. The receive correlation matrices Rri of
(1), have eigen-decomposition Rri = V riΛriV

H
ri

. The in-
stantaneous SNR writes as γ = δ

∑Mt−1
i=0 ρif

2
i ‖hci‖2 =

δ
∑Mt−1

i=0

∑Mr−1
j=0 ρif

2
i λij |h

′
wij

|2, where h
′
wij

is the j-th el-

ement of h
′
wi

= V H
ri

hwi and λij is the j-th eigenvalue
of Rri . The matrices V ri are unitary, so the elements of
h

′
wi

follow the same distribution as those of hwi . Thus,
the instantaneous SNR of (2) is a random variable on the
form γ =

∑N−1
l=0 al|Zl|2, with deterministic al and random

Zl ∼ CN (0, 1).
Equal path loss coefficients, ρi = 1, i ∈ S, yields the

SNR-expression γ = δ
∑Mt−1

i=0 f2
i

(∑Mr−1
j=0 λij |h

′
wji

|2
)

, a
simplified sum of MtMr uncorrelated, weighted, diversity
branches. In accordance with the proposed equal diversity
spread principle [21], we attempt to spread the energy evenly
across all these branches, making the weights as equal as
possible under a sum power constraint. We use Tr{Rri} =
Mr, i ∈ S, and find that the arithmetic mean of the weights
is m = 1/(MtMr)

∑Mt−1
i=0

∑Mr−1
j=0 f2

i λij = 1
Mt

.
We propose that the weights be decided according to the

following minimum variance problem:
Problem 2:

min{
fi≥0, i∈S

∣∣�Mt−1
i=0 f2

i =1
} Mt−1∑

i=0

Mr−1∑
j=0

(
f2

i λij −
δ

Mt

)2

. (5)

The simple, closed-form solution is stated in Theorem 1.

Theorem 1: Each power weight fi, i ∈ S, is found as

fi =

√
β∑Mr−1

j=0 λ2
ij

, where β =
1∑Mt−1

i=0
1

�Mr−1
j=0 λ2

ij

(6)

Proof: We define g =
∑Mt−1

i=0

∑Mr−1
j=0 (f2

i λij − δ
Mt

)2 +
β

′
(
∑Mt−1

i=0 f2
i − 1), using a Lagrangian multiplier β

′
with

constraint
∑Mt−1

i=0 f2
i = 1. Differentiation wrt the transmit

powers f2
i yields δg

δf2
i

=
∑Mr−1

j=0 2(f2
i λij − δ

Mt
)λij + β

′
=

2f2
i

∑Mr−1
j=0 λ2

ij
− 2δMr

Mt
+ β

′
=0. Using β = δMr

Mt
− β

′

2 , yields

fi =
√

β
�Mr−1

j=0 λ2
ij

, i ∈ S, where β = 1
�Mt−1

i=0
1

�Mr−1
j=0 λ2

ij

comes

from the sum power constraint.
In words, the power is distributed so that a transmit antenna

i, for which the receive correlation is negligible, will be
allocated more power than an antenna j that sees a higher level
of correlation at the receiver. In the first case, the correlation
matrix Rri is close to identity, s.t.

∑Mr−1
j=0 λ2

ij
∼ Mr, while

in the second case Rrj has more different eigenvalues, so the
sum of their squares increases compared to the uncorrelated
case. Antennas that see similar receive correlation conditions
will have the same amount of power allocated for transmission.

From Theorem 1, note that the PA after the equal diversity
spread principle is SNR independent, unlike the exact SER
(3). It turns out this is a good criterion for low to moderate
values of SNR and shows sub-optimality at high SNR.

2) A Gaussian Approximation: Next, we pursue another
approach, not presented in [21], which also yields the above
presented idea of equal diversity spread. As γ is a sum of
MtMr equally weighted, independent random variables, the
central limit theorem and the known positivity of γ motivates
approximating its distribution by a truncated Gaussian. For
γ ≥ 0, we define the pdf

pγ(γ)=
C

σγ

√
2π

e
− (γ−mγ )2

2σ2
γ ,

1
C

=
∫ ∞

0

1
σγ

√
2π

e
− (γ

′−mγ )2

2σ2
γ dγ

′
,

(7)
The correction factor C ensures

∫ ∞
0

pγ(γ)δγ = 1.
With M -PSK mapping, the SERγ of (3) is SERγ =
1
π

∫ (M−1)π
M

0
e
− gPSK

sin2(θ)
γ
dθ [21]. Using the approximated pdf,

yields the SER

SER ≈ C

∫ ∞

0

SERγ
1

σγ

√
2π

e
− (γ−mγ )2

2σ2
γ dγ (8)

=
C

σγπ
√

2π

∫ (M−1)π
M

0

∫ ∞

0

e
− (γ−mγ )2

2σ2
γ e

− gPSK
sin2(θ)

γ
dγdθ .

We substitute s = −gPSK/ sin2(θ) in (8), and use the correc-
tion factor C, to approximate the Gaussian mgf φγ(s) [24],
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despite the truncation. From this, we rewrite the SER

SER ≈ 1
π

∫ (M−1)π
M

0

exp
(
mγs +

1
2
σ2

γs2
)
dθ . (9)

Now, we propose to minimize the integrand of (9), for any
value of θ. Then, the problem reduces to finding the minimum
of

(
mγ + 1

2σ2
γs

)
. The mean and variance of γ are derived in

a straightforward manner, and given as mγ = δMr and σ2
γ =

δ2
∑Mt−1

i=0 (f2
i )2

∑Mr−1
j=0 λ2

ij
, respectively. Thus, the problem

of minimizing the SER is further reduced to minimizing the
variance σ2

γ , and the solution is found using the same approach
as for Theorem 1, giving fi, i ∈ S, as

fi =

√
β∑Mr−1

j=0 λ2
ij

, where (10)

Mt−1∑
i=0

f2
i = 1 =⇒ β =

1∑Mt−1
i=0

1
�Mr−1

j=0 λ2
ij

.

That this closed form precoder is identical to the one ob-
tained from the equal diversity spread principle, is interesting
and gives some insights into the justification of the use of this
principle, beyond the simple intuition.

B. Precoder for Unequal Average SNR

In the most general case, the different transmit antennas
may see a different average path loss. If the path losses are
substantially different and slow power control is not activated,
the Gaussian approximation above loses credibility. Here, we
propose to optimize a version of the PEP-based metric of [25],
modified to accommodate the different path losses ρi, i ∈ S.

max
{F∈CMt×B}

det
(
IMtMr+

ad2
min

4σ2
v

RP
1
2
[
(F ∗F T )⊗IMr

]
RP

1
2

)
,

(11)
for Tr{FF H} = 1, where d2

min is the minimum inter-
symbol distance for the modulation scheme, while RP =
diag([ρ011×Mr , ρ111×Mr , . . . ρMt−111×Mr ])R contains
correlation and path loss. With uncorrelated transmitters, it
still holds that the optimal F can be chosen as diagonal,
real and non-negative, and we may, as in [25], simplify the
optimization. Taking the logarithm, and using

∑Mt−1
i=0 f2

i = 1,
and k = ad2

min/(4σ2
v), yields the equivalent problem

max
{F=diag([f0, ... ,fMt−1]), fi∈R+}

Mt−1∑
i=0

Mr−1∑
j=0

log
(
1 + kρif

2
i λij

)
.

(12)
Interestingly, the maximization of the above sum of loga-

rithms resembles the well-known capacity maximization prob-
lem, for which the solution is the classical water-filling.
Unfortunately, because each power variable f2

i appears in Mr

terms of the sum, it is a totally different problem, except in
special cases. Note that the function

∑Mt−1
i=0

∑Mr−1
j=0 log

(
1 +

kρif
2
i λij

)
in (12) is concave, and the partial double derivative

∂2/(∂f2
k )2, k ∈ S is always negative or zero.

1) Solution for Uncorrelated Case: As a special case, we
assume that both sides of the channel are uncorrelated, so that
Rri = IMr ∀ i, and the problem in (12) simplifies to

max
{F∈diag(R+)Mt×1}

Mr

Mt−1∑
i=0

log
(
1+kρif

2
i

)
,

Mt−1∑
i=0

f2
i = 1 . (13)

We recognize this problem as one for which the solution is
the classical water-filling, finding fi, i ∈ S, such that

f2
i =

(
μ− 1

kρi

)
+

, (·)+ = max(·, 0) ,

Mt−1∑
i=0

f2
i = 1 . (14)

This special setting of unequal average SNR and no cor-
relation, can be seen as an equivalent to the optimization
problem presented in [26]. There, the authors assume transmit
correlation, no receive correlation and equal average SNR.
These two scenarios may be compared by substituting the
transmit correlation matrix R

1/2
a,T in [26] with our diagonal

path loss matrix P , a simplification. Following the steps in
[26] then leads to the same water-filling solution as in (14),
thus the two approaches correspond.

2) Modified Water-filling Solution for Correlated Case:
We return to the most general case where each transmitter
experiences a different path loss and receive correlation. To
find a solution to the optimization in (12), we introduce a
Lagrange multiplier μ, with power constraint Tr{FF H} = 1,
and differentiate with respect to f2

i . This yields Mt equations
on the form

Mr−1∑
j=0

kρiλij

1 + kρif2
i λij

+ μ = 0 , for i ∈ S . (15)

For each equation, we optimize with respect to the first
term in the sum, fixing the other Mr−1 terms in a constant
ci =

∑Mr−1
j=1

kρiλij

1+kρif2
i λij

. The eigenvalues are assumed to be

ordered, so λi0 ≥ λij , ∀j = 0. Now, (15) can be rewritten as

kρiλi0

1 + kρif2
i λi0

= −(μ + ci) , for i ∈ S . (16)

We impose the power constraint
∑Mt−1

i=0 f2
i = 1, and

attempt to find μ. This approach means solving an equation
of degree Mt, so, if a closed-form solution is desired, it holds
for Mt ≤ 4.

Mt−1∑
i=0

f2
i = −

Mt−1∑
i=0

( 1
μ + ci

+
1

kρiλi0

)
= 1 . (17)

Of the possible values for μ, we use the one that minimizes∑Mt−1
i=0 |f2

i |, and update the powers f2
i = − 1

μ+ci
− 1

kρiλi0
, for

i ∈ S. This procedure is repeated until convergence is reached,
although no formal proof for the conditions of convergence are
available yet.

3) Modified Fixed-Point Iteration: Depending on the path
loss, the SNR and receive correlation conditions, the above
fixed-point iteration might not converge.

Assume the whole procedure of iteration k + 1 can be
expressed by the iteration function φ

(
(f2

i )(k)
)
, so that the

relation between two consecutive power values (f2
i )(k) and

(f2
i )(k+1) is expressed as (f2

i )(k+1) = φ
(
(f2

i )(k)
)
, i ∈
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Algorithm 1: Modified water-filling for Mt = 2

β(0) = 1 , F2
0 = f2

0,init , k = 0

while not converged do

cj =
�Mr−1

i=1

kρjλji

1+kρjf2
j λji

, j ∈ {0, 1}
A = 1 +

�1
j=0

1
kρjλj0

, B = (c0 + c1)A + 2 ,

C = c0c1A + c0 + c1

μl =
−B±

√
B2−4AC
2A

, l ∈ {1, 2}
f2

j,l = β
�

1
μl+cj

+ 1
kρjλj0

− F 2
j (k)

�
+ F 2

j (k) , j ∈ {0, 1}
Sl = |f2

0,l| + |f2
1,l| , l ∈ {1, 2}

F2
0 = [F2

0 f2
0,l] such that Sl = min(S1, S2)

if |F 2
0 (k + 1) − F 2

0 (k)| ≤ ε then convergence is reached
else β(k+1) = β(k) − Δβ, k = k + 1

end while

S. From the theory on fixed-point iterations [27], non-
convergence may appear in cases where the derivative of the
iteration function φ

(
(f2

i )(k)
)

is such that |φ′(
(f2

i )(k)
)
| ≥ 1.

To avoid this, we slow down the change by solving an
equivalent fixed-point problem: (f2

i )(k+1) = β(k) φ((f2
i )(k))+

(1 − β(k)) (f2
i )(k), 0 < β(k) ≤ 1. When convergence occurs,

we have φ((f2
i )(k)) = (f2

i )(k), so that (f2
i )(k+1) = (f2

i )(k).
The special case of Mt = 2 is detailed in Algorithm 1.

If we can estimate the derivative of the iteration function,
the coefficient β may be directly initialized to a value that
allows for convergence. Otherwise, we may set β(0) = 1 and
update it for each iteration that has not lead to convergence,
β(k+1) = β(k) −Δβ, with Δβ > 0. This method is both
more complex and more realistic than the minimum variance
approach, taking into account the possibility of unequal path
loss.

V. SIMULATION AND RESULTS

We present simulation results for some selected scenarios,
including both equal and unequal average received SNR. All
cases result in highly non-Kronecker correlation situations
which prevent the use of previously published precoders for
point-to-point space-time codes. In the case of unequal average
SNR, we plot BER-results for the PEP-based modified water-
filling optimization of Section IV-B.3, and the precoding gain
is evaluated through comparison with equal PA and also with
the iterative approach to SER minimization of [21]. For the
case of equal average SNR, we also include the equal diversity
spread principle of Section IV-A.1.

Our chosen scenario has two single-antenna BSs, so Mt =
Mt0 +Mt1 = 2, that transmit cooperatively to one MU with
Mr = 4 antennas. The Monte Carlo simulations are run
over 2000 channel realizations. All simulations use receive
correlation matrices Rr0 = 1Mt and Rr1 = IMt , where
1Mt is an Mt×Mt-sized matrix of all ones. The two cases
correspond to a fully correlated link seen by one BS and a fully
decorrelated one seen by the other BS, an extreme situation.

First, the equal average SNR case is simulated, for which
the results are shown in Fig. 2. Next, given two cases of un-
equal SNR values, [ρ0, ρ1] = [1, 0.75] and [ρ0, ρ1] = [0.75, 1],
we obtain what is shown in Fig. 3 and Fig. 4. The results show
that the iterative PEP-minimizing algorithm gives the same
performance as the proposed, low-complexity, equal diversity-
based algorithm, for the equal SNR case, which motivates the
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Fig. 2. Comparison of BER-performance versus SNR for Mt = 2, Mr = 4,
in the case where Rr0 = 1Mt and Rr1 = IMt and for equal average SNR,
[ρ0, ρ1] = [1, 1]. The power allocations based on the Gaussian approximation
of γ and the PEP-measure have almost equal BER-results, outperforming the
equal power allocation by close to 1 dB at BER 10−3.

use of the latter. In all cases, the methods presented loose only
negligible performance to the SER optimal solution of [21].

For the case of unequal average SNR, we observe that the
best BER results are obtained for the path loss [ρ0, ρ1] =
[0.75, 1], in Fig. 4. This is natural, as the second BS is the
one that “sees” an uncorrelated receiver, which enables it to
make the best use of the power.

VI. CONCLUSIONS

We address the problem of distributed space-time coding
for the cooperative downlink cellular network. The channel
correlation structure is highly non-Kronecker because of the
likely variations in local correlation properties from one co-
operating device (e.g. BS) to the next. We compensate for this
by using a distributed PA scheme.

Approaches to low-complexity precoder optimization are
presented, including a closed-form precoder based on the equal
diversity spread principle and iterative solutions based on mod-
ified water-filling. The maximum diversity principle is shown
to be theoretically equivalent to a Gaussian assumption on the
SNR obtained after combining all the diversity antennas.

REFERENCES

[1] J. Foschini, “Layered space-time architecture for wireless communica-
tions in a fading environment when using multiple antennas,” Bell Labs
Tech. J., vol. 1, no. 2, pp. 41–59, 1996.

[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[3] D. Gesbert, M. Shafi, D. Shiu, and P. Smith, “From theory to practice:
An overview of space-time coded MIMO wireless systems,” IEEE J.
Select. Areas Commun., vol. 21, no. 3, pp. 281–302, Apr. 2003.

[4] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45,
no. 5, pp. 1456–1467, July 1999.

[5] G. Jöngren, M. Skoglund, and B. Ottersten, “Combining beamforming
and orthogonal space-time block coding,” IEEE Trans. Inform. Theory,
vol. 48, no. 3, pp. 611–627, Mar. 2002.



4214 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 12, DECEMBER 2007

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

 

 

Equal power allocation, uneq. avg. SNR, [ ρ
0
 , ρ

1
] = [1,0.75]

PEP−based, modified water−filling, uneq. avg. SNR, [ ρ
0
 , ρ

1
] = [1,0.75]

Exact SER, from [21], uneq. avg. SNR, [ ρ
0
 , ρ

1
] = [1,0.75]

Fig. 3. Comparison of BER-performance versus SNR for Mt = 2, Mr = 4,
in the case where Rr0 = 1Mt and Rr1 = IMt and for non-equal average
SNR, realized by setting the path losses as [ρ0, ρ1] = [1, 0.75]. The power
allocation based on the PEP-measure outperforms the equal power allocation
by close to 1 dB at BER 10−3.

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

 

 

Equal power allocation, uneq. avg. SNR, [ ρ
0
 , ρ

1
] = [0.75,1]

PEP−based, modified water−filling, uneq. avg. SNR, [ ρ
0
 , ρ

1
] = [0.75,1]

Exact SER, from [21], uneq. avg. SNR, [ ρ
0
 , ρ

1
] = [0.75,1]

Fig. 4. Comparison of BER-performance versus SNR for Mt = 2, Mr = 4,
in the case where Rr0 = 1Mt and Rr1 = IMt and for non-equal average
SNR, realized by setting the path losses as [ρ0, ρ1] = [0.75, 1]. The power
allocation based on the PEP-measure outperforms the equal power allocation
by close to 1 dB at BER 10−3.

[6] Y. Zhao, R. Adve, and T. J. Lim, “Precoding of orthogonal STBC with
channel covariance feedback for minimum error probability,” in Proc.
IEEE Int. Conf. Indoor. Pers. Mobile Radio Commun., Sep. 2004, vol. 1,
pp. 503–507.

[7] M. Vu and A. Paulraj, “Optimal linear precoders for mimo wireless

correlated channelse with nonzero mean in space-time coded systems,”
IEEE Trans. Signal Processing, vol. 54, no. 6, pp. 2318–2332, June
2006.

[8] C. B. Peel, Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “An
introduction to the multi-User MIMO downlink,” IEEE Commun. Mag.,
pp. 60–67, Oct. 2004.

[9] S. Shamai and B. M. Zaidel, “Enhancing the cellular downlink capacity
via co-processing at the transmitting end,” in Proc. IEEE Semiannual
Veh. Technol. Conf.-Spring, May 2001, vol. 3 pp. 1745–1749.

[10] H. Zhang, H. Dai, and Q. Zhou, “Base station cooperation for multiuser
MIMO: Joint transmission and BS selection,” in Proc. Conf. Inform.
Sciences Syst., Mar. 2004.

[11] B. L. Ng, J. S. Evans, S. V. Hanly, and D. Aktas, “Transmit beamforming
with cooperative base stations,” in Proc. IEEE Int. Symp. Inform. Theory,
Sep. 2005, pp. 1431–1435.

[12] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–
Part I: System description. Part II: Implementation aspects and perfor-
mance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1948,
Nov. 2003.

[13] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded
protocols for exploiting cooperative diversity in wireless networks,”
IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[14] T. Cover and A. El-Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Inform. Theory, vol. 25, no. 5, pp. 572–584, Sep. 1979.

[15] P. A. Anghel, G. Leus, and M. Kaveh, “Distributed space-time coding
in cooperative networks,” in Proc. Nordic Symp. Signal Processing, Oct.
2002.

[16] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratani, “Coded
cooperation in wireless communications: Space-time transmission and
iterative decoding,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp.
362–371, Feb. 2004.

[17] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay
networks,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3524–
3536, Dec. 2006.

[18] S. Barbarossa, L. Pescosolido, D. Ludovici, L. Barbetta, and G. Scutari,
“Cooperative wireless networks based on distributed space-time coding,”
in Proc. International Workshop Wireless Ad-Hoc Networks, June 2004,
pp. 30–34.

[19] X. Li, “Space-time coded multi-transmission among distributed trans-
mitters without perfect synchronization.” IEEE Signal Processing Lett.,
vol. 11, no. 12, pp. 948–951, 2004.

[20] J. Mietzner and P. A. Hoeher, “On the duality of wireless systems with
multiple cooperating transmitters and wireless systems with correlated
antennas,” in 14th IST Mobile Wireless Commun. Summit, June 2005.

[21] A. Hjørungnes and D. Gesbert, “Precoding of orthogonal space-time
block codes in arbitrarily correlated MIMO channels: Iterative and
closed-form solutions,” IEEE Trans. Wireless Commun., vol. 6, no. 3,
pp. 1072–1082, Mar. 2007.

[22] E. Bonek, H. Özcelik, M. Herdin, W. Weichselberger, and J. Wallace,
“Deficiencies of a popular stochastic MIMO radio channel model,” in
Proc. 6th Int. Symp. Wireless Pers. Multimedia Commun., Oct. 2003.

[23] A. Hjørungnes and D. Gesbert, “Minimum exact SER precoder of
orthogonal space-time block codes for correlated MIMO channels,”
Proc. IEEE GLOBECOM, Dec. 2004, vol. 1, pp. 111–115.

[24] K. Knight, Mathematical Statistics. New York: Chapman & Hall/CRC,
2000.

[25] A. Hjørungnes, D. Gesbert, and J.Akhtar, “Precoding of space-time
block coded signals for joint transmit-receive correlated MIMO chan-
nels,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 492–497, Mar.
2006.

[26] H. Sampath and A. Paulraj, “Linear precoding for space-time coded
systems with known fading correlations,” IEEE Commun. Lett., vol. 6,
no. 6, pp. 239–241, June 2002.

[27] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics. New
York: Springer Verlag, 2000.


