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On the Variance of the Least Attained Service Policy and its
Use in Multiple Bottleneck Networks

Matthias Auchmann and Guillaume Urvoy-Keller

Abstract

Size-based scheduling has proved to be effective in a lot of scenarios
involving Internet traffic. In this work, we focus on the Least Attained Ser-
vice Policy, a popular size-based scheduling policy. We tackle two issues
that have not received much attention so far. First, the variance of the con-
ditional response time. We prove that the classification proposed by Wier-
man et al. [11], which classifies LAS has an always unpredictable policy,
is overly pessimistic. We illustrate the latter by focusing on the M/M/1/LAS
queue. Then we consider LAS queues in tandem. We provide preliminary re-
sults concerning the characterization of the output process of an M/M/1/LAS
queue and the conditional average response time and its variance for LAS
queues in tandem.
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1 Introduction

Size-based scheduling has proved to be very effective in increasing perfor-
mance in a lot of scenarios: Web servers [3], Internet traffic [8] or 3G networks [5].
The key idea behind size-based scheduling is to favor short jobs while ensuring that
large jobs do not starve. The net result is better interactivity from the user point of
view as short jobs correspond to interactive applications when considering Internet
traffic. The extent to which large jobs suffer depends on the statistical character-
istics of the job size distribution and especially how the mass is distributed among
short and large jobs. Broadly speaking, the larger the mass carried by the large
flows, the smaller the penalty since short flows, that have the highest priority, can
not monopolize the server. Heavy-tailed distributions, which have often been ob-
served in the Internet [2], feature such a property.

In this paper, we consider the Least Attained Service (LAS) policy, a.k.a the
Foreground-Background policy [7]. LAS has been initially proposed and studied
in the context of time-sharing computers in the late 60s [10]. Under LAS, priority
is given to the job that has received the least amount of service. In case of ties, jobs
share the server in a round-robin manner. A salient feature of LAS is that it has no
internal parameter to tune.

Our focus in this work is twofold. First, we focus on the conditional vari-
ance of LAS. Few results exist concerning the variance of LAS [11, 1]. In [1], the
asymptotic conditional variance is considered. In [11], the authors propose a clas-
sification of scheduling policies based on their variance. In particular, they propose
to classify scheduling policies as: (i) always predictable, (ii) sometimes predictable
or (iii) always unpredictable - precise definitions will be given in Section 2. LAS
falls in the latter category, which seems at first sight disappointing. Indeed, LAS
does a good job at providing low response time to small jobs but despite this nice
property, the results in [11] seem to restrict the interest of LAS.
We revisit the variance of LAS by considering a worst case scenario : the M/M/1/LAS
queue. We consider the M/M/1/LAS queue as a worst case scenario as (i) empirical
distributions of flow size for Internet traffic have a much higher variability than the
one of an exponential distribution1 (ii) the performance of LAS and especially the
fraction of flows that receive a better service under LAS than under PS is known to
increase with the variability of the job size distribution [8].
Considering the M/M/1/LAS queue, we analytically bound the fraction of flows
that are treated in a predictable manner. We obtain that at least 75% of flows are
treated predictably, irrespective of the load. Numerical studies further demonstrate
that the actual fraction of such flows should be closer to 95%.

Then, we focus on the problem of using LAS queues in tandem. The motivation
behind this scenario is to determine the benefits that could be obtained with LAS
in a multiple bottlenecks scenario. A typical example is wireless mesh networks

1Typical candidate distributions to model flow sizes are Pareto, lognormal or Weibul distribution
with large coefficient of variations, e.g. [4].
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based on the 802.11 protocol where the available bandwidth is known to be highly
varying, as has been exemplified by the roofnet experiment (http://pdos.csail.mit.edu/roofnet/doku.php).
In such a situation, LAS could be highly benefical as it allows to maintain a min-
imum level of interactivity, even when congestion is high. However, using LAS
at multiple queues in tandem can also be detrimental to large flows that could be
penalized multiple times.

To the best of our knowledge, no work has tackled the problem of studying
LAS in tandem queues. We rely on numerical evalutions to address this issue as
the analytical approach seems too complex at the moment, even for the case of
M/M/1/LAS queues. We make the following contributions: (i) We demonstrate
that while the departure process of an M/M/1/LAS queue is apparently a Poisson
process, the LAS scheduling policy introduces a negative correlation between de-
parture times and job sizes; (ii) We evalutate the impact of the above correlation on
the conditional average response times and the conditional variance of the response
time of LAS queues in tandem.

2 Conditional Variance of an M/M/1/LAS queue

The variance of the conditional response time for an M/G/1/LAS queue is
given by [12]:

V ar[T (x)]LAS =
λxm̃2(x)

(1− ρ̃(x))3
+

λm̃3(x)
3(1− ρ̃(x))3

+
3
4

( λm̃2(x)
(1− ρ̃(x))2

)2
(2.1)

The m̃i(x) are the truncated moments, ρ̃(x) = λm̃1(x) is the truncated rate. Since
we focus on the exponential distribution we introduce the truncated moments for
Exp(µ) :

m̃i(x) =
∫ x

0
yiµe−µydy + xie−µx

In [11], scheduling policies were classified based on the variance of condi-
tional response times as always predictable, always unpredictable or sometimes
predictable. For a policy P, jobs of size x are treated predictably if:

V ar[T (x)]P

x
≤ λm2

(1− ρ)3
(2.2)

Otherwise jobs of size x are treated unpredictably. See [11] for a justification
of the right side term in Eq. (2.2). More generally, a scheduling policy P is:

• Always predictable if it is predictable under all loads and service distribu-
tions;

• Sometimes predictable if it is predictable under some loads and service
distributions, and unpredictable under others;
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• Always unpredictable if it is unpredictable regardless of service distribution
and load.

In [11] a variance bound was derived to show that LAS is always unpredictable.
In contrast, PS is shown to be always predictable. Comparison of LAS to PS is
important as it is shown in [9] that the M/G/1/LAS queue is an accurate model for
a LAS router while the M/G/1/PS queue is an accurate model for a FIFO router.

Our initial motivation in this paper is to show that LAS outperforms PS not only
in terms of conditional response time offered to a majority of short jobs [8], but also
in terms of conditional variance. Figure 1 illustrates the relative performance of
LAS and PS for an M/M/1 queue with λ = 1 and µ = 1.25, i.e. a load ρ = 0.8. We
observe that while LAS offers both low average and variance of response time for
about 70% of the jobs2, its performance becomes enventually worse as compared
to PS for the largest jobs. Note that in a more realistic case of Internet traffic, LAS
achieves better results as compared to PS due to the way the mass is distributed
among short and large flows.

The large variance observed for the large jobs in Figure 1 illustrates why it is
classified as always unpredictable, as it is due to the largest jobs only that Eq. (2.2)
is violated. The question we address here is to determine the fraction of jobs that
are treated predictably under LAS for the case of an M/M/1/LAS queue.

Figure 1: M/M/1/LAS against M/M/1/PS: mean and variance of response time

2.1 Preliminary Results

Lemma 1: m̃3(x) ≤ 6
e2 x 2

µ2

2We consider here the intersection between the curves E[TPS(x)]+σ/2 and E[TLAS(x)]+σ/2
as an increase in response time is more important than a decrease in response time
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Proof. m̃3(x) =
∫ x
0 y3µe−µydy + x3e−µx z=µy

=
∫ µx
0 ( z

µ)3µe−z dy
µ + x3e−µx =

1
µ3 γ(4, µx) + x3e−µx = 1

µ3 3!
(
1 − e−µx

∑3
k=0

(µx)k

k!

)
+ x3e−µx = 1

µ3

(
6 −

6e−µx(1 + µx + 1
2(µx)2 + 1

6(µx)3
)

+ x3e−µx
?
≤ 6

e2 x 2
µ2

At 0, both sides are 0. Deriving the previous inequation gives

3e−µxx2 ≤ 12
µ2e2

⇔ µ2x2e−µx︸ ︷︷ ︸
findmax

≤ 4
e2

(2.3)

Deriving and setting 0 we easily find the mode of the lefthand side being 2
µ . Veri-

fying the equation by substituting the mode in equation (2.3) we get

µ2(
2
µ

)2e−µ 2
µ = 4e−2 (2.4)

This ends the proof.

Lemma 2: m̃2(x) ≤ 2
µex

Proof. Analogous to Lemma 1, after evaluating m̃2(x) we need to show

1
µ2

(
2− 2e−µx(1 + µx +

1
2
(µx)2)

)
+ x2e−µx = (2.5)

1
µ2

(
2− 2e−µx(1 + µx)

)
≤ 2

µe
x (2.6)

Again, the inequality holds for 0, and we derive both sides:

2e−µxx︸ ︷︷ ︸
findmax

≤ 2
µe

(2.7)

The mode is easily shown to be 1
µ ; substituting gives 2

µe as the maximum, thus
ending the proof.

Lemma 3: mi+1(x) ≤ xmi(x)

Proof. mi+1(x) =
∫ x
0 ti+1f(t)dt ≤ x

∫ x
0 tif(t)dt = xmi(x)

Lemma 4: m̃i+1(x) ≤ xm̃i(x)
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Proof. m̃i+1(x) = mi+1(x) + xi+1F (x) ≤ x(mi(x) + xiF (x)) = xm̃i(x)

Lemma 5: m̃i(x) ≤ mi

Proof. m̃i(x) =
∫ x
0 yiµe−µydy + xie−µx ≤

∫∞
0 yiµe−µydy = mi

Lemma 6: ρ̃(x) ≤ ρ

Proof. ρ̃(x) = λm̃1(x) ≤ λm1 = ρ

2.2 M/M/1/LAS variance bounds

In this section, we first present two bounds on the variance of the conditional
response time for a M/M/1/LAS queue. We next derive corresponding bounds on
the fraction of jobs that are treated predictably under LAS.

Bound 1: For M/M/1/LAS,

V ar[T (x)]LAS ≤ λxm2

(1− ρ̃(x))4
(
1 +

2
e2
− (

1
4

+
2
e2

)ρ̃(x)
)

(2.8)

Proof. Lemma 5 easily gets us the first fraction in (2.1):

λxm̃2(x)
(1− ρ̃(x))3

≤ λxm2

(1− ρ̃(x))3
=

λxm2

(1− ρ̃(x))4
(1− ρ̃(x)) (2.9)

Applying Lemma 1 to the second fraction gives:

λm̃3(x)
3(1− ρ̃(x))3

≤
λ 6

e2 xm2

3(1− ρ̃(x))3
=

λxm2

(1− ρ̃(x))4
( 2

e2
− 2

e2
ρ̃(x)

)
(2.10)

We will now bound the last term in (2.1) with Lemma 4 and 5:

3
4

( λm̃2(x)
(1− ρ̃(x))2

)2
≤ 3

4
λxm̃1(x)λm2

(1− ρ̃(x))4
=

λxm2

(1− ρ̃(x))4
(3

4
ρ̃(x)

)
(2.11)

V ar[T (x)]LAS =
λxm̃2(x)

(1− ρ̃(x))3︸ ︷︷ ︸
(2.9)

+
λm̃3(x)

3(1− ρ̃(x))3︸ ︷︷ ︸
(2.10)

+
3
4

( λm̃2(x)
(1− ρ̃(x))2

)2

︸ ︷︷ ︸
(2.11)

≤ λxm2

(1− ρ̃(x))4
(
1 +

2
e2
− (

1
4

+
2
e2

)ρ̃(x)
)

Bound 2: For M/M/1/LAS,

V ar[T (x)]LAS ≤ 8eρ + 9ρ2 − 8eρ2

3e2(1− ρ)4
x2 (2.12)
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Proof. By applying Lemma 4 to the second term of (2.1), and Lemma 6 to the
denominators, we get

V ar[T (x)]LAS ≤ 4
3

λxm̃2(x)
(1− ρ)3

+
3
4

( λm̃2(x)
(1− ρ)2

)2
(2.13)

Now bounding m̃2(x) by 2
eµx (Lemma 2), and substituting λ

µ by ρ, rearranging the
terms ends the proof.

Note that Bound 1 and Bound 2 complement each other well in two ways. For
Bound 1, ρ̃(x) tends to ρ as x tends to ∞ and m2 was used to bound m̃2. Using
m2 as a bound is more accurate for large jobs. In addition the difference between
the variance divided by x and Bound 1 divided by x (both expressions we will use
in a moment) tend to 0 as x tends to∞. Thus Bound 1 should be more accurate for
large values of ρ and for larger jobs.

Bound 2 is more accurate for small jobs than Bound 1, because in Bound 2 we
basically used a Taylor expansion around 0 to bound m̃2; thus this estimate is more
accurate for smaller job sizes.

With these two bounds we will now express the percentage of jobs which are
treated predictably in a M/M/1/LAS queue. Note that for the case of an exponential
service distribution, Equation ((2.2)) simplifies to:

V ar[T (x)]LAS

x
≤

λ 2
µ2

(1− ρ)3
=

2ρ
µ

(1− ρ)3
(2.14)

Bound 3: For M/M/1/LAS and a given ρ, at least a fraction of
1−

(
(1−ρ)3(1+ 2

e2
)

)1/4

ρ
of the jobs is treated predictably

Proof. Dropping the negative (1
4 + 2

e2 )ρ̃(x) term in (2.8) and dividing by x, and
then equating to (2.2) leaves

λm2

(1− ρ̃(x))4
(1 +

2
e2

) =
λm2

(1− ρ)3
(2.15)

for us to solve. Cancelling out λ and m2 and rearranging the terms gives

ρ̃(x) = 1−
(
(1− ρ)3(1 +

2
e2

)
)1/4

(2.16)

Since ρ̃(x) = λ1−e−µx

µ = ρ(1 − e−µx), and 1 − e−µx is exactly the wanted per-
centage, dividing by ρ completes the proof.

Bound 4: For M/M/1/LAS and a given ρ, at least a fraction of 1−e
− 6e2(1−ρ)

8e+9ρ−8eρ

of the jobs is treated predictably
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Proof. Solving for x in

V ar[T (x)]LAS

x

(2.12)
≤ 8eρ + 9ρ2 − 8eρ2

3e2(1− ρ)4
x =

2ρ

µ(1− ρ)3
(2.17)

gives

x =
6e2(1− ρ)

µ(8e + 9ρ− 8eρ)
(2.18)

Substituting this into the distribution function 1− e−µx ends the proof.

Note that bounds 3 and 4 depend on ρ only, not on λ and µ. Bounds 3 and 4
show that the majority of jobs are in fact treated predictably in a M/M/1/LAS
queue, as can be seen in Figure 2 where we plot the maximum of the two bounds
(solid line). The minimum job percentage that is guaranteed to be treated pre-
dictably in this case, is about 75 percent.

As the above approach relies on lower bounding the number of jobs that are
treated unpredictably under LAS, we further evaluated using simulations the per-
centage of jobs treated predictably. Figure 2 reports the results obtained with a
simulator written in Matlab. Each simulation involved more than 500,000 jobs,
and 4 different factorizations of ρ by using four different (λ, µ) pairs, which is
why there are 4 points for each ρ value. We observe from Figure 2 that the frac-
tion of flows that are treated pedictably seems to depend on ρ only, not on the
exact factorization of ρ. In addition, one can see that the actual percentage of jobs
being treated predictably is very high: at least 90 percent of the jobs are treated
predictably, regardless of the actual load value.

Figure 2: Bounds 3 and 4 (solid line) and
simulations (dots)

Figure 3: Correlation of the two interde-
parture times and jobsize for LAS

3 LAS in tandem queues

In this section, we focus on LAS in tandem queues where fresh arrivals at each
queue follow a Poisson process and service requirements follow an exponential
distribution. We first study the output process of an isolated LAS queue and then,
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we will discuss the impact of the characteristics of the output process to the total re-
sponse time of two LAS queues in tandem. Note that, to the best of our knowledge,
no work has tackled this issue so far.

3.1 Characterization of the output process of an M/M/1/LAS queue

3.1.1 Interdeparture time

First one might ask the question whether for LAS queueing disciplines Burke’s
theorem [6] remains valid. Burke’s theorem states that if a FIFO single-server
queuing process with exponential interarrival and service-time distributions is sta-
tionary, then it follows that the departure process is a homogeneous Poisson process
with rate equal to the reciprocal of the mean interarrival time.

To check if the departure process of an M/M/1/LAS queue can be considered
a Poisson process, we used the Kolmogorov-Smirnov statistical test to assess if
the inter-departure times follow an exponential distribution. We also checked that
inter-arrival times are uncorrelated. In Table 1, we report p-values for the KS test
and the correlation coefficient for the interdeparture times. The factorization of ρ
is done with four different (λ, µ) pairs, and each time we use 5 runs with about
500,000 jobs each and average the results. We do conclude that the output process
of an M/M/1/LAS queue is apparently a Poisson process.

ρ Test agains Exp. Correlation Coefficient
0.05 0.7445 0.5469 0.5447 0.3876 -0.0122 0.0076 -0.0122 0.0006
0.15 0.5145 0.4331 0.6281 0.4594 -0.0000 -0.0013 0.0115 0.0035
0.25 0.6818 0.5520 0.6039 0.4695 0.0040 0.0053 0.0059 0.0045
0.35 0.5615 0.6113 0.5978 0.5508 0.0070 0.0134 -0.0092 -0.0026
0.45 0.5687 0.3485 0.7266 0.4194 -0.0046 0.0097 0.0050 0.0013
0.55 0.6091 0.3382 0.6008 0.3410 0.0144 0.0065 0.0004 -0.0057
0.65 0.3549 0.4652 0.6352 0.4439 -0.0016 0.0020 -0.0014 0.0060
0.75 0.2201 0.3547 0.4259 0.4020 0.0038 -0.0080 -0.0148 -0.0075
0.85 0.7515 0.4955 0.4351 0.2496 0.0012 -0.0066 -0.0076 0.0054
0.95 0.5242 0.8156 0.4396 0.4803 -0.0031 -0.0086 -0.0108 0.0037

Table 1: Interdeparture Time p-values for test against the exponential distribution
and correlation coefficients.

3.1.2 Correlation of Interdeparture Time and Job size

To further characterize the output process of an M/M/1/LAS queue, we investi-
gate whether the job size is independent of the interdeparture time. Figure 3 shows
the correlation between the job sizes and the interdeparture times for LAS, plotted
for different utilizations ρ. Again, different (λ, µ) pairs are used for the plots, but
since curves overlap, the correlation seems to depend on ρ only. We observe a
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negative correlation between inter-departure time and jobs sizes, which increases
for increasing load. We believe that this correlation stems from the fact that as
load increases, large flows are interrupted more frequently by shorter jobs. As a
consequence, their remaining service requirement can reach very low values, lower
than the service requirements of short jobs. When a large job leaves the queue, it
is highly likely to be in a short period of time where the load is low. During this
period, many large jobs that were stuck in the queue, with small remaining ser-
vice times, leave the system. We believe this explains the negative correlation we
observe.

Note that such a correlation does not seem to be present for the PS queueing
discipline.

3.2 Impact on tandem queue performance

The negative correlation observed above relates to the behavior of LAS that
tends to sort jobs in the queue in ascending order, which means that short jobs tend
to leave the LAS queue in group and the same for large jobs. When considering
the case of a tandem queue, this sorting operated by the scheduler can have a detri-
mental impact on the performance of large flows. Indeed, when the large flows that
enter the tandem queue at the first queue reach the second queue, they again have
to compete with the large flows with whom they were in competition in the first
queue.

We quantitatively evaluated the previous intuition by comparing the conditional
average response time and its variance for two LAS queues in tandem with the sum
of response time for the same system where we “re-draw” the job sizes of the job
leaving the first queue using the initial distribution, thus wiping out the correlation
observed in the previous section. To enable a meaningfull comparison, we first
present the case of the PS discipline, for which the correlation between job sizes
and inter-departure times is negligible. Then we contrast with the results for LAS.

Figures 4 and 5 illustrates the above scenario for the case where the load is 0.8.
In the first row you see the actual measured response time of the tandem system
versus the added theoretical values; in the first column you see the absolute values,
in the second column the relative error of the actual measurement.

The second row plots twice the theoretical variance, four times the theoretical
variance and the actual variance in the first column. This is done since for two
random variables X1, X2,
V ar(X1 + X2) = V ar(X1) + 2 Cov(X1, X2) + V ar(X2)
and
Cov(X1, X2) = ρ

√
V ar(X1)

√
V ar(X2) ≤ ρ max(V ar(X1), V ar(X2)).

Thus all measurements between twice the variance and four times the variance
could be due to covariance, and the variance formulas for the second queue could
still be valid.
To get a better picture of which proportion of the overall variance is due to covari-

9



ance, the third row shows theoretical variance for one queue and the measurements
for the first and the second queue alone, as above as absolute and relative plots in
the first and second column, respectively.

Figure 4: Tandem Queue simulation results for PS, ρ = 0.8

Note that the response times of the two queues do add nicely here, as it would
be expected for classical, independent of each other queues. The overall variance
is 2 V ar(X) for small jobs and goes up until 4 V ar(X) for the biggest jobs and
is due to Cov(X1, X2), since the variances of the two queues alone are perfectly
in line with the theoretical value for one queue only. So for PS, the second queue
behaves like the first queue in terms of mean and variance even with the output
process of the first queue as its input process. The covariance increases for big
jobs, thus increasing the variance of the overall system.
As we shall now see in Figure5, things are different for LAS.

One can observe from Figure 5 that the fact that the output process of the first
queue is significantly different from the input process has a strong effect on the
plots. While the response time is even better than the reference model for smaller
sized jobs, LAS further penalizes big jobs in the tandem system. This is also true
for variance, the variance of the second queue is up to three times higher than in
formula (2.1) (with G = M ).
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Figure 5: Tandem Queue simulation results for LAS, ρ = 0.80

4 Conclusions

In this paper, we have focused both one the variance of the conditional response
time of an M/M/1/LAS queue and the use of LAS in tandem queues.

For the variance, we proved that the fraction of jobs that are treated predictably
is very high even in the unfavorable case of exponential service requirements. The
practical implication of this result is that it is likely that when LAS is used for real
Internet traffic, the variance in response time it offers to the majority of the flows
be small as compared to the legacy FIFO scheduling policy (to be modeled by a PS
queue), which is the default scheduling policy in network equiments, ranging from
routers to access points.

Concerning the use of LAS in tandem queues, we demonstrated that while the
output process of an M/M/1/LAS queue is apparently Poisson, LAS tends to group
together jobs of similar sizes, which results in a high penalty for the large jobs
that cross the two queues. Practical implications of this result are less clear than
for the variance case. Indeed routers work on a packet basis and do not output all
the packets of a connection simultaneously as it happens in an M/M/1/LAS queue.
This should dampen the effect we have observed.

As future work, we plan to continue working on the use of LAS in wireless
mesh networks to precisely assess its performance. Note that a typical path in a
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WMN from an end user to an Internet gateway should be quite small, no more than
4 hops. As a consequence, we can expect that the nice properties of LAS, namely
its ability to maintain interactivity despite adversal load conditions, outweighs its
side effect, namely the penalty experienced by large flows crossing multiple bot-
tlenecks.
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