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ABSTRACT

The design of channel quantization codebooks for correlated broad-
cast channels with limited feedback is addressed. A design crite-
rion that effectively exploits the cell statistics is proposed, based on
minimizing the average sum-rate distortion in a system with joint
linear beamforming and multiuser scheduling. The proposed aver-
age distortion function is optimized by generating a set of quanti-
zation codebooks through random trials, keeping the codebook that
yields the lowest distortion. Comparisons with limited feedback ap-
proaches relying on random codebooks are provided, highlighting
the importance of matching the codebook design to the cell statis-
tics. Numerical results show a performance gain in scenarios with
non-uniform user distributions. Further, we propose a scheme that
exploits the limited channel knowledge at the base station to reduce
the computational complexity of determining the beamforming vec-
tors and of finding the optimal user set.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can significantly
increase the spectral efficiency by exploiting the spatial degrees of
freedom created by multiple antennas [1]. In the MIMO broadcast
channel, it has recently been proven [2] that the sum capacity is
achieved by dirty paper coding (DPC) [3]. However, the applica-
bility of DPC is limited due to its computational complexity and the
need for full channel state information (CSI) at the transmitter. As a
low complexity alternative, downlink techniques based on Space Di-
vision Multiple Access (SDMA) have been proposed that achieve the
same asymptotic sum rate as that of DPC, e.g., zero-forcing beam-
forming [4]. On the other hand, while having full CSI at the receiver
can be assumed, this assumption is not reasonable at the transmit-
ter side. Several limited feedback approaches have been considered
in point-to-point systems [5, 6], where each user sends to the trans-
mitter the index of a quantized version of its channel vector from
a codebook. An extension for MIMO broadcast channels is made
in [7], in which each mobile feeds back a finite number of bits re-
garding its channel realization at the beginning of each block based
on a codebook.

Codebook designs for MIMO broadcast channels with limited
feedback follow in general simple design criteria, with the purpose
of simplifying codebook generation and system analysis. Oppor-
tunistic SDMA (OSDMA) has been proposed in [8] as an SDMA
extension of opportunistic beamforming [9], in which feedback from
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the users to the base station (BS) is conveyed in the form of a beam-
forming vector index and an individual signal-to-interference-plus-
noise ratio (SINR). An extension of OSDMA is proposed in [10],
coined as OSDMA with limited feedback (LF-OSDMA), in which
the transmitter counts on a codebook containing an arbitrary number
of unitary bases. In this approach, the users quantize the channel
direction (channel shape) to the closest codeword in the codebook,
feeding back the quantization index and the expected SINR. Mul-
tiuser scheduling is performed based on the available feedback, us-
ing as beamforming matrix the unitary basis in the codebook that
maximizes the system sum rate. Other schemes for MIMO broad-
cast channels propose to use simple Random Vector Quantization
(RVQ) [11] for quantizing the user vector channels, such as the ap-
proach described in [7]. A simple geometrical framework for code-
book design is proposed in [6], which divides the unit sphere in quan-
tization cells with equal surface area. This framework is used for
channel direction quantization in [12], where feedback to the base
station consists of a quantization index along with a channel quality
indicator for user selection. These codebook designs do not take into
account either spatial correlations or user distributions present in the
system, which could yield better quantization codebooks and in turn
better sum-rate performance.

The gains of adaptive cell sectorization have been studied in [13]
in the context of CDMA networks and single antenna communica-
tions, with the aim of minimizing the total transmit power in the
uplink of a system with non-uniform user distribution over the cell.
This situation is analogous to a system with multiple transmit an-
tennas in which beamforming is performed, adapting its beams to
uneven user distributions. In a scenario with limited feedback avail-
able, adaptation of quantization codebooks can be performed instead
in order to improve the system performance. In [14], an approach for
exploiting long term channel state information in the downlink of
multiuser MIMO systems is proposed. A flat-fading multipath chan-
nel model is assumed, with no line of sight (NLOS) between the
base station and user terminals. Each user can be reached through
a finite number of multipath components with a certain mean angle
of departure (AoD) from the antenna broadside and angle spread.
The mean angles of departure are fixed and thus no user mobility is
considered.

In this paper, we highlight the importance of cell statistics for
codebook design in MIMO broadcast channels with limited feed-
back. The average sum rate distortion in a system with joint linear
beamforming and multiuser scheduling is minimized, exploiting the
information on the macroscopic nature of the underlying channel.
A non-geometrical stochastic channel model is considered, in which
each user can be reached in different spatial directions and with dif-
ferent angle spread. Based on this model, comparisons with limited
feedback approaches relying on random codebooks are provided in
order to illustrate the importance of matching the codebook design



to the cell statistics. As shown through numerical simulations, the
proposed approach provides considerable performance gains in sce-
narios with non-uniform user distributions.

2. SYSTEM DESCRIPTION

We consider a broadcast channel consisting of M antennas at the
base station and K single-antenna users in a single cell scenario. Let
S denote an arbitrary set of users with cardinality |S| = M . Given
the user set S scheduled for transmission, the signal received at the
k-th user terminal is given by

yk = hkwksk +
X

i∈S,i6=k

hkwisi + nk (1)

where hk ∈ C1×M , wk ∈ CM×1, sk and nk are the channel vec-
tor, the beamforming vector, the transmitted signal, and the additive
white Gaussian noise at receiver k, respectively. The first term in
the above equation is the useful signal, while the second term cor-
responds to the interference by the other users. We assume that the
variance of the transmitted signal sk is normalized to one and nk is
independent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian with zero mean and variance σ2.

The channel is assumed to be perfectly known at the user side.
The CSI is transmitted to the base station over a feedback link that
is limited to B bits per transmission. Hence, the CSI has to be quan-
tized before it is fed back using a codebook C with N entries. We
assume throughout the paper that N = 2B . Thus, it is possible to
feed back every element of the codebook, and the data rate on the
feedback link is fully exploited. Strategies that exploit the time cor-
relation of the channel to use larger codebooks with N > 2B are
presented in [15, 16].

The user channels are mapped to the closest codeword in C, as
described by

ĥk = arg min
c∈C

‖hk − c‖2 . (2)

Note, that this function also takes the norm of the channel into ac-
count unlike the quantization functions used for pure channel direc-
tion quantization.

2.1. Linear Beamforming

The beamforming vectors are computed on the basis of the matrix
Ĥ, whose rows are the quantized user channels ĥk, k ∈ S. Differ-
ent linear beamforming techniques may be considered. Commonly
applied low-complexity linear beamforming techniques are transmit
matched filtering (TxMF) and zero-forcing (ZF) beamforming [4].
Transmit matched filtering uses the normalized columns of ĤH as
beamforming vectors. Zero-forcing beamforming uses the normal-
ized columns of the pseudo-inverse of Ĥ.

2.2. User Selection

We consider optimal scheduling throughout the paper, i.e., we do
not consider fairness issues between the users. Let Q be the set of
all possible user subsets of cardinality M with disjoint indices in
{1, . . . , K}. The set of users scheduled for transmission at each
time slot corresponds to the one that maximizes the estimated sum
rate over all possible user sets

Ŝ∗ = arg max
S∈Q

X
k∈S

log2(1 + ˆSINRk). (3)

Since the base station has no access to perfect channel state informa-
tion, the following SINR estimate is computed for the user set S and
k-th user

ˆSINRk =
|ĥkwk|2P

i∈S,i6=k |ĥkwi|2 + σ2
(4)

where wk denotes the beamforming vector for user k.

3. CHANNEL MODEL

In this section we present the model considered both for the user
vector channels and the cell statistics. A non-geometrical stochastic
channel is assumed, in which the channel physical parameters are
described by probability density functions assuming an underlying
geometry. The channel model we propose to use is mainly based on
the work in [17], extended to multiuser scenarios. We consider an
outdoor environment with NLOS between transmitter and receivers,
in which local scatterers, that are randomly distributed around each
mobile user, produce a clustering effect. The multipath components
(MPC) arrive in clusters in both space and time. For the sake of
simplicity, we consider flat fading and hence all paths are assumed
to arrive at zero delay. Furthermore, we assume that each user sees
MPCs incoming from surrounding scatterers that are grouped into
one cluster.

Each user is reached with a different mean angle of departure
(AoD) θk. The AoDs associated to the multipath components are
distributed around the mean according to a certain power angular
spectrum (PAS), which depends on the spatial distribution of scat-
terers. In practice, we only consider the azimuth directions (angle
of propagation with respect to the antenna array broadside) since the
elevation angle spread is generally small compared to the azimuthal
angle. Different probability density functions (PDF) are considered
in the literature, such as Gaussian, uniform or Laplacian [18]. A
summary of the model parameters is given in Table 1.

3.1. User Vector Channels

The signals from the base station (BS) arrive at each user terminal
(UT) through a finite number of L paths, which have different AoDs
with respect to the antenna array broadside but arrive at the receiver
with the same delay. The AoD for the k-th user and l-th path can be
expressed as θkl = θk + ∆θkl, where θk is the mean AoD for user
k and ∆θkl is the angle offset for the l-th multipath component. The
multipath components have complex Gaussian distributed gains γkl

with zero mean and unit variance. The channel of user k is given by

hk =
1√
L

LX
l=1

γkla(θkl) (5)

where a(θkl) are the steering vectors. An omnidirectional uniform
linear array is considered (ULA) although the proposed technique
can benefit from any array configuration. The steering vectors a(θkl)
of a ULA are given by

a(θkl) =

»
1, e−j2π

d sin θkl
λ , . . . , e−j2π

(M−1)d sin θkl
λ

–
(6)

where λ is the wavelength, and d is the antenna spacing at the BS.
The distribution of the angles around the mean AoD is assumed to
have a double-sided Laplacian PDF, given by

f(∆θkl) =
1√
2σθ

exp(−|
√

2∆θkl/σθ|) (7)



Fig. 1. Broadcast channel model with user terminals (UT) sur-
rounded by local scatterers grouped in clusters, located in different
mean angles of departure (AoDs) with respect to uniform linear ar-
ray (ULA) broadside.

where σθ is the angular standard deviation, σθ =
p

E[|∆θkl|2].
Under the assumption of using a ULA at the base station, the cross-
correlation coefficients of each user’s vector channel can be com-
puted in closed form given the PAS, as shown in [19].

3.2. Spatial Cell Statistics

Most papers based on the above mentioned stochastic models as-
sume that mean AoDs are uniformly distributed over all directions.
In indoor scenarios, the relative cluster AoD is indeed uniformly
distributed over [0, 2π], as it has been seen from channel measure-
ments [19], since the location of cluster centers is uniformly dis-
tributed over the cell. However, as noted in [19], this is not realistic
in outdoor scenarios where the base station is elevated and the mo-
bile stations are often surrounded by local scatterers. In these cases,
the mean AoD is very dependent on the macroscopic characteristics
of each particular scenario: topology, user distribution, mobility pat-
tern, distribution of scatterers, etc. Hence, the mean AoDs for all
users, θk, do not need to be uniformly distributed over the interval
[0, 2π]. In our model, they are considered to be uniformly distributed
over an arbitrary range of angles

S
i[θmini , θmaxi ]. A graphical rep-

resentation of the broadcast channel model is depicted in Fig. 1.

4. CODEBOOK DESIGN

We present in this section the design of the user channel codebook.
Compared to existing design approaches [5] we rely on a pure Monte
Carlo based approach. This approach allows a wider range of distor-
tion functions than the commonly used generalized Lloyd algorithm,
and it also allows to exploit the cell statistics.

As discussed in [20], most techniques relying on limited channel
state information consider separate feedback bits (and thus separate

quantization) for channel direction information (CDI) and channel
quality information (CQI). Since the amount of feedback is limited,
a tradeoff arises between the amount of bits used for CDI quantiza-
tion, which has an impact on the multiplexing gain, and the amount
of bits used for CQI quantization, which has an impact on the mul-
tiuser diversity gain achieved from user selection. In this work, we
consider joint quantization of CDI and CQI information. Channel
quantization is done directly over the user vector channels rather than
quantizing the norm and channel direction separately, thus providing
better granularity. Hence, since the proposed channel quantization is
adapted to the cell statistics, including the average SNR conditions
and number of active users, the tradeoff between multiplexing gain
and multiuser diversity is implicitly optimized.

The proposed approach consists of designing a channel quan-
tization codebook valid for all users in the cell by minimizing the
average sum-rate distortion of the scheduled users. Since schedul-
ing and beamforming are performed jointly at each time slot, the
distortion measure needs to account for both jointly. Hence, differ-
ent linear beamforming techniques will result in different optimized
codebooks. This criterion yields quantization codebooks that are sta-
tistically matched to the users that maximize the estimated sum rate,
which are selected as described in (3). The quantization codebook is
optimized during an initial training period, after which the codebook
is fixed and broadcasted to the users.

4.1. Design Criterion

The codebook of N codewords, is found by solving the optimization
problem

C∗ = arg min
C

E[d(H, Ĥ)] (8)

where d(H, Ĥ) is the distortion measure between the set contain-
ing the unquantized user channels H = {h1, . . . ,hK} and the set
containing the quantized user channels Ĥ = {ĥ1, . . . , ĥK}.

The distortion measure used throughout the paper is the sum-
rate loss due to the channel quantization. The resulting codebook
depends on the number of scheduled users M for transmission, the
number of active users K in the cell, the used beamforming tech-
nique, and the channel statistics. The distortion measure can be de-
scribed as

d(H, Ĥ) = SR(H)− SR(Ĥ). (9)

The first term in the equation above corresponds to the maximum
sum rate that can be achieved with the chosen linear beamforming
technique and perfect channel state information, given by

SR(H) = max
S∈Q

X
k∈S

log2(1 + SINRk). (10)

The beamforming vectors and the user set obtained in the case of
perfect channel state information are in general different than the
ones obtained on the basis of quantized channel information for a
given time slot. The second term in (9) corresponds to the actual sum
rate achieved by the system. The beamforming vectors are computed
on the basis of the quantized channels and the users scheduled for
transmission are selected as described in (3). Hence, the achieved
sum rate is given by

SR(Ĥ) =
X

k∈Ŝ∗

log2(1 + SINRk). (11)



Note that, as opposed to the estimated SINR values employed for
user selection, the above equation computes the effective SINR ex-
perienced by each of the users in the scheduled set Ŝ∗.

4.2. Codebook Design

We are using a Monte Carlo based codebook design algorithm to
generate the channel quantization codebooks. The ability of this al-
gorithm to work with arbitrary distortion functions makes it a prime
candidate to solve (8).

The Monte Carlo codebook design algorithm generates random
codebooks having the same distribution as the channel. For every
one of these random codebooks the average distortion is estimated
by averaging over a large number of channel realizations. Finally,
the codebook with the lowest average distortion is kept. This code-
book minimizes the long term sample average distortion, and thus,
provides a good solution to (8).

An alternative procedure consists of using the generalized Lloyd
algorithm [21] to iteratively find the optimizing codebook and parti-
tion cells. However, the Monte Carlo codebook design avoids con-
vergence to local minima exhibited by Lloyd’s algorithm, and thus
provides a better performance if the number of tried codebooks is
sufficiently high. A codebook design that is more similar to the
Monte Carlo based codebook design is random coding [22]. How-
ever, random coding just uses N random channel realizations as
codebook, and does not allow to optimize an arbitrary distortion
function.

4.3. Practical Considerations

The proposed technique for codebook design is expected to per-
form better in scenarios with strong spatial correlations. Different
linear beamforming techniques will yield different performances,
since quantization errors affect them differently. For instance, while
TxMF and ZF beamforming exhibit similar behavior for a given er-
ror variance, optimized unitary beamforming proves to be very ro-
bust [23].

Since the statistics of the best M users govern the design, the
quantization codebooks may favor certain spatial locations or direc-
tions that provide good sum rates, favoring the users in those partic-
ular locations. In a system with low mobility and slow variations,
this situation may lead to a fairness issue. This behavior may be ac-
centuated when incorporating shadowing and pathloss to the channel
model. This effect can be attenuated by performing proportional fair
scheduling (PFS), which would yield an average distortion function
based on a weighted sum rate, penalizing the users that have already
been scheduled.

Instead of simply generating the quantization codebooks during
a training period, the base station may slowly adapt the codebook
to changes in the environment: changes in traffic and mobility pat-
terns, changes of scatterers, etc. Each time a user enters the system
or in case there is a codebook update, the base station would send
the updated codebook to the users, which in general changes from
cell to cell. In addition, similarly to the work presented in [16] for
single-user MIMO communications, the amount of feedback can be
reduced by exploiting temporal correlations in the system.

5. LOW-COMPLEXITY BEAMFORMING AND
SCHEDULING

The limited channel knowledge at the transmitter side deteriorates
the achievable performance of the system, but can also be exploited

to reduce the computational load for beamforming and scheduling.
The quantization of the user channels creates equivalence classes
between the users. The users whose channels are quantized to the
same entry in the codebook are members of the same equivalence
class. Thus, the base station only knows which class a user belongs
to, but it cannot distinguish between the users in the same class.
It is thus sufficient to do the beamforming and the scheduling only
based on the representative of the class, i.e., the codeword, instead of
based on all the users in the class. We denote a set that consists of M
representatives of different classes as a class set. The number of class
sets to be considered for beamforming and scheduling NCS = NM is
smaller than the number of user sets NUS =

`
K
M

´
for practical system

parameters with N � K. Once the optimal class set is determined,
a corresponding user set can be selected by choosing for every class
in the class set a corresponding user. The user inside a specific class
can be selected randomly or using a fairness constraint.

The complexity of determining the beamforming vectors and the
class sets can be further reduced using a lookup table that stores for
all the class sets the corresponding sum rate estimates and the beam-
forming vectors. We assume that this lookup table is sorted based
on the estimated sum rate of the class sets, where the first entry con-
tains the class set with the highest estimated sum rate. After the base
station received the feedback from all the users, it checks if it has a
matching user for every entry in the first class set. If not, then the
base station does the same check for the following class sets in the
lookup table until it finds a class set that has for every class in the
class set an active user. The advantage of using precalculated beam-
forming vectors stored in a look-up table is that computational more
complex beamforming schemes can be used, e.g., Dirty Paper Cod-
ing. Note that TxMF is a special case since there the different beam-
forming vectors are independent of the other users that are scheduled
for transmission. Hence, the storage of only N beamforming vectors
is sufficient.

The storage requirements for the lookup table can be reduced by
storing only the most probable class sets. The probability that the
first class set is selected increases with the number of users in the
cell. For the event that no class set in the lookup table is selected, a
user set can still be calculated using a low-complexity scheme, e.g.,
TxMF beamforming.

6. SIMULATION RESULTS

We compare the performance of linear beamforming with quantized
CSI feedback to LF-OSDMA. The used linear beamforming strate-
gies are ZF and TxMF. We assume a 2-GHz system with an antenna
spacing at the base station of d = 0.4λ ≈ 15 cm. Each user chan-
nel is modelled with L = 10 multipath components. The mean
AoD of the different users is uniformly distributed over the interval
[60◦, 120◦], and the angular spread is fixed to σθ = 30◦. We as-
sume single-antenna users and a base station with M = 2 antennas.
The data rate on the feedback link is limited to 3 bits/transmission.
In order to make a fair comparison between the schemes, the SINR
feedback of the LF-OSDMA algorithm is also quantized. Thus, the
LF-OSDMA algorithm has to share the available 3 bits between the
CDI, i.e., the index of the preferred beamforming vector, and the
CQI, i.e., the SINR of the preferred beamforming vector. We sim-
ulate the performance of all possible CDI/CQI bit allocations, and
finally select the allocation that results in the highest sum rate. The
codebook to quantize the scalar CQI is designed with the general-
ized Lloyd algorithm [22], using the mean square error as distortion
function. The performance of the different random codebooks, i.e.,
their resulting average sum rate, is estimated through averaging over
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the instantaneous sum rate of 10 000 channel realizations.
Fig. 2 depicts the performance for different numbers of users

with a fixed SNR of 10 dB. We see that ZF and TxMF with quantized
CSI outperform LF-OSDMA with quantized SINR feedback. The
same result can be seen in Fig. 3 for different SNR values and K =
10 users. We see how the sum rate of the different schemes saturates
at high SNR, where the performance is limited by the quantization
error.

7. CONCLUSION

The problem of designing channel quantization codebooks for cor-
related broadcast channels with limited feedback has been addressed
for systems where joint linear beamforming and multiuser schedul-
ing is performed. The numerical results provided have shown the
benefits of using quantization codebooks optimized according to the
cell statistics. The generated codebooks perform well in scenarios
with reduced angular spread and effective range of mean angles of
departure. This makes the proposed approach particularly interest-
ing in outdoor systems with spatial correlation and nonuniform user
distribution.
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