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ABSTRACT
Distributed Hash Tables (DHT) provide a framework for man-
aging information in a large distributed network of nodes.
One of the main challenges DHT systems must face is node
churn, i.e., nodes can arrive and depart at any time. To as-
sure that information published in a DHT remains available
despite node churn is equivalent to building a reliable system
out of unreliable components.

In this paper we analyze KAD, a widely deployed DHT
system. We focus on how to assure that information pub-
lished in KAD remains available despite churn. We apply
reliability theory to understand how the probability of find-
ing an object published in KAD evolves over time. We also
evaluate the cost, in terms of message exchanges, associated
with the publishing scheme.

Once we have identified the main weaknesses of the exist-
ing system, we propose an improved publishing scheme that
is able to assure the same reliability but at a dramatically
reduced cost. By exploiting knowledge about the lifetime
of the nodes used to store the information, it is possible to
reduce the publishing cost by one order of magnitude.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Dis-
tributed Systems; I.6.5 [Simulation and Modeling]:
Model Development

General Terms
Algorithms, Design, Performance
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Peer-to-Peer, Performance Analysis, KAD, Inspection
Policy
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1. INTRODUCTION
In the last years, Peer-to-Peer (P2P) file sharing has

become increasingly popular, with millions of users shar-
ing contents and resources. One of the main problems
associated to a distributed environment is to efficiently
find information. Distributed Hash Tables (DHTs) or-
ganize the overlay in a structured way and map nodes
and objects in this structure so that information can be
found easily. There are many possible structures and
publishing schemes, which depend on the specific ap-
plication requirements: the content can be made avail-
able forever after it is published (independently from
the presence of the publishing node) or it can be just
announced to the system and maintained by the pub-
lishing node. In the first case the responsibility of the
object is transferred to the DHT network, in the second
case only references are published while the responsi-
bility is kept by the publishing node. KAD, the DHT
routing protocol we consider in this paper, adopts the
latter scheme.

A major issue in P2P networks is churn, i.e. node ar-
rivals and departures that make the system unreliable.
Many techniques have been developed to handle churn
so that the content (or references) can be made avail-
able independently from node dynamics. Nevertheless,
only some of them have been deployed, thus it is hard
to validate the effectiveness of these solutions.

One exception is KAD, a widely deployed DHT sys-
tem with millions of users [1]. In KAD, nodes publish
at regular intervals multiple copies of the references to
the objects they own. This publishing policy generates
a high number of messages: recent measurements [2]
show that the traffic volume required for publishing is
100 times the traffic for searching objects. The same
study reveals that the estimated probability to find the
published reference is very high. Despite the success of
KAD, we are not aware of any study that provides an
exact characterization of the cost and the performance
of KAD publishing scheme.

In this paper we analyze the availability of content
published on KAD. We propose a model, based on re-
liability theory, that is able to evaluate the probability



of finding an object in any instant t after it is pub-
lished, along with the cost of publishing. The model
considers the particular publishing scheme – two-level
scheme – adopted by KAD. With this model, we can
assess the solution adopted by KAD for handling churn
and identify the weaknesses of its publishing scheme.
We then propose an improved publishing scheme that
is able to guarantee a given availability, with a decreased
cost compared with the basic scheme.

Our analytical model for the reliability is compared
with trace-driven simulations, based on real traces col-
lected over almost six months by crawling the KAD net-
work [2]. The results show that our model is able to pre-
dict the performance of the basic publishing scheme, as
well as of the improved scheme. The improved scheme,
tested on the same traces, is able to reduce the number
of messages by one order of magnitude with respect to
the current implementation of KAD.

After providing some background on KAD and relia-
bility theory in Sect. 3, we analyze the reliability offered
by the current publishing scheme of KAD in Sect. 4. In
Sect. 5 we analyze the shortcomings of the basic scheme
and we propose our improved publishing scheme. We
show some numerical examples in Sect. 6 and we con-
clude the paper in Sect. 7.

2. RELATED WORK
KAD represents one of the largest DHT systems with

millions of users. Despite its success, very few papers
so far have evaluated the performance of the protocol,
and none of them has considered the performance of
its publishing scheme. In [3], the authors analyze the
performance of the DHT lookup phase, focusing on the
routing table building process. In [4], the same authors
provide a set of measurements on different characteris-
tics of the system, e.g. node availability; the measure-
ments represent the output of their work, while we use
measurements as a starting point. Qiao et al. [5] ana-
lyze through measurements the query resolution time,
i.e., how long it takes to find a key. In this work, we
characterize the performance of the protocol in terms of
the probability to find objects, without considering the
delay necessary to retrieve them.

In particular, we focus on the reliability of the pub-
lishing system, i.e. the probability that in the system
there is a sufficient number of online nodes to assure
content availability. P2P applications span from file
sharing to distributed storage, to streaming systems.
Each application has its own requirements for content
availability and many solutions have been proposed for
the different applications. Here we focus on file sharing
applications, which is the target of the KAD.

One of the main problems related to studying the
availability of a system is to first determine the avail-
ability of the individual nodes. Many works assume

an exponential uptime distribution [6][7]. In this pa-
per, instead, we use the results of a six month measure-
ment study of KAD [2], that allows us to characterize
more precisely the availability of the nodes, and thus
the availability of the content.

Most of the studies on content availability in DHTs
under churn mainly use simulation as the primary means
of investigation. In [8], authors analyze different tech-
niques (e.g., reactive or periodic recovery), considering
the delay of the search as the main performance metric.
Bhagwan et al. [9] analyze node availability in Overnet,
but without characterizing content availability. Dunn
et al. [10] analyze the service availability, instead of
simple node availability, but for a general case, without
considering the two-level publishing scheme adopted by
KAD (see Sect. 3.1 for details).

To the best of our knowledge, no analytical study on
content availability over time knowing the node uptime
distribution have been done considering KAD DHT sys-
tem. The closest work to ours is [11], where authors
analyze not only the lookup performance, but also the
key replication scheme. Given the node uptime distri-
bution, the replication factor, and the republishing rate,
they provide a closed form expression for the expected
lifetime of keys. In our work, instead, we provide the
probability over time to find a key, not only its expec-
tation, thus our results are more general and provide
more insights on the dynamical behavior of the system.
Moreover, we model in detail the two-level publishing
scheme of KAD, while [11] assumes a one-level scheme,
without properly modeling a real protocol.

The availability of the content is considered also in
different contexts. In [12] authors study the mainte-
nance of soft state between a sender and a receiver
through signalling. Duvvuri et al. [13] analyze the
optimal lease for cache consistency. Both papers take
into account the periodical check of stored information,
but they focus on a single instance, while in our work
we take into account multiple copies. In [14] authors
consider the placement of different copies of web docu-
ments, but they consider strategies based on heuristics,
without taking into account the availability in terms of
probability to find the documents.

3. BACKGROUND
In this section we describe the publishing scheme im-

plemented by KAD system and summarize some basic
concepts related to reliability theory1; we also introduce
the terminology used throughout the paper.

3.1 The Kademlia DHT System
KAD is a DHT protocol that is based on the Kadem-

lia framework [1][2][3]. Like most DHTs, peers and ob-

1Here we only give a brief overview of reliability concepts:
for more details, the interested reader is referred to [15].



jects in KAD have an unique identifier called key, which
is 128 bit long, randomly assigned using a hash func-
tion. The distance between two entities – peers, objects
– is defined through the bitwise XOR of the keys.

The basic operations performed by KAD peers are
(i) building a routing table, (ii) performing a lookup
and (iii) publishing objects. Routing tables are used by
peers to maintain active contacts with a set of neighbors
so that operations like searching or publishing can be
performed. Lookup is used when a peer wants to look
for objects, if it is searching, or to look for other peers,
if it is publishing. Objects in KAD are searched send-
ing out multiple requests, each of them iteratively goes
closer and closer to the target. The interested reader
can find details related to routing in KAD in [3]. The
routing table building process and the routing proce-
dures do not impact the analysis we propose in this
paper. Instead, we focus on the publishing procedure
that represents the primary aim of our study.

Each node in the KAD network is responsible for
the objects it owns and it lets the other nodes know
these objects by publishing references. A reference
contains information about the objects and about the
node that owns the objects, so that interested nodes can
find them. If the node that owns the objects disappears,
the objects disappear too, but the references may still
exist in the network, in which case they become stale.
KAD implements a two-level publishing scheme that de-
creases the number of messages necessary to publish ref-
erences (for an analysis of the benefits of such a scheme,
see [16]). A reference to an object comprises a source
and W keywords:

• The source, whose key is obtained by hashing the
content of the object, contains information about
the object and the pointer to the publishing node;

• Keywords, whose keys are obtained by hashing
the individual keywords of the object name, con-
tain (some) information about the object and the
pointer to the source.

Hereinafter, we will refer to source and keywords con-
sidering the corresponding keys. We call publishing
node the node that owns an object and host nodes
the nodes that have a reference to that object. When
a node wants to look for an object, it first searches for
the keywords and does a lookup to obtain all the point-
ers to different sources that contain these keywords. It
then selects the source it is interested, looks up that
source to obtain the information necessary to reach the
publishing node. Figure 1 shows an example of the ref-
erence published by a node to an object Obj that has 2
keywords, k1 and k2, and the pointers each key has.

Since references are stored on nodes that can disap-
pear at any point in time, the publishing node publishes
multiple copies of each reference – source and keywords.

pointer

k2Obj k1s

publish

Figure 1: Example of 2-level publish scheme
adopted by KAD.

The keys are published on host nodes whose ID agrees
in the first 8 bits with the key of the references. This
means that the host node is not necessarily the closest
node to the key. Experimental results [3] showed that,
in general, all the copies are stored in host nodes very
close to the key, since routing tables are detailed and
the publishing node is able to find many possible host
nodes in the zone of interest.

An expiration time is associated to each reference,
after which the information on the host node are re-
moved. At the same time, the publishing node (if it is
still online) republishes the keywords and the source in-
dependently from where it published them previously,
so the information may be stored in different nodes.
For a source the expiration time is 5 hours. For key-
words, the expiration time depends on the load of the
host node. The load is defined as the number of ref-
erences for that keyword the host node has divided by
the maximum number of references it can hold. When
the load is below 20%, the expiration time is set to the
default value of 24 hours.

3.2 Reliability theory
Reliability theory is a well-established field of research

that studies the reliability of systems composed by units,
each of them with its own reliability. The primary aim
of the reliability theory is to propose methods to ana-
lyze and increase the reliability by identifying the units
and their role in the system [15].

The uptime T of a unit is a random variable, with a
corresponding uptime distribution, F (t) = P [T ≤ t],
that denotes the probability that the uptime is less than
t or, alternatively, the unit fails within the interval (0, t].
From this distribution we can derive the reliability
function of a unit as R(t) = 1 − F (t) = P [T ≥ t],
i.e., R(t) represents the probability that the uptime is
greater than t.

Another important measure is the probability that
the unit will fail in the interval (t, t + ∆t] given that
the unit is still functioning at time t. By dividing this
probability by the interval ∆t and letting ∆t → 0, we
obtain the failure rate (also known as hazard rate)

µ(t) = − dR(t)
dt

1
R(t) .

The failure rate describes the propensity to failures



of the unit. An increasing failure rate (IFR) with
t, called aging effect, represents units that deteriorate
with time. A decreasing failure rate (DFR) is typical
for system whose reliability grows over time.

The definition of the reliability for a single unit can be
extended to systems composed of different independent
units. The two basic structures are series and parallel
of units2. The uptime of a series of n units is given by
the minimum uptime among all the units; consequently,
the reliability of the system, denoted by R∧(t), can be
expressed using the reliability of its units Ri(t):

R∧(t) = R1(t)R2(t)...Rn(t)

= Rn(t) (1)

where the last equality is true for units with identical
reliability function, i.e., Ri(t) = R(t), ∀i. Conversely,
the uptime of a parallel of n units is given by the max-
imum uptime among all the units, and the reliability of
the system, denoted by R∨(t), can be expressed as:

R∨(t) = 1 − (1 − R1(t))(1 − R2(t))...(1 − Rn(t))

= 1 − (1 − R(t))
n

(2)

where the last equality is true if Ri(t) = R(t), ∀i. More
complex systems can be described as a compositions of
series and parallel structures.

Up to this point we have implicitly assumed that
units cannot be replaced, i.e. when they fail the sys-
tem deteriorates. We can consider repairable systems
where maintenance or replacement is carried out. There
are different ways to repair/substitute units of a system:
preventive maintenance [18], maintenance upon failure
[19], or periodic testing [20], to cite some of them.

What concerns our work, we consider periodic re-
placement (PR), where all units are regularly replaced
with new units; the replacement intervals τi are sim-
ply regular intervals, i.e., τi = iτ , with τ constant and
i = 1, 2, . . .

From the reliability viewpoint, it is simple to show
that at the beginning of each period we restore the ini-
tial condition, so R(t) is equal to the non-repairable
system in the interval (0, τ ], and then it repeats period-
ically.

4. RELIABILITY ANALYSIS OF KAD

4.1 General Assumptions
The publishing procedure on KAD comprises differ-

ent phases: the publishing node first has to retrieve a
list of possible host nodes whose key agrees in the first
8 bits with the key of the references, then it tries to
publish on that host nodes. Looking for host nodes has
a cost, both in term of routing messages and in term of

2Another important structure is k out of n, which we do not
consider as it is not needed to describe KAD.

k1

k1

k1

kw

kw

kw

s

s

s

Obj

Figure 2: System model

delay. We assume that the delay is negligible with re-
spect to the republishing interval, so that all the replicas
are available starting from the same instant.

From viewpoint of the searching node, there are mainly
two issues that give origin to cost. First, the searching
node has to find the host nodes with the replicas. Host
nodes are not necessarily the closest nodes to the key,
not only because of the selection policy of the publish-
ing node, but also because, as the time goes by, new
nodes with an ID closer to the key than existing host
nodes may arrive. This result in an increased delay if
the searching node wants all the possible answers. Sec-
ond, when the searching node asks for a reference (e.g.,
a keyword) to a host node, if the host node has multi-
ple entries for that reference, it replies with a (random)
subset of entries (up to 300). Even if the searching node
is able to find a host node, it may not receive the exact
reference it is looking for.

In this paper we focus on rare objects and we assume
that the main performance index is the probability to
find the objects, without taking into account the de-
lay needed for searching them. This means that the
searching node knwos all the keywords associated to an
object and is always able to find all the available repli-
cas (e.g. through multiple searches in the zone where
the references are). We also assume that the load of
the host nodes is always below 20%, so that the repub-
lishing delay for keywords is 24 hours. The results we
obtain can then be considered as performance bounds
for an ideal system. We leave for future work the exact
characterization of the impact of routing and delay on
the performance.

4.2 Model Description
We consider the publishing system as composed by

units represented by nodes. The object is found if at
least a subset of the units are working, i.e., host node
are online so that they can provide the information pre-
viously published. For each key of the two-level pub-
lishing scheme – source and keywords – KAD creates
multiple copies. In order to reach an object, a node
must be able to successfully reach (retrieve) at least
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Figure 4: Reliability analysis of KAD (2 keywords, 1 source, Cs =
Ck = 10, 1/fs = 5h, 1/fk = 24h).

one copy of:

• one of the keywords;

• the source;

• the object.

The whole system can be modeled as shown in Fig. 2.
This system is composed by a series of two parallel
structures that represent the keywords and the source
and a single unit that represents the publishing node
(the owner of the object).

Given the uptime distribution of the nodes (units of
the system), we are able to compute the reliability func-
tion over time for an object, i.e., the probability that a
node, looking for an object, is able to find it. Extensive
measurements on the KAD system [2] revealed that the
uptime distribution follows a Weibull law, with scale
parameter and shape parameter approximately equal
to 357.7 and 0.545 respectively. The shape parameter
is less than 1, which means that the corresponding re-
liability function has Decreasing Failure Rate (DFR)
property. It is important to note that, when a node
publishes a reference, it stores keywords and the source
on host nodes that are online: this means that we need
to consider the residual uptime of the host nodes. When
the arrival process is stationary, the residual node up-
time FR(t) is given by Smith’s formula [17]:

FR(t) =
1

E[T ]

∫ t

0

(1 − F (s))ds (3)

where E[T ] is the mean uptime and F (t) is the uptime
distribution. The residual reliability function RR(t) is
then given by

RR(t) = 1 − 1

E[T ]

∫ t

0

R(s)ds (4)

When F (t) is Weibull distributed, the integral can only
be solved numerically and the two distributions, R(t)

and RR(t) are shown in Fig. 3. We see that RR(t) >
R(t), i.e. that residual uptime is increased: this phe-
nomenon, observed in many previous measurement stud-
ies, is due to the high probability to find online host
nodes with uptime higher than average uptime of nodes.
It is possible to show that RR(t) maintains the DFR
property [21]. Figure 3 also shows the measurements of
the residual lifetime of nodes on the KAD system from
[2]. The slight deviation with respect to the reliabil-
ity function predicted by (4) is due to the fact that in
KAD the node sampling process is periodical, and this
introduces a correlation in the selected nodes. In any
case, the measurements confirm the increased reliability
when the residual uptime is taken into account.

4.3 Reliability of the Publishing System
The system model shown in Fig. 2 is composed of a

series of three subsystems – keywords, source and owner
of the object– so the reliability function is obtained as
the product of reliability functions of these three sub-
systems. The first two subsystems are parallel units,
and each unit (with different rates for keywords and
sources) is restored periodically, provided that the pub-
lishing node is still online.

Let W be the number of keywords of the object, Cs

and Ck be the number of copies (replicas) for keywords
and sources respectively, and fs and fk be the corre-
sponding publishing frequency (per unit of time, e.g.
per day). KAD clients use a default value of 10 replicas
for both Cs and Ck and republish sources and keywords
every 5 and 24 hours respectively.

Figure 4(a) shows the reliability function for the source,
the keywords, and for the composition of the two sub-
systems, obtained from the model. We used W = 2
keywords and default values for the number of replicas
and the republishing frequencies.

The reliability function of the source is obtained start-
ing from the residual uptime distribution RR(t) reported



in (4). Using Eq. (2), we compute the reliability func-
tion RR∨(t) considering the Cs replicas; then, we pe-
riodically repeat RR∨(t) with a period 1/fs. The re-
liability function of the keywords is similarly obtained
considering WCk replicas and a period 1/fk. The pe-
riodic reliability functions for source and keywords are
then combined according to Eq. (1).

In our model, we assume that the host node, when
it goes offline, deletes all the references. KAD instead
keeps memory of the references, so that when a node
comes back online it checks if the previously stored ref-
erences are still valid and keeps them. Thus, the results
of our reliability analysis can be considered as a lower
bound. We leave for future work the exact characteri-
zation or the reliability considering multiple session of
the same node within the expiration time of its refer-
ences. In any case, the cost associated to publications
remains the same, even if the reliability may increase.
This holds also for the improved scheme we propose in
Sect. 5.

Note that the global reliability is dominated by the
reliability of the keywords, so it may happen that one
copy of the source is present but no keyword points to
it. In Fig. 4(a) the references are always restored peri-
odically, but this process can be done only if the pub-
lishing node is online. In order to take into account this
fact, each interval should be multiplied by the probabil-
ity that at the beginning of the interval the node is still
online. This result is shown in Fig. 4(b) (note the differ-
ent scale of the Y axis), along with the reliability of the
publishing node and the final reliability of the system.
It is clear that the final reliability depends strongly on
the reliability of the publishing node. Since the aim of
our study is to understand the impact of design param-
eters – such as the number of copies or the republishing
frequency – hereinafter we will consider a publishing
node always online (since it hosts the actual content it
publishes), i.e. we will consider only the reliability of
the keywords and sources, as shown in Figure 4(a).

From the analysis of the reliability, it is possible to
see that the publishing scheme of KAD offers an high
probability of finding objects, despite the dynamics of
the system. However, as we will see, this good perfor-
mance comes at the cost of a high traffic load generated
by the publishing procedure.

4.4 Cost analysis
KAD implements a periodic replacement (PR) policy,

so the cost of publishing can be computed very easily.
Let Ss and Sk be the size of the source message and the
keyword message respectively. We consider only the
publishing messages, without taking into account the
route messages needed to find the host nodes. Assum-
ing a mean number of keywords W for the file name,

the traffic generated using PR policy, BPR, is

BPR = SsCsfs + WSkCkfk (5)

This represents the cost for a node that is always online.
In case of a node that disappears and reappears, the
cost should be multiplied by the mean uptime per unit
of time. In order to be able to compare the cost with
other publishing schemes, we assume an always online
node.

Recent measurements [2], analyzing 1/256 of the key
space for 12 hours, observed approximately 5.5 million
publishing messages, for a total volume of almost 1
GByte of traffic, for a mean number of 6500 nodes.
The same study showed the traffic load generated by
search messages is 10 MByte. It is clear that the cost
of publishing represents a major issue for KAD system.

5. IMPROVING PUBLISHING SCHEME (AT
AFFORDABLE COST)

Analyzing the publishing procedure using reliability
theory, it is possible to identify the weaknesses of the
scheme. For instance, the publishing node republishes
the references at regular intervals independently from
the fact that the previous host nodes could still be on-
line. A straightforward improvement could be adopt-
ing, instead of periodic replacement, a periodic inspec-

tion with replacement upon failure (PI) policy: in this
case we decrease the traffic since the cost of inspection
should be lower than republishing. The analysis of PI
policy is simple and we do not include it in this pa-
per. Instead we introduce a more advanced inspection
technique called Quantile Based Inspection (QBI) that
makes use of the information about the past of the host
nodes to predict their reliability.

5.1 Quantile Based Inspection
Instead of periodically republishing data, nodes can

keep track of the host nodes where they previously pub-
lished and simply refresh the expiration time for the
references. The history of the host nodes (seen by the
publishing node when it refreshes the references) can
be exploited to dynamically adapt the expiration time:
since the uptime distribution has DFR property3, the
longer the node stays online, the smaller the probability
that it will leave, the higher its reliability. This means
that, given a target reliability, we can change the in-
spection rate if the references are published on stable
hosts.

In reliability theory, this policy is known as quantile-

based inspection (QBI(α), where α is the target reliabil-
ity [19]). With QBI, the information about the history

3Studies on other P2P systems found an uptime distribution
according to the Pareto distribution: it is interesting to note
that Pareto distribution has DFR property too.



is included in the conditional reliability RR|τ (t):

RR|τ (t) = P [T > t + τ |T > τ ] =
P [T > t + τ ]

P [T > τ ]

=
RR(t + τ)

RR(τ)
(6)

where RR(t) is the residual reliability function of the
unit. The inspection intervals are given by:

{

τ1(α) = sup{t > 0 : RR(t) ≥ α}
τn(α) = sup{t > 0 : RR|τn−1

(t) ≥ α} (7)

In case of DFR, it is easy to show that RR|τn
(t) >

RR|τn−1
(t), ∀n. This implies that τn > τn−1 for a given

α, so the inspection interval increases, decreasing the
cost per unit of time of the inspection policy. Table 1
shows the sequence of the first five inspection intervals
τi for different target reliability α using the residual
reliability function (4). The sequence of inspection in-
tervals for a given α is uniquely determined and it can
be precomputed. Nevertheless, as we will see, the per-
formance can be further increased introducing a bit of
randomness in the exact values of τi: in this case the
values shown in Table 1 represent mean interval lengths.

Table 1: First five inspection intervals τi for QBI
policy computed with (4) (min.)

α τ1 τ2 τ3 τ4 τ5

0.9 40 90 155 230 310
0.6 270 735 1695 2965 4880
0.3 1000 4205 8685 14395 19590

The general formula to find the reliability over time
of a unit using QBI policy is given by (see [20])

RQBI(t, α) = RR(t) + (8)

+

log RR(t)/ log α
∑

k=1

RR

(

t − R−1
R (αk)

) [

αk−1 − αk
]

where R−1
R (t) is the inverse of the residual reliability

function. It is important to note that, independently
from the shape of the reliability function, in any point
of time the minimum possible value is α.

There could be the case that, as the inspection time
increases, the host node goes offline and then comes
back online before the next inspection. In order to avoid
a wrong estimation of the host node uptime we impose
that stored keywords and source must be deleted if the
node goes offline.

The QBI policy can also help in avoiding the problem
of stale references. As shown in Table 1, the inspection
intervals are shorter at the beginning. If the publishing
node leaves the system, the references are not refreshed
and stale pointers can be deleted faster than in basic

KAD publishing scheme. For instance, considering the
Weibull-distributed uptime shown in Fig. 3, we can see
that a node disconnects after three hours with proba-
bility 0.5. This means that, under the basic KAD PR
policy, half of the source and keyword replicas are stale
for two hours and 22 hours respectively. With the QBI
policy, the references are refreshed more frequently at
the beginning and the probability to find stale refer-
ences decreases.

5.2 Desynchronization
In Fig. 4(a) the periodic replacement policy results in

a periodic reliability function. For each single unit, the
reliability is a decreasing function of time; for a system
composed by multiple units, publishing the references
at the same time maximizes the reliability at the begin-
ning of the interval, but synchronizes also the minimum
values. Thus, introducing a desynchronization mecha-
nism can avoid that all the minimum values happen at
the same instant.

The observation of synchronized sources may seem
very intuitive, but we were not able to find, from a
reliability theory point of view, any work that charac-
terizes the improvement that can be obtained in desyn-
chronizing the inspections. This fact can be explained
observing that in engineering systems once the inspec-
tion starts, multiple units are inspected at a time, so
the synchronization is intrinsic in the inspection policy.
In other words, the cost of inspection is composed by
a fixed part (setting up the inspection) and a variable
part (due to the number of units to be inspected), but
the fixed part represents the predominant portion of the
cost. In our case, the cost of inspection is linear with
the number of units, i.e., each unit must be inspected
separately by sending a message. Thus, desynchroniza-
tion has no impact on the total cost of inspection.

We start computing the improvement that can be ob-
tained in case of PR policy and then we analyze the QBI
scheme.

5.2.1 PR policy

Let α be the target reliability of the system com-
posed by source and keywords, αs and αk be the target
reliability of the subsystems represented by the repli-
cas of the source and the keywords respectively, with
α = αsαk. Moreover, let αc

s and αc
k be the target relia-

bility of the single unit c – source and keywords respec-
tively.

Considering the source, for a given replica c, basic in-
spection interval4 τ = 1/fs and total number of replicas
Cs, the inspection intervals with desynchronization, τc

i ,

4For notation simplicity we omit to specify τs and τk for
source and keywords, since it is clear from the context which
basic interval we are using.



are given by:
{

τc
1 = cτ/Cs c = 1..Cs

τc
i = τc

1 + (i − 1)τ c = 1..Cs, i > 1
(9)

The first inspection interval is different for each replica,
while all the other intervals are constant. The mini-
mum value of the reliability function for the source, αs,
can be found using Eq. (2) and evaluating the reliability
function at different instants

αs = 1 −
Cs
∏

c=1

(

1 − R

(

c
τ

Cs

))

(10)

For instance, using reliability function (4), τ = 5 hours
and Cs = 4 we obtain for the synchronized case a mini-
mum reliability of 96.79%, while in the desynchronized
case we have 99.24%. Inspection intervals for keywords
and the corresponding minimum value of the reliability
function are computed following the same procedure.

5.2.2 QBI policy

In case of QBI policy, we need to solve two problems:

• the inspection intervals τc
i (αc

s) and τc
i (αc

k) depend
on the target reliability, so even if we obtain an
equation similar to Eq. (10) we are not able to find
an explicit expression for αc

s and αc
k;

• the inspection intervals depend on the history of
the host nodes, thus deterministic desynchroniza-
tion among replicas is not sufficient to assure a
permanent desynchronization as in the PR policy.

Since it is useless to consider sources more reliable
than keywords, we assume αs = αk =

√
α. In this sec-

tion we consider only the source, since the same results
can be found similarly for keywords.

Given αs and the number of replicas Cs, from Eq. (2)
we can obtain a first value for the target reliability for
a single replica α̂c

s inverting the following equation:

αs = 1 − (1 − α̂c
s)

Cs (11)

Using α̂c
s in Eq. (7) we obtain the first inspection inter-

val τ1(α̂
c
s). Similarly to the case of PR policy, we can

find the desynchronized value of the target reliability,
using τ1:

α′
s = 1 −

Cs
∏

c=1

(

1 − R

(

c
τ1

Cs

))

(12)

In general, α′
s is greater than αs, thus we iteratively

increase τ1 until we reach a value τ∗
1 such that α′

s = αs.
The final target reliability for a single unit is then

αc
s = R−1

R (τ∗
1 )

The value of αc
s is found considering only the first in-

spection interval. We will show in Sect. 6 that this does

not represent a limitation and the actual final reliability
of the system is always above the target reliability α.

The second problem, assuring desynchronization among
replicas, can be solved introducing a random desynchro-

nization when the next inspection interval is computed:
in this case the probability that two replicas, whenever
they are refreshed at the same time and they have the
same history, will have the same next inspection inter-
val is negligible. The inspection intervals τc

i are given
by:

{

τc
1 (αc

s) = (c/Cs) · sup{t > 0 : RR(t) ≥ αc
s}

τc
i (αc

s) = τc
i−1 + γ∆i

(13)

where ∆i is the i−th inter-inspection interval computed
as

∆i = sup{t > 0 : RR|τi−1
(t) ≥ α} − τi−1

and γ is a random variable uniformly distributed be-
tween 0.7 and 1.3.

5.3 Putting the Pieces Together
In this Section we propose a new publishing scheme

for KAD that adopts a Desynchronized Quantile
Based Inspection (DQBI) policy. In Algorithm 1
we give a high level view of the basic procedure. The
scheme assumes that it is possible to specify for each
reference its validity and the host node must hold the
references until its validity expires; if the host node goes
offline it has to delete all the references.

Given the target reliability for the whole system, α,
the number of keywords W and the number of replicas
for each reference, Cs and Ck, it is possible to compute
the target reliability for each replica of the source and
the keywords, αc

s and αc
k, as described in Sect. 5.2.2.

After publishing for the first time the references, when
the different timers expire, the publishing node pings
the host nodes. If a host node is found to be up, then
the publishing node updates the reliability function (in-
cluding the information about the past) for that host
node and it computes the next expiration of the timer.
Then the reference is refreshed with the new expiration
time. If the publishing node finds the host node offline,
it publishes the reference in a new host node, setting
the timer to the basic value.

With the proposed scheme a (stable) node tends to
refresh references stored on stable host nodes, i.e. a sort
of clustering arises. The number of references on stable
nodes could increase, saturating the node. To alleviate
this problem, a possible solution is to restart the pub-
lishing process from time to time (bootstrapping), i.e.
the publishing node may let the keyword and source
expire and change the host nodes after some times.

5.4 Cost Analysis
The gain of the new publishing scheme is due mainly

to two factors: (i) the cost of refreshing instead of al-



Algorithm 1: DQBI Publishing Scheme

Input: Num. of source and keyword replicas (Ck , Cs),
target reliability (α).

/* auxiliary function */

NextExpirationTime {uptime, αc
n}

// compute τc
i

compute the next interval (exact value + random
interval) when this unit will be checked again given its
previous uptime and the target reliability

endfunction

begin
for i← 1 to Ck do

uptimei
k ← 0

T i
k
← NextExpirationTime(uptimei

k, αc
k
)

publish keyword replica i
end
for j ← 1 to Cs do

uptime
j
s ← 0

T
j
s ← NextExpirationTime(uptime

j
s, αc

s)
publish source replica j

end

When timer T w
n = mini,j {T

i
k
, T

j
s } expires do

Ping host node that stores the reference
if host node is up then

uptimew
n + = ∆T w

n // ∆w
n is the

inter-inspection interval
T w

n ← NextExpirationTime(uptimew
n , αc

n)
refresh reference and set the new expiration
time

else
uptimew

n ← 0
T w

n ← NextExpirationTime(uptimew
n , αc

n)
publish keyword replica i

end

end

end

ways republishing and (ii) the increasing refreshing in-
terval. We assume, as we did for the basic publishing
scheme, that the publishing node remains always on-
line, so that we can compare the publishing traffic with
Eq.(5). We also assume that there is no maximum expi-
ration time, so that it can increases with no limitation.

Under these assumptions, given a target reliability
αc

s (we consider the source, but the same can be found
for the keywords) it is possible to obtain the average

inspection rate for a single reference (see [19], Sect. 4.2):

βs =
1

(1 − αc
s)

2 ∑∞
m=1 (αc

s)
m−1

R−1
R ((αc

s)
m

)
(14)

At each inspection, with probability αc
s the host node is

still online (so we need only to refresh the reference) and
with probability 1−αc

s it is offline, so we need to repub-
lish the reference. Assuming that the cost of refreshing
is negligible with respect to the cost of republishing, we
obtain

BDQBI = (1 − αc
s)SsCsβs + W (1 − αc

k)SkCkβk (15)

where βs and βk are the inspection rates for the source
and the keywords.

Compared to Eq.(5), in case of βs = fs, βk = fk and
αc

s = αc
s = αc, Eq.(15) gives a cost that is (1 − αc)%

less than PR policy. We should now investigate the

impact of the inspection rates βs and βk (hereinafter
we consider a single reference, so we omit the indication
for source and keywords).

Determining the inspection rate means compare in
some way the two publishing schemes, PR and DQBI.
Given a target reliability for the system, there are two
possible comparisons: (i) long run reliability, and (ii)
minimum reliability.

Long run reliability is a measure mainly for systems
that need to work for a long time and so the aim of the
maintenance is to assure an average reliability equal to
the target reliability. This means that, with the PR
scheme, there could be instants when the reliability can
drop below the target reliability. For DQBI scheme this
cannot happen since the scheme imposes an inspection
time such that the reliability is always above the target
reliability.

Minimum reliability implies that in every instant the
reliability of the system is above the target reliability.
This definition is more strict than long run reliability
and it should be taken into consideration when consid-
ering publishing nodes with relatively small uptime.

6. NUMERICAL RESULTS
In this section we validate our model of the basic and

improved scheme using trace driven simulations. The
traces [22], collected over six months of crawling the
KAD network, report the uptime of approximately half
a million of different nodes (identified by their KAD-
ID). During these six months, the crawler has taken
a snapshot of the node presence every 5 minutes. We
define the interval between two snapshots as time step.

6.1 Simulator Description and Settings
The basic operations performed by the simulator can

be summarized as follows: selection of the host nodes
and verification of object reachability.

When a node wants to publish references, it looks
for host nodes with ID close to the reference. Since
nodes are distributed on the space ID through the hash
function, we can assume that there is no correlation
between two adjacent nodes, or, in general, there is
no correlation among nodes that are close one another.
This means that the selection process is equivalent to
randomly selecting nodes among all the available nodes
(nodes that are online when the publishing process starts).
For each reference and for each replica the simulator
picks randomly a new host node. When not otherwise
stated, we use a default number of replicas Cs = Ck =
10 and a file with W = 2 keywords.

Once the publishing process has been completed, the
simulator starts to verify the presence of the host nodes
for each time step between the current time and the
next republishing timer expiration (or the maximum
observation time). If it is possible to find at least one
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copy of one keyword and one copy of the source, then
the reachability is set to 1 for that time step, otherwise
is set to 0. In this way, the simulator builds a realization
of the publishing process.

By performing multiple realizations, it is possible to
obtain, for each time step, multiple samples and, with
standard statistical techniques, it is possible to evalu-
ate the availability with a desired confidence level and
confidence interval. For each time step we took 5 · 105

samples and the final confidence intervals, for a confi-
dence level of 99% is less than 1% of the point estimate,
thus we will not show them in the results.

With the improved scheme, the simulator follows Al-
gorithm (1). Each reference has a timer and it is in-
spected when the timer expires. The only additional
parameter with respect to the basic scheme is the tar-
get availability used in the DQBI policy.

6.2 Basic KAD scheme: PR
Using the simulator we want to validate the results

obtained from the analysis presented in Sect. 4. We con-
sider an always on publishing node so that we can com-
pare the long term availability without considering the
effect of the uptime of the publishing node on the con-
tent availability. We use the default values for the re-
publishing interval, i.e., 1/fs = 5 hours and 1/fk = 24
hours.

In Fig. 5 we compare the simulative results with the
analytical ones obtained in Sect. 4 and shown in Fig. 4(a).
In the model, we used for the reliability function of each
unit the residual uptime distribution obtained from Eq. (4).
Our analytical model is able to predict the performance
of the publishing scheme of KAD with good accuracy.

Another interesting result is maintaining the periodic
replacement, but desynchronizing the republish opera-
tion. Figure 5 also shows reliability without synchro-
nization. The reliability becomes almost 1 for every
instant. This gain is obtained at a slightly increased
cost, due to the fact that the first interval is shorter

than the synchronized case.

6.3 Improved Scheme: DQBI
The basic PR scheme adopted by KAD is able to of-

fer a minimum reliability of approximately 0.99. In this
section, we analyze the reliability over time of the DQBI
scheme for different values of the target reliability, start-
ing from 0.99. It is important to note that, from the
analytical point of view, once the target reliability is
fixed, the DQBI scheme always assures a reliability at
least equal to the target reliability. In this section we
investigate how reliability evolves over time.

Using the procedure explained in Sect. 5.2.2, the sim-
ulator computes the single unit target reliability, αc

s and
αc

k, and Algorithm (1) is used to publish. Figure 6 shows
the results of the simulations for different values of the
target reliability.

The minimum value, approximately equal to the tar-
get reliability, is reached only once, while in the other
instants the difference between the actual reliability and
the minimum reliability is always high. This gain is
mainly due to the desynchronization.

On the one hand, using smaller target reliability α al-
lows us to decrease the cost of publishing; on the other
hand the inspection intervals increase. In case of pub-
lishing nodes with short uptime, larger inspection inter-
vals increase the probability of having stale references.
Instead of decreasing α, another way to reduce the cost
is to decrease the number of replicas. In Fig. 7 we show
the reliability over time with different number of repli-
cas for each reference, with Cs = Ck = C. In order
to maintain the same target reliability, the reliability
of each unit must increase, and consequently inspection
intervals (at least at the beginning) decrease. As we
will see, the cost of refreshing and republishing with
higher frequency is lower than the cost of maintaining
more replicas. In any case, even with few replicas (with
high single unit target reliability), the system is able to
guarantee the target global reliability.



6.4 Publishing Cost
The improved scheme we proposed is able to offer

high reliability. In this section we present the results
about the cost associated to the different schemes. We
measure the cost as the number of publish messages sent
for publishing source and keywords during a day. Con-
sidering the cost defined in (5) and (15), we rearrange
so that we can focus on the total number of publishing

messages, obtaining















BPR = SsCsfs + WSkCkfk

= SsM
PR
s + SkMPR

k

BDQBI = (1 − αs)SsCsβs + W (1 − αk)SkCkβk

= SsM
DQBI
s + SkMDQBI

k

(16)
where MPR

s and MPR
k are the number of publishing

messages sent with the PR scheme for source and key-
words respectively, and MDQBI

s and MDQBI
k are the cor-

responding values with the DQBI scheme. In this way,
we can compare schemes that use different number of
replicas.
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Figure 8: Cost per day for different schemes.

Figures 8(a) and 8(b) show the cost per day for source
and keywords respectively; we compare the cost of the
PR scheme with the cost of DQBI scheme with different
number of replicas C. For a source, the improvement

is evident from the first day5. In fact, while in KAD
the reliability of the subsystem represented by replicas
of the source is higher than the subsystem of the key-
words, with our improved scheme the reliability of the
two subsystem are set equal, obtaining a gain for the
source. For keywords, the cost in the first day is equal
for all schemes (all the references must be published),
then for DQBI scheme the cost decreases since reference
are refreshed.

Table 2: Publishing messages for different
schemes.

Scheme α C Source Keywords
Th. Sim. Th. Sim.

PR - 10 48 48 20 20
DQBI 0.99 10 4.75 5.63 5.38 6.98
DQBI 0.98 10 4.43 5.24 4.85 6.35
DQBI 0.97 10 4.21 4.99 4.51 5.95
DQBI 0.99 8 4.43 4.99 5.23 6.71
DQBI 0.99 6 3.91 4.21 5.11 5.99

Table 2 shows the the cost per day in the long run.
The table reports both theoretical values and measured
with simulations. Theoretical values and simulations
match pretty well: the differences are due to the fact
that we have traces of six months, and we use them
to evaluate cost in the long run. For keywords, the
reliability of a single replica is low, so the inspection
interval is greater than the inspection interval for the
source. Thus, the error with simulation is bigger. With
respect to the basic scheme, we can see that with DQBI
we have 90% less traffic for the sources and up to 70%
less traffic for the the keywords.

7. CONCLUSIONS
The Periodic Replacement publishing scheme is able

to offer a high reliability, i.e. the system is robust to
node churn. However, this high reliability comes at a
high cost: the number of publishing messages is ten
times higher than the number of search messages [2].

In this paper we proposed a model of the KAD pub-
lishing scheme based on reliability theory. Starting from
the weaknesses identified by the model, we proposed an
improved publishing scheme, Desynchronized Quantile

Based Inspection (DQBI), that is able to offer the same
reliability with a dramatic reduction in cost.

The results show that it is possible to decrease the
number of replicas for each reference, yet maintaining
high reliability. In DQBI scheme inspection intervals

5With PR scheme, source replicas are republished every 5
hours; in Fig. 8(a) we plot the cost per day, so sources are
published 5 times per day, except for the forth day, where
the last republish happen at the beginning of the fifth day



for a given reference are small when publishing on a
new host node and then increase if the host node (and
the publishing node) remains online: this may help to
decrease the probability of having stale references.

There are a lot of interesting possible extensions that
we are investigating, mainly related to the presence of
popular objects. For instance, the two-level publishing
scheme, where keywords contain pointers to the source,
can be exploited to decrease the republishing overhead
associated to keywords of popular objects.

Rare objects with a name that contains popular key-
words – or with keywords whose key is close to a popular
keyword – also represent a challenge: the reliability of
these rare objects may be compromised since the refer-
ences can fall on a hot spot node (node with high load)
and can be lost due to the limited number of references
host node can hold.

Finally, the analysis can be extended to other P2P
system in order to analyze the reliability of other schemes.
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