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Abstract

In this work we present a measurement study of user mobility in
Second Life. We first discuss on different techniques to collect user
traces and then focus on results obtained using a crawler that we built.
Tempted by the question whether our methodology could provide sim-
ilar results to those obtained in real-world experiments, we study the
statistical distribution of user contacts and show that from a qualita-
tive point of view user mobility in Second Life presents similar traits
to those of real humans. We further push our analysis to study the
properties of line of sight networks that emerge from user interaction
as well as the spatial properties of user movements and observe that
users in Second Life revolve around several point of interests traveling
in general short distances.
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1 Introduction

This work stems form prior studies on human mobility performed in real
life. For example, [4–6] conduct several experiments mainly in confined ar-
eas and study analytical models of human mobility with the goal of assessing
the performance of message forwarding in Delay Tolerant Networks (DTNs).
Each user taking part to such experiments is equipped with a wireless de-
vice (for example a sensor device, a mobile phone, ...) running a custom
software that records temporal information about their contacts. Individual
measurements are collected, combined and parsed, originating elegant but
complex algorithms [5] because the only available information is the tem-
poral distribution of contact times, which are bound to the specific wireless
technology used in the experiments.

In this paper we present a novel methodology to capture spatio-temporal
dynamics of user mobility that overcomes most of the limitations of pre-
vious attempts: it is cheap, it requires no logistic organization, it is not
bound to a specific wireless technology and can potentially scale up to a
very large number of participants. Our measurement approach exploits the
tremendous raise in popularity of Networked Virtual Environments (NVEs),
wherein thousands of users connect daily to interact, play, do business and
follow university courses just to name a few potential applications. Here
we focus on the SecondLife (SL) “metaverse” [3] which has recently gained
momentum in the on-line community.

Our primary goal is to perform a temporal, spatial and topological anal-
ysis of user interaction in Second Life. Prior works that attempted the diffi-
cult task of measuring and collecting traces of human mobility and contact
opportunities are restricted by logistic constraints (number of participants
to the experiments, duration of the experiments, failures of hardware de-
vices, wireless technology used). In general, position information of mobile
users is not available, thus a spatial analysis is difficult to achieve [5]. Some
experiments with GPS-enabled devices have been done in the past [7,8], but
these experiments are limited to outdoor environments.

In this paper we discuss two monitoring architectures that we tested in
our laboratories and focus on the most robust technique, which is based on
a custom software module (termed a crawler). Our crawler connects to SL
and extracts position information of all users concurrently connected to a
sub-space of the metaverse: all results presented in this paper have been
obtained with this architecture.

One striking evidence of our results is that they qualitatively fit to real
life data, raising the legitimate question wether measurements taken in a
virtual environment present similar traits to those taken in a realistic setting.
Our methodology allows performing large experiments at a very low cost and
generate data that can be used for trace-driven simulations of a large variety
of applications: the study of epidemics and information diffusion in wireless
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networks are just some prominent examples.

2 Monitoring architectures

Mining data in a NVE can be approached under different angles. The first
architecture we discuss exploit SL and its features to create objects capable
of sensing user activities in the metaverse. Although this approach present
interesting features, there are several limitations that hinder our ultimate
goal, which is to collect a large data set of user mobility patterns. These
limitations mostly come from inner design choices made by the developers
of SL to protect from external attackers aiming at disrupting the system op-
eration. The limitations incurred by the first approach can be circumvented
by building a crawler which is not an object of the SL metaverse.

The task of monitoring user activity in the whole SL metaverse is very
complex: in this work we focus on measurements made on a selected sub-
space of SL, that is called a land (or island). In the following we use the
terminology target land to indicate the land we wish to monitor. Lands in
SL can be private, public or conceived as sandboxes and different restrictions
apply: for example private lands forbid the creation and the deployment of
objects without prior authorization.

We now detail the monitoring architectures we investigated in our work.

A sensor network architecture1: Our first approach has been inspired
by current research in the area of wireless sensor networks: it resembles to
what one would do in the real world to measure physical data (temperature,
movements, etc ...) by deploying sensor devices in the area to be monitored.
We built virtual sensors using the standard object creation tool accessible
from a SL client software. Our sensors collect data and communicate with an
external web server that stores the location information of users connected to
the target land. The functionality of a sensor is defined using a proprietary
scripting language [2].

A key limitation imposed by the infrastructure of SL is that sensors
cannot be arbitrarily deployed on any land. While it is impossible to deploy
object on private lands without authorization, on public lands objects expire
after a TTL, which is equal to 5 minutes. In our architecture, before a sensor
is removed from the land, another sensor will take care of replicating it in
the same position.

When a sensor is deployed on the target land, it detects users (a max-
imum of 16 users can be detected) that fall within the sensing range (96
meters) with a tunable periodicity and stores this information in its local
cache (16KB is the maximum storage space). Due to its limited amount of
memory, a sensor initiate a connection with the base station (our web server)
and flushes its memory using the HTTP protocol as soon as the maximal

1This approach has been used also by our colleagues in [9].
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capacity has been reached. The technical specification of a sensor impose
several challenges that hinder the task of covering an entire land. Because of
the limitation on the maximum number of users that is possible to monitor
with a single sensor, the actual deployment of the monitoring infrastructure
becomes a tedious manual exercise.

Moreover, the number of HTTP messages that can be exchanged between
sensors and the external web server is restricted by the SL infrastructure to
limit the upload bandwidth charged to SL. This inner design choice reduces
the quantity of data that can be retrieved from our sensors: a tradeoff exists
between the granularity of the sensed data and the duration of a monitoring
experiment.

Monitoring using an external crawler: We discuss here an alternative
approach that relies on a custom, lightweight SL client program that we
designed using libsecondlife [1]. Our crawler monitors the position of
every user located on the target land: measurement data is stored in a
database that can be queried through an interactive web application2. The
crawler connects to the SL metaverse as a normal user, thus it does not
incur in the limitations imposed by private lands: any accessible land can be
monitored in its totality; the maximum number of users that can be tracked
is bounded only by the SL architecture (as of today, roughly concurrent 100
users per land); communication between the crawler and the database takes
place outside SL hence it is not limited.

During our experiments, we noted that introducing measurement probes
in a NVE can cause unexpected effects that perturb the normal behavior
of users (hence the measured user mobility patterns). Since our crawler is
nothing but a stripped-down version of the legacy SL client and requires a
valid login/password to connect to the metaverse, it is perceived in the SL
space as an avatar, and as such may attract the attention of other users that
try to interact with it: our initial experiments showed a steady convergence
of user movements towards our crawler. To mitigate this perturbing effect
we designed a crawler that mimics the behavior of a normal user: our crawler
randomly moves over the target land and broadcasts chat messages randomly
chosen from a small set of pre-definied phrases.

3 Measurement methodology

We create temporal snapshots of line of sight communication networks formed
by users connected to a target land using their physical coordinates. Given
an arbitrary communication range r, it is easy to determine if a communica-
tion link exists between any two users. In the following we use the temporal
sequence of communication networks extracted from the traces we collected
using our crawler and analyze contact opportunities between users, their

2Access to the application can be requested via mail to the authors.
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spatial distribution and graph-theoretic properties of their communication
network.

Before proceeding any further we discuss the methodology we used to
find target lands and the choice of measurement parameters. Choosing a
land in the SL metaverse to monitor user behavior is not an easy task: i) a
large number of lands host very few users; ii) lands with a large population
are usually built to distribute virtual money: all a user has to do is to sit
and wait for a long enough time to earn (for free) money; iii) an automatic
synchronization of the crawler to special events supposed to attract many
users is very difficult to achieve. While we are currently working on a solu-
tion to the latter problem, we manually selected and analyzed the following
popular areas: Apfel Land, a german-speaking arena for newbies; Dance Is-
land, a virtual discotheque; Island of View, an open-space land in which an
event (St. Valentines) was organized.

We launched the crawler on the selected target lands and set the time
granularity (intervals at which we take a snapshot of the users’ position)
to τ = 10 sec. Although it is possible to collect traces for long periods,
in this paper we present results for 24 hours traces. In the following we
selected a communication range r to simulate users equipped a bluetooth
and a WiFi (802.11a at 54 Mbps) device, respectively rb = 10 meters and
rw = 80 meters. In this work we assume an ideal wireless channel : line of
sight networks extracted from our traces neglect the presence of obstacles
such as buildings and trees. We will use G(tk) = G(vtk

i , etk
i,j) to identify a

snapshot of the communication graph formed by users at measurement time
tk.

Note that user location in SL is expressed by her coordinates {x, y, z}
which are relative to the target land whose size is by default 256 m2. However
there is one exception: when a user sits on an object (e.g. a bench) her
coordinates are {x = 0, y = 0, z = 0}. In this paper we neglect users that
are sitting.

3.1 Temporal analysis

The metrics we use to analyze mobility patterns are inspired by the work of
Chaintreau et. al. [4] and allow the analysis of the statistical distribution of
contact opportunities between users:

• Contact time (CT ): defined as the time interval in which two users
(vi, vj) are in direct communication range, given r;

• Inter-contact time (ICT ): defined as the time interval which elapses
between two contact periods of a pair of users. Let

[t1(vi,vj)s
, t1(vi,vj)e

], [t2(vi,vjj)s, t
2
(vi,vj)e

], ...[tn(vi ,vj)s
, tn(vi,vj)e

]
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be the successive time intervals at which a contact between user vi

and vj occurs; then, the inter-contact time between the k− th and the
(k + 1) − th contact intervals is:

ICk
(vi,vj)

= tk+1
(vi,vj)s

− tk(vi,vj)e

• First contact time (FT ): defined as the minimum waiting time for a
user vi to contact her first neighbor (ever).

3.2 Spatial analysis

We present here the metrics we used to perform the spatial analysis of our
traces:

• Node degree: the node degree is defined as the number of neighbors
of a given node ni ∈ G(tk) when the communication range is fixed to
r and is termed dtk

i ;

• Network diameter: the network diameter D(G(tk)) is computed as
the longest shortest path of the largest connected component of the
graph G(tk). We used the largest component since, for a given r, G(tk)
might be disconnected;

• Clustering coefficient: the clustering coefficient of node vi ∈ G(tk) is
defined as

Cvi
=

2|etk
j,k|

dtk
i (dtk

i − 1)

We compute the clustering coefficient of a graph [10] G(tk) as CG(tk =
1/n

∑n
i=1 Cvi

;

• Travel length: for every user vi we compute the distance covered from
its login to its logout to SL. We compute the CDF of the travel length
for the whole duration of the measurement;

• Effective Travel time: for every user vi we compute the total time
spent while moving; hence, this metric neglects pause times;

• Travel time: for every user vi we compute the total connection time
to the SL land we monitor with the crawler;

• Zone occupation: we divided lands in several square sub-cells of size
LxL and computed the number of users in every sub-cell, when L = 20
meters.

7



10
1

10
2

10
3

10
4

10
5

0.1

0.5
1

Time (s)

C
C

D
F

Contact Time, r=10m

 

 

Apfelland
Dance
Isle Of View

(a)

10
1

10
2

10
3

10
4

10
5

0.1

0.5
1

Time (s)
C

C
D

F

Inter−Contact Time, r=10m

 

 

Apfelland
Dance
Isle Of View

(b)

10
1

10
2

10
3

10
4

0.1

0.5
1

Time (s)

C
C

D
F

First Contact Time, r=10m

 

 

Apfelland
Dance
Isle Of View

(c)

10
1

10
2

10
3

10
4

10
5

0.1

0.5
1

Time (s)

C
C

D
F

Contact Time, r=80m

 

 

Apfelland
Dance
Isle Of View

(d)

10
1

10
2

10
3

10
4

10
5

0.1

0.5
1

Time (s)

C
C

D
F

Inter−Contact Time, r=80m

 

 

Apfelland
Dance
Isle Of View

(e)

10
1

10
2

10
3

10
4

0.1

0.5
1

Time (s)

C
C

D
F

First Contact Time, r=80m

 

 

Apfelland
Dance
Isle Of View

(f)

Figure 1: Temporal Analysis: Complementary CDF of contact opportunity metrics for
three target lands.

4 Results

We now discuss on the results of our measurements for the three selected
target lands. We study the influence of one parameter, i.e. the communica-
tion range (rb or rw), and three typologies of user mobility corresponding to
the lands we monitored: one (Dance island) that reflects users in a confined
space and two (Apfel Land and Isle of View) that are representative of users
in an open-space.

Temporal Analysis: Fig. 1 illustrates the distribution of the temporal
metrics we used in this work for rb = 10 meters and rw = 80 meters. A
glance at the complementary CDF (CCDF) of the contact time CT indicates
that the median contact time is roughly 30, 60 and 100 seconds respectively
for Apfel Land, Isle of View and Dance Island when r = rb, and about
70, 200 and 300 seconds for the same set of islands when r = rw. Besides
the intuitive result which indicates larger transfer opportunities for larger
r, we observe that the distribution of CT has two phases: a first power-law
phase and an exponential cut-off phase that limits the CT to a few hundreds
seconds.

Similar observations can be done for the CCDF of the inter contact time
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ICT : for the three target lands we analyzed, the distribution follows a first
power-law phase, followed by an exponential cut-off phase. The median ICT
is around 400 seconds for the two open-space lands and between 700 and
800 seconds for the Dance Island. Interestingly enough, the shape of the
distribution of ICT appears to be only slightly affected by r. We computed
the exponent of the power-law phase and obtained: α(rb) = 0.1975, α(rw) =
0.2189 for Apfel Land; α(rb) = 0.3275, α(rw) = 0.2842 for Dance Island; and
α(rb) = 0.4318, α(rw) = 0.4123 for Island of View.

Although the distribution of contact opportunities appears to be similar
for the two open-space lands, the CCDF of the first contact time FT illus-
trates a great disparity between these lands: in Apfel Land users have to
wait for a long time before meeting their first neighbor. The median FT is
around 300 seconds for Apfel Land, while it is less than 20 seconds for the
other two lands when r = rb. The FT improves a lot when increasing r: the
median is around 30 seconds for Apfel Land and less than 5 seconds for the
other lands.

These results are quite surprising: from a qualitative point of view, we
obtained a statistical distribution of contact opportunities that mimics what
has been obtained for experiments in the real world [5, 7, 8]. Obviously,
human activity roughly spans the 12 hours interval, while even the more
assiduous user we were able to track spent less than 4 consecutive hours on
SL, hence a quantitative comparison is not immediate. In our future work
we will try and address the following key question from a quantitative point
of view: is mobility of users in SL representative of real human mobility?

Line of sight networks: We now delve into a detailed analysis of the
communication networks that emerge from user interaction when we assume
them to be equipped with a wireless communication device covering a range
r ∈ {rb, rw}. A temporal line of sight network is constructed every measure-
ment interval: in Fig. 2 we show the aggregate (over the whole measurement
period) CCDF of the node degree and the aggregate CDF of the network
diameter and the clustering coefficient.

The node degree CCDF illustrates a diverse user behavior in each target
land: for Apfel Land we observe that 60% of users have no neighbors, for the
Dance Island only 10% of users have no neighbors while in the Island of View,
all users have at least one neighbor when r = rb. When the communication
range is set to r = rw all users have at least one neighbor in all lands.
The maximum degree and the whole distribution varies a lot between target
lands: the main reason lies in the physical distribution of users on a land. In
Apfel Land users are relatively sparse while in the Dance Island, for example,
most of the users spend most of the time in a tiny portion of the land:
this observation is corroborated3 by our study on the spatial distribution of

3There is an intuitive reason for this phenomenon: in a discotheque, for example, users
spend most of their time on the dance floor or by the bar, while in an open space user are
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Figure 2: Line of sight networks: graph theoretic properties for three selected target
lands.
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Figure 3: Spatial distribution of users.

users as shown in Fig. 3. Although the general trend for all target lands we
inspected is that a large fraction of the land has no users, some lands (e.g.,
Dance Island) are characterized by hot-spots with several tens of users.

The CDF of the network diameter illustrates the impact of different
transmission ranges: it is clear that the diameter shrinks for r = rw. We
note, however, that for Apfel Land there is an apparent contradiction: for
r = rb the maximum diameter is smaller than for r = rw. This phenomenon
is due to the fact we compute the diameter of the largest connected compo-
nent of the temporal graph formed by users: when the radio range is small

generally more sparse.

10



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.4

0.5

0.6

0.8

0.9

1

Hop Count
F

(x
)

Path Length CDF, r=10m

 

 

Apfelland
Dance
Isle Of View

Figure 4: Path length distribution.
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Figure 5: Path length distribution.

(and users are scattered through the target land) we observe the emergence
of relatively small connected components, whereas for larger ranges the con-
nected component is large (eventually it includes all users), hence a larger
diameter.

In Fig. 3 we also plot the CDF of the ratio between CG(tk) and the
equivalent random graph which has the same number of vertex and edges
that are placed uniformly at random, for the whole measurement period.
Our results clearly point to a ratio larger than one, indicating that our
temporal line of sight networks do not share features common to random
graphs. We are tempted to claim that the graphs that emerge from user
interaction under our definition of contact (two users that fall within the
communication range r) have small world characteristics, but this claim
cannot be supported due to the relatively small scale of our graphs and
to our results on network diameter and average path length (Fig. 4 and
Fig. 5). We defer for our future work the analysis of other kind of contacts
(e.g. friendships) that exists in SL which allow the collection of a larger
data set.

Trip analysis: using physical coordinates, we were able to study the
statistical distribution of the distance travelled by users on the three target

11



0 500 1000 1500 2000 2500
0

0.1

0.2

0.4

0.5

0.6

0.8

0.9

1

Length (m)

F
(x

)

Travel Length CDF

 

 

Apfelland
Dance
Isle Of View

(a)

0 2000 4000 6000 8000
0

0.1

0.2

0.4

0.5

0.6

0.8

0.9

1

Time (s)
F

(x
)

Effective Travel Time CDF

 

 

Apfelland
Dance
Isle Of View

(b)

0 5000 10000 15000 20000
0

0.1

0.2

0.4

0.5

0.6

0.8

0.9

1

Time (s)

F
(x

)

Travel Time CDF

 

 

Apfelland
Dance
Isle Of View

(c)

Figure 6: Trip analysis for three selected target lands

lands we analyze in this paper. Fig. 6 illustrates the aggregate CDF of the
travel length, the travel time and the login time for all users. Fig. 6(c) shows
the CDF of the login time: in our measurement we observed that the longest
log-in time for a user was around 4 hours while 90% of users are logged in
for less than 1 hour.

Fig. 6(a) provides further hints towards a better understanding of user
mobility in the selected target lands. For a confined area such as Dance
Island, the vast majority of users travel less than 230 meters (90th per-
centile). This observation however applies also for open spaces: for Apfel
Land, the 90th percentile is around 400 meters while it grows up to 500
meters for Isle of View. There is a small fraction of users who travel a very
long distance: for the Isle of View, around 2% of users travel more than
2000 meters. Fig. 6(b) is useful to infer the distribution of the times a user
takes to travel from her initial point (the first time our crawler tracked the
user) to her final point (the last time the user has been seen on the target
land). We defer to our future work the study of the correlation between the
travel time and the travel length so as to determine the distribution of the
speed at which users move.

5 Conclusion

In this paper we discuss a novel methodology to perform user profiling that
exploits the raising popularity of on-line communities emerging from user
interaction in Networked Virtual Environments. In this work we study the
mobility patterns of users connected to Second Life: we built a crawler that
extract the position of users on a target land at regular intervals. Tempted
by the question whether any similarity can be found between our results and
measurements performed in the real world, we first characterize the statisti-
cal distribution of contact opportunities among users. Our analysis indicates
that mobility patterns in a virtual environment share common traits, from
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a qualitative point of view, with those in the real world. We further pushed
our analysis to characterize the spatial distribution of users and their mobil-
ity behavior: users are generally concentrated around point of interests and
travel small distances in the vast majority of cases. This phenomenon could
be the result of the user interface used to interact with SL: users hardly move
while chatting because movement commands are situated on the keyboard.

An interesting area of future research would be to build the network of
“relationship” among SL users, rather than defining contacts as done in this
work. Based on the “relation graph”, new question can be addressed such
as the frequency and the strength of contacts (in the sense of this paper)
between acquaintances.
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