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Abstract

Malware is one of the most serious security threats on

the Internet today. In fact, most Internet problems such

as spam e-mails and denial of service attacks have mal-

ware as their underlying cause. That is, computers that

are compromised with malware are often networked to-

gether to form botnets, and many attacks are launched

using these malicious, attacker-controlled networks.

With the increasing significance of malware in Inter-

net attacks, much research has concentrated on develop-

ing techniques to collect, study, and mitigate malicious

code. Without doubt, it is important to collect and study

malware found on the Internet. However, it is even more

important to develop mitigation and detection techniques

based on the insights gained from the analysis work.

Unfortunately, current host-based detection approaches

(i.e., anti-virus software) suffer from ineffective detec-

tion models. These models concentrate on the features

of a specific malware instance, and are often easily evad-

able by obfuscation or polymorphism. Also, detectors

that check for the presence of a sequence of system calls

exhibited by a malware instance are often evadable by

system call reordering. In order to address the shortcom-

ings of ineffective models, several dynamic detection ap-

proaches have been proposed that aim to identify the be-

havior exhibited by a malware family. Although promis-

ing, these approaches are unfortunately too slow to be

used as real-time detectors on the end host, and they of-

ten require cumbersome virtual machine technology.

In this paper, we propose a novel malware detection

approach that is both effective and efficient, and thus, can

be used to replace or complement traditional anti-virus

software at the end host. Our approach first analyzes a

malware program in a controlled environment to build a

model that characterizes its behavior. Such models de-

scribe the information flows between the system calls es-

sential to the malware’s mission, and therefore, cannot

be easily evaded by simple obfuscation or polymorphic

techniques. Then, we extract the program slices respon-

sible for such information flows. For detection, we exe-

cute these slices to match our models against the runtime

behavior of an unknown program. Our experiments show

that our approach can effectively detect running mali-

cious code on an end user’s host with a small overhead.

1 Introduction

Malicious code, or malware, is one of the most press-

ing security problems on the Internet. Today, millions

of compromised web sites launch drive-by download ex-

ploits against vulnerable hosts [35]. As part of the ex-

ploit, the victim machine is typically used to download

and execute malware programs. These programs are of-

ten bots that join forces and turn into a botnet. Bot-

nets [15] are then used by miscreants to launch denial

of service attacks, send spam mails, or host scam pages.

Given the malware threat and its prevalence, it is not

surprising that a significant amount of previous research

has focused on developing techniques to collect, study,

and mitigate malicious code. For example, there have

been studies that measure the size of botnets [37], the

prevalence of malicious web sites [35], and the infes-

tation of executables with spyware [31]. Also, a num-

ber of server-side [4, 43] and client-side honeypots [50]

were introduced that allow analysts and researchers to

gather malware samples in the wild. In addition, there

exist tools that can execute unknown samples and mon-

itor their behavior [6, 28, 53, 54]. Some tools [6, 53]

provide reports that summarize the activities of unknown

programs at the level of Windows API or system calls.

Such reports can be evaluated to find clusters of samples

that behave similarly [5, 7] or to classify the type of ob-

served, malicious activity [39]. Other tools [54] incorpo-

rate data flow into the analysis, which results in a more

comprehensive view of a program’s activity in the form

of taint graphs.

While it is important to collect and study malware,

this is only a means to an end. In fact, it is crucial that
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the insight obtained through malware analysis is trans-

lated into detection and mitigation capabilities that al-

low one to eliminate malicious code running on infected

machines. Considerable research effort was dedicated to

the extraction of network-based detection models. Such

models are often manually-crafted signatures loaded into

intrusion detection systems [33] or bot detectors [20].

Other models are generated automatically by finding

common tokens in network streams produced by mal-

ware programs (typically, worms) [32, 41]. Finally, mal-

ware activity can be detected by spotting anomalous traf-

fic. For example, several systems try to identify bots by

looking for similar connection patterns [19, 38]. While

network-based detectors are useful in practice, they suf-

fer from a number of limitations. First, a malware pro-

gram has many options to render network-based detec-

tion very difficult. The reason is that such detectors can-

not observe the activity of a malicious program directly

but have to rely on artifacts (the traffic) that this program

produces. For example, encryption can be used to thwart

content-based techniques, and blending attacks [17] can

change the properties of network traffic to make it ap-

pear legitimate. Second, network-based detectors cannot

identify malicious code that does not send or receive any

traffic.

Host-based malware detectors have the advantage that

they can observe the complete set of actions that a mal-

ware program performs. It is even possible to identify

malicious code before it is executed at all. Unfortunately,

current host-based detection approaches have significant

shortcomings. An important problem is that many tech-

niques rely on ineffective models. Ineffective models are

models that do not capture intrinsic properties of a mali-

cious program and its actions but merely pick up artifacts

of a specific malware instance. As a result, they can be

easily evaded. For example, traditional anti-virus (AV)

programs mostly rely on file hashes and byte (or instruc-

tion) signatures [46]. Unfortunately, obfuscation tech-

niques and code polymorphism make it straightforward

to modify these features without changing the actual se-

mantics (the behavior) of the program [11]. Another ex-

ample are models that capture the sequence of system

calls that a specific malware program executes. When

these system calls are independent, it is easy to change

their order or add irrelevant calls, thus invalidating the

captured sequence.

In an effort to overcome the limitations of ineffective

models, researchers have sought ways to capture the ma-

licious activity that is characteristic of a malware pro-

gram (or a family). On one hand, this has led to detec-

tors [10, 13, 25] that use sophisticated static analysis to

identify code that is semantically equivalent to a mal-

ware template. Since these techniques focus on the actual

semantics of a program, it is not enough for a malware

sample to use obfuscation and polymorphic techniques to

alter its appearance. The problem with static techniques

is that static binary analysis is difficult [30]. This diffi-

culty is further exacerbated by runtime packing and self-

modifying code. Moreover, the analysis is costly, and

thus, not suitable for replacing AV scanners that need to

quickly scan large numbers of files. Dynamic analysis

is an alternative approach to model malware behavior. In

particular, several systems [22, 54] rely on the tracking of

dynamic data flows (tainting) to characterize malicious

activity in a generic fashion. While detection results are

promising, these systems incur a significant performance

overhead. Also, a special infrastructure (virtual machine

with shadow memory) is required to keep track of the

taint information. As a result, static and dynamic anal-

ysis approaches are often employed in automated mal-

ware analysis environments (for example, at anti-virus

companies or by security researchers), but they are too

inefficient to be deployed as detectors on end hosts.

In this paper, we propose a malware detection ap-

proach that is both effective and efficient, and thus, can

be used to replace or complement traditional AV soft-

ware at the end host. For this, we first generate effective

models that cannot be easily evaded by simple obfusca-

tion or polymorphic techniques. More precisely, we exe-

cute a malware program in a controlled environment and

observe its interactions with the operating system. Based

on these observations, we generate fine-grained models

that capture the characteristic, malicious behavior of this

program. This analysis can be expensive, as it needs to be

run only once for a group of similar (or related) malware

executables. The key of the proposed approach is that

our models can be efficiently matched against the run-

time behavior of an unknown program. This allows us

to detect malicious code that exhibits behavior that has

been previously associated with the activity of a certain

malware strain.

The main contributions of this paper are as follows:

• We automatically generate fine-grained (effective)

models that capture detailed information about the

behavior exhibited by instances of a malware fam-

ily. These models are built by observing a malware

sample in a controlled environment.

• We have developed a scanner that can efficiently

match the activity of an unknown program against

our behavior models. To achieve this, we track de-

pendencies between system calls without requiring

expensive taint analysis or special support at the end

host.

• We present experimental evidence that demon-

strates that our approach is feasible and usable in

practice.
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2 System Overview

The goal of our system is to effectively and efficiently de-

tect malicious code at the end host. Moreover, the system

should be general and not incorporate a priori knowl-

edge about a particular malware class. Given the free-

dom that malware authors have when crafting malicious

code, this is a challenging problem. To attack this prob-

lem, our system operates by generating detection mod-

els based on the observation of the execution of malware

programs. That is, the system executes and monitors a

malware program in a controlled analysis environment.

Based on this observation, it extracts the behavior that

characterizes the execution of this program. The behav-

ior is then automatically translated into detection models

that operate at the host level.

Our approach allows the system to quickly detect and

eliminate novel malware variants. However, it is reactive

in the sense that it must observe a certain, malicious be-

havior before it can properly respond. This introduces a

small delay between the appearance of a new malware

family and the availability of appropriate detection mod-

els. We believe that this is a trade-off that is necessary

for a general system that aims to detect and mitigate ma-

licious code with a priori unknown behavior. In some

sense, the system can be compared to the human im-

mune system, which also reacts to threats by first detect-

ing intruders and then building appropriate antibodies.

Also, it is important to recognize that it is not required

to observe every malware instance before it can be de-

tected. Instead, the proposed system abstracts (to some

extent) program behavior from a single, observed exe-

cution trace. This allows the detection of all malware

instances that implement similar functionality.

Modeling program behavior. To model the behavior

of a program and its security-relevant activity, we rely

on system calls. Since system calls capture the interac-

tions of a program with its environment, we assume that

any relevant security violation is visible as one or more

unintended interactions.

Of course, a significant amount of research has fo-

cused on modeling legitimate program behavior by spec-

ifying permissible sequences of system calls [18, 48].

Unfortunately, these techniques cannot be directly ap-

plied to our problem. The reason is that malware au-

thors have a large degree of freedom in rearranging the

code to achieve their goals. For example, it is very easy

to reorder independent system calls or to add irrelevant

calls. Thus, we cannot represent suspicious activity as

system call sequences that we have observed. Instead, a

more flexible representation is needed. This representa-

tion must capture true relationships between system calls

but allow independent calls to appear in any order. For

this, we represent program behavior as a behavior graph

where nodes are (interesting) system calls. An edge is

introduced from a node x to node y when the system

call associated with y uses as argument some output that

is produced by system call x. That is, an edge repre-

sents a data dependency between system calls x and y.

Moreover, we only focus on a subset of interesting sys-

tem calls that can be used to carry out malicious activity.

At a conceptual level, the idea of monitoring a piece of

malware and extracting a model for it bears some resem-

blance to previous signature generation systems [32, 41].

In both cases, malicious activity is recorded, and this ac-

tivity is then used to generate detection models. In the

case of signature generation systems, network packets

sent by worms are compared to traffic from benign ap-

plications. The goal is to extract tokens that are unique

to worm flows and, thus, can be used for network-based

detection. At a closer look, however, the differences

between previous work and our approach are signifi-

cant. While signature generation systems extract spe-

cific, byte-level descriptions of malicious traffic (similar

to virus scanners), the proposed approach targets the se-

mantics of program executions. This requires different

means to observe and model program behavior. More-

over, our techniques to identify malicious activity and

then perform detection differ as well.

Making detection efficient. In principle, we can di-

rectly use the behavior graph to detect malicious activity

at the end host. For this, we monitor the system calls

that an unknown program issues and match these calls

with nodes in the graph. When enough of the graph

has been matched, we conclude that the running program

exhibits behavior that is similar to previously-observed,

malicious activity. At this point, the running process can

be terminated and its previous, persistent modifications

to the system can be undone.

Unfortunately, there is a problem with the previously

sketched approach. The reason is that, for matching sys-

tem calls with nodes in the behavior graph, we need to

have information about data dependencies between the

arguments and return values of these systems calls. Re-

call that an edge from node x to y indicates that there is

a data flow from system call x to y. As a result, when

observing x and y, it is not possible to declare a match

with the behavior graph x → y. Instead, we need to

know whether y uses values that x has produced. Oth-

erwise, independent system calls might trigger matches

in the behavior graph, leading to an unacceptable high

number of false positives.

Previous systems have proposed dynamic data flow

tracking (tainting) to determine dependencies between

system calls. However, tainting incurs a significant

performance overhead and requires a special environ-
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ment (typically, a virtual machine with shadow memory).

Hence, taint-based systems are usually only deployed in

analysis environments but not at end hosts. In this pa-

per, we propose an approach that allows us to detect

previously-seen data dependencies by monitoring only

system calls and their arguments. This allows efficient

identification of data flows without requiring expensive

tainting and special environments (virtual machines).

Our key idea to determine whether there is a data flow

between a pair of system calls x and y that is similar

to a previously-observed data flow is as follows: Using

the observed data flow, we extract those parts of the pro-

gram (the instructions) that are responsible for reading

the input and transforming it into the corresponding out-

put (a kind of program slice [52]). Based on this pro-

gram slice, we derive a symbolic expression that repre-

sents the semantics of the slice. In other words, we ex-

tract an expression that can essentially pre-compute the

expected output, based on some input. In the simplest

case, when the input is copied to the output, the sym-

bolic expression captures the fact that the input value is

identical to the output value. Of course, more compli-

cated expressions are possible. In cases where it is not

possible to determine a closed symbolic expression, we

can use the program slice itself (i.e., the sequence of pro-

gram instructions that transforms an input value into its

corresponding output, according to the functionality of

the program).

Given a program slice or the corresponding sym-

bolic expression, an unknown program can be monitored.

Whenever this program invokes a system call x, we ex-

tract the relevant arguments and return value. This value

is then used as input to the slice or symbolic expression,

computing the expected output. Later, whenever a sys-

tem call y is invoked, we check its arguments. When

the value of the system call argument is equal to the

previously-computed, expected output, then the system

has detected the data flow.

Using data flow information that is computed in the

previously described fashion, we can increase the pre-

cision of matching observed system calls against the be-

havior graph. That is, we can make sure that a graph with

a relationship x → y is matched only when we observe x

and y, and there is a data flow between x and y that cor-

responds to the semantics of the malware program that is

captured by this graph. As a result, we can perform more

accurate detection and reduce the false positive rate.

3 System Details

In this section, we provide more details on the compo-

nents of our system. In particular, we first discuss how

we characterize program activity via behavior graphs.

Then, we introduce our techniques to automatically ex-

tract such graphs from observing binaries. Finally, we

present our approach to match the actions of an unknown

binary to previously-generated behavior graphs.

3.1 Behavior Graphs: Specifying Program

Activity

As a first step, we require a mechanism to describe the

activity of programs. According to previous work [12],

such a specification language for malicious behaviors has

to satisfy three requirements: First, a specification must

not constrain independent operations. The second re-

quirement is that a specification must relate dependent

operations. Third, the specification must only contain

security-relevant operations.

The authors in [12] propose malspecs as a means to

capture program behavior. A malicious specification

(malspec) is a directed acyclic graph (DAG) with nodes

labeled using system calls from an alphabet Σ and edges

labeled using logic formulas in a logic Ldep . Clearly,

malspecs satisfy the first two requirements. That is, in-

dependent nodes (system calls) are not connected, while

related operations are connected via a series of edges.

The paper also mentions a function IsTrivialComponent

that can identify and remove parts of the graph that are

not security-relevant (to meet the third requirement).

For this work, we use a formalism called behavior

graphs. Behavior graphs share similarities with mal-

specs. In particular, we also express program behavior

as directed acyclic graphs where nodes represent system

calls. However, we do not have unconstrained system

call arguments, and the semantics of edges is somewhat

different.

We define a system call s ∈ Σ as a function that maps

a set of input arguments a1, . . . , an into a set of output

values o1, . . . , ok For each input argument of a system

call ai, the behavior graph captures where the value of

this argument is derived from. For this, we use a function

fai
∈ F . Before we discuss the nature of the functions

in F in more detail, we first describe where a value for

a system call can be derived from. A system call value

can come from three possible sources (or a mix thereof):

First, it can be derived from the output argument(s) of

previous system calls. Second, it can be read from the

process address space (typically, the initialized data sec-

tion – the bss segment). Third, it can be produced by

the immediate argument of a machine instruction.

As mentioned previously, a function is used to cap-

ture the input to a system call argument ai. More pre-

cisely, the function fai
for an argument ai is defined as

fai
: x1, x2, . . . , xn → y, where each xi represents the

output oj of a previous system call. The values that are

read from memory are part of the function body, rep-

resented by l(addr). When the function is evaluated,
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l(addr) returns the value at memory location addr. This

technique is needed to ensure that values that are loaded

from memory (for example, keys) are not constant in

the specification, but read from the process under anal-

ysis. Of course, our approach implies that the memory

addresses of key data structures do not change between

(polymorphic) variants of a certain malware family. In

fact, this premise is confirmed by a recent observation

that data structures are stable between different samples

that belong to the same malware class [14]. Finally,

constant values produced by instructions (through im-

mediate operands) are implicitly encoded in the function

body. Consider the case in which a system call argument

ai is the constant value 0, for example, produced by a

push $0 instruction. Here, the corresponding function

is a constant function with no arguments fai
:→ 0. Note

that a function f ∈ F can be expressed in two differ-

ent forms: As a (symbolic) formula or as an algorithm

(more precisely, as a sequence of machine instructions

– this representation is used in case the relation is too

complex for a mathematical expression).

Whenever an input argument ai for system call y de-

pends on the some output oj produced by system call x,

we introduce an edge from the node that corresponds to

x, to the node that corresponds to y. Thus, edges en-

code dependencies (i.e., temporal relationships) between

system calls.

Given the previous discussion, we can define behavior

graphs G more formally as: G = (V, E, F, δ), where:

• V is the set of vertices, each representing a system

call s ∈ Σ

• E is the set of edges, E ⊆ V × V

• F is the set of functions
⋃

f : x1, x2, . . . , xn → y,

where each xi is an output arguments oj of system

call s ∈ Σ

• δ, which assigns a function fi to each system call

argument ai

Intuitively, a behavior graph encodes relationships be-

tween system calls. That is, the functions fi for the ar-

guments ai of a system call s determine how these argu-

ments depend on the outputs of previous calls, as well as

program constants and memory values. Note that these

functions allow one to pre-compute the expected argu-

ments of a system call. Consider a behavior graph G

where an input argument a of a system call st depends

on the outputs of two previous calls sp and sq . Thus,

there is a function fa associated with a that has two in-

puts. Once we observe sp and sq , we can use the out-

puts op and oq of these system calls and plug them into

fa. At this point, we know the expected value of a, as-

suming that the program execution follows the seman-

tics encoded in the behavior graph. Thus, when we ob-

serve at a later point the invocation of st, we can check

whether its actual argument value for a matches our pre-

computed value fa(op, oq). If this is the case, we have

high confidence that the program executes a system call

whose input is related (depends on) the outputs of previ-

ous calls. This is the key idea of our proposed approach:

We can identify relationships between system calls with-

out tracking any information at the instruction-level dur-

ing runtime. Instead, we rely solely on the analysis of

system call arguments and the functions in the behavior

graph that capture the semantics of the program.

3.2 Extracting Behavior Graphs

As mentioned in the previous section, we express pro-

gram activity as behavior graphs. In this section, we de-

scribe how these behavior graphs can be automatically

constructed by observing the execution of a program in a

controlled environment.

Initial Behavior Graph

As a first step, an unknown malware program is executed

in an extended version of Anubis [6, 7], our dynamic

malware analysis environment. Anubis records all the

disassembled instructions (and the system calls) that the

binary under analysis executes. We call this sequence of

instructions an instruction log. In addition, Anubis also

extracts data dependencies using taint analysis. That is,

the system taints (marks) each byte that is returned by a

system call with a unique label. Then, we keep track of

each labeled byte as the program execution progresses.

This allows us to detect that the output (result) of one

system call is used as an input argument for another, later

system call.

While the instruction log and the taint labels provide

rich information about the execution of the malware pro-

gram, this information is not sufficient. Consider the case

in which an instruction performs an indirect memory ac-

cess. That is, the instruction reads a memory value from

a location L whose address is given in a register or an-

other memory location. In our later analysis, we need to

know which instruction was the last one to write to this

location L. Unfortunately, looking at the disassembled

instruction alone, this is not possible. Thus, to make the

analysis easier in subsequent steps, we also maintain a

memory log. This log stores, for each instruction that ac-

cesses memory, the locations that this instruction reads

from and writes to.

Another problem is that the previously-sketched taint

tracking approach only captures data dependencies. For
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example, when data is written to a file that is previously

read as part of a copy operation, our system would de-

tect such a dependency. However, it does not consider

control dependencies. To see why this might be rele-

vant, consider that the amount of data written as part of

the copy operation is determined by the result of a sys-

tem call that returns the size of the file that is read. The

file size returned by the system call might be used in a

loop that controls how often a new block of data needs

to be copied. While this file size has an indirect influ-

ence on the (number of) write operation, there is no data

dependency. To capture indirect dependencies, our sys-

tem needs to identify the scope of code blocks that are

controlled by tainted data. The start of such code blocks

is identified by checking for branch operations that use

tainted data as arguments. To identify the end of the

scope, we leverage a technique proposed by Zhang et

al. [55]. More precisely, we employ their no preprocess-

ing without caching algorithm to find convergence points

in the instruction log that indicate that the different paths

of a conditional statement or a loop have met, indicating

the end of the (dynamic) scope. Within a tainted scope,

the results of all instructions are marked with the label(s)

used in the branch operation, similar to the approach pre-

sented in [22].

At this point, our analysis has gathered the complete

log of all executed instructions. Moreover, operands of

all instructions are marked with taint labels that indicate

whether these operands have data or control dependen-

cies on the output of previous system calls. Based on this

information, we can construct an initial behavior graph.

To this end, every system call is mapped into a node

in the graph, labeled with the name of this system call.

Then, an edge is introduced from node x to y when the

output of call x produces a taint label that is used in any

input argument for call y.

Figure 1 depicts a part of the behavior graph of the

Netsky worm. In this graph, one can see the system calls

that are invoked and the dependencies between them

when Netsky creates a copy of itself. The worm first

obtains the name of its executable by invoking the Get-

ModuleFileNameA function. Then, it opens the file of its

executable by using the NtCreateFile call. At the same

time, it creates a new file in the Windows system direc-

tory (i.e., in C:\Windows) that it calls AVProtect9x.exe.

Obviously, the aim is to fool the user into believing that

this file is benign and to improve the chances of survival

of the worm. Hence, if the file is discovered by chance,

a typical user will probably think that it belongs to some

anti-virus software. In the last step, the worm uses the

NtCreateSection system call to create a virtual memory

block with a handle to itself and starts reading its own

code and making a copy of it into the AVProtect9x.exe

file.

In this example, the behavior graph that we generate

specifically contains the string AVProtect9x.exe. How-

ever, obviously, a virus writer might choose to use ran-

dom names when creating a new file. In this case, our

behavior graph would contain the system calls that are

used to create this random name. Hence, the random-

ization routines that are used (e.g., checking the current

time and appending a constant string to it) would be a

part of the behavior specification.

Figure 2 shows an excerpt of the trace that we recorded

for Netsky. This is part of the input that the behavior

graph is built from. On Line 1, one can see that the worm

obtains the name of executable of the current process

(i.e., the name of its own file). Using this name, it opens

the file on Line 3 and obtains a handle to it. On Line 5,

a new file called AVProtect9x.exe is created, where the

virus will copy its code to. On Lines 8 to 10, the worm

reads its own program code, copying itself into the newly

created file.

NTCreateFile

NTCreateSection

NTCreateFile

NTMapViewofSection

NTWriteFile

FileHandle

FileHandle

SectionHandle

GetModuleFileNameA

Mode: Open

(Read Buffer)

Name

Mode: Create

C:\WINDOWS
\AVprotect9x.exe

Figure 1: Partial behavior graph for Netsky.

Computing Argument Functions

In the next step, we have to compute the functions f ∈ F

that are associated with the arguments of system call

nodes. That is, for each system call argument, we first

have to identify the sources that can influence the value

of this argument. Also, we need to determine how the

values from the sources are manipulated to derive the ar-

gument value. For this, we make use of binary program

slicing. Finally, we need to translate the sequence of in-

structions that compute the value of an argument (based

on the values of the sources) into a function.
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1 GetModuleFileNameA([out] lpFilename -> "C:\

netsky.exe")

2 ...

3 NtCreateFile(Attr->ObjectName:"C:\netsky.exe",

mode: open, [out] FileHandle -> A)

4 ...

5 NtCreateFile(Attr->ObjectName:"C:\WINDOWS\

AVprotect9x.exe", mode: create, [out]

FileHandle -> B)

6 ...

7 NtCreateSection(FileHandle: A, [out]

SectionHandle -> C)

8 NtMapViewOfSection(SectionHandle: C,

BaseAddress: 0x3b0000)

9 ...

10 NtWriteFile(FileHandle: B, Buffer: "MZ\90\00...

", Length: 16896)

11 ...

Figure 2: Excerpt of the observed trace for Netsky.

Program slicing. The goal of the program slicing pro-

cess is to find all sources that directly or indirectly influ-

ence the value of an argument a of system call s, which

is also called a sink. To this end, we first use the func-

tion signature for s to determine the type and the size of

argument a. This allows us to determine the bytes that

correspond to the sink a. Starting from these bytes, we

use a standard dynamic slicing approach [2] to go back-

wards, looking for instructions that define one of these

bytes. For each instruction found in this manner, we

look at its operands and determine which values the in-

struction uses. For each value that is used, we locate the

instruction that defines this value. This process is con-

tinued recursively. As mentioned previously, it is some-

times not sufficient to look at the instruction log alone

to determine the instruction that has defined the value in

a certain memory location. To handle these cases, we

make use of the memory log, which helps us to find the

previous write to a certain memory location.

Following def-use chains would only include instruc-

tions that are related to the sink via data dependencies.

However, we also wish to include control flow depen-

dencies into a slice. Recall from the previous subsection

that our analysis computes tainted scopes (code the has

a control flow dependency on a certain tainted value).

Thus, when instructions are included into a slice that are

within a tainted scope, the instructions that create this

scope are also included, as well as the code that those

instructions depend upon.

The recursive analysis chains increasingly add instruc-

tions to a slice. A chain terminates at one of two possible

endpoints. One endpoint is the system call that produces

a (tainted) value as output. For example, consider that

we trace back the bytes that are written to a file (the ar-

gument that represents the write buffer). The analysis

might determine that these bytes originate from a system

call that reads the data from the network. That is, the val-

ues come from the “outside,” and we cannot go back any

further. Of course, we expect that there are edges from

all sources to the sink that eventually uses the values pro-

duced by the sources. Another endpoint is reached when

a value is produced as an immediate operand of an in-

struction or read from the statically initialized data seg-

ment. In the previous example, the bytes that are written

to the file need not have been read previously. Instead,

they might be originating from a string embedded in the

program binary, and thus, coming from “within.”

When the program slicer finishes for a system call ar-

gument a, it has marked all instructions that are involved

in computing the value of a. That is, we have a subset

(a slice) of the instruction log that “explains” (1) how

the value for a was computed, and (2), which sources

were involved. As mentioned before, these sources can

be constants produced by the immediate operands of in-

structions, values read from memory location addr (with-

out any other instruction previously writing to this ad-

dress), and the output of previous system calls.

Translating slices into functions. A program slice

contains all the instructions that were involved in com-

puting a specific value for a system call argument. How-

ever, this slice is not a program (a function) that can be

directly run to compute the outputs for different inputs.

A slice can (and typically does) contain a single machine

instruction of the binary program more than once, often

with different operands. For example, consider a loop

that is executed multiple times. In this case, the instruc-

tions of the binary that make up the loop body appear

multiple times in the slice. However, for our function,

we would like to have code that represents the loop it-

self, not the unrolled version. This is because when a

different input is given to the loop, it might execute a dif-

ferent number of times. Thus, it is important to represent

the function as the actual loop code, not as an unrolled

sequence of instruction.

To translate a slice into a self-contained program, we

first mark all instructions in the binary that appear at least

once in the slice. Note that our system handles packed

binaries. That is, when a malware program is packed,

we consider the instructions that it executes after the un-

packing routine as the relevant binary code. All instruc-

tions that do not appear in the slice are replaced with

no operation statements (nops). The input to this code

depends on the sources of the slice. When a source is

a constant, immediate operand, then this constant is di-

rectly included into the function. When the source is a

read operation from a memory address addr that was not

previously written by the program, we replace it with a

special function that reads the value at addr when a pro-

gram is analyzed. Finally, outputs of previous system

calls are replaced with variables.
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In principle, we could now run the code as a func-

tion, simply providing as input the output values that we

observe from previous system calls. This would com-

pute a result, which is the pre-computed (expected) in-

put argument for the sink. Unfortunately, this is not

that easy. The reason is that the instructions that make

up the function are taken from a binary program. This

binary is made up of procedures, and these procedures

set up stack frames that allow them to access local vari-

ables via offsets to the base pointer (register %ebp) or

the stack pointer (x86 register %esp). The problem is

that operations that manipulate the base pointer or the

stack pointer are often not part of the slice. As a re-

sult, they are also not part of the function code. Unfor-

tunately, this means that local variable accesses do not

behave as expected. To compensate for that, we have

to go through the instruction log (and the program bi-

nary) and fix the stack. More precisely, we analyze the

code and add appropriate instructions that manipulate

the stack and, if needed, the frame pointer appropriately

so that local variable accesses succeed. For this, some

knowledge about compiler-specific mechanisms for han-

dling procedures and stack frames is required. Currently,

our prototype slicer is able to handle machine code gen-

erated from standard C and C++ code, as well as several

human-written/optimized assembler code idioms that we

encountered (for example, code that is compiled without

the frame pointer).

Once the necessary code is added to fix the stack, we

have a function (program) at our disposal that captures

the semantics of that part of the program that computes

a particular system call argument based on the results of

previous calls. As mentioned before, this is useful, be-

cause it allows us to pre-compute the argument of a sys-

tem call that we would expect to see when an unknown

program exhibits behavior that conforms to our behavior

graph.

Optimizing Functions

Once we have extracted a slice for a system call argument

and translated it into a corresponding function (program),

we could stop there. However, many functions imple-

ment a very simple behavior; they copy a value that is

produced as output of a system call into the input argu-

ment of a subsequent call. For example, when a system

call such as NtOpenFile produces an opaque handle,

this handle is used as input by all subsequent system calls

that operate on this file. Unfortunately, the chain of copy

operations can grow quite long, involving memory ac-

cesses and stack manipulation. Thus, it would be bene-

ficial to identify and simplify instruction sequences. Op-

timally, the complete sequence can be translated into a

formula that allows us to directly compute the expected

output based on the formula’s inputs.

To simplify functions, we make use of symbolic exe-

cution. More precisely, we assign symbolic values to the

input parameters of a function and use a symbolic exe-

cution engine developed previously [23]. Once the sym-

bolic execution of the function has finished, we obtain a

symbolic expression for the output. When the symbolic

execution engine does not need to perform any approxi-

mations (e.g., widening in the case of loops), then we can

replace the algorithmic representation of the slice with

this symbolic expression. This allows us to significantly

shorten the time it takes to evaluate functions, especially

those that only move values around. For complex func-

tions, we fall back to the explicit machine code represen-

tation.

3.3 Matching Behavior Graphs

For every malware program that we analyze in our con-

trolled environment, we automatically generate a behav-

ior graph. These graphs can then be used for detection at

the end host. More precisely, for detection, we have de-

veloped a scanner that monitors the system call invoca-

tions (and arguments) of a program under analysis. The

goal of the scanner is to efficiently determine whether

this program exhibits activity that matches one of the be-

havior graphs. If such a match occurs, the program is

considered malicious, and the process is terminated. We

could also imagine a system that unrolls the persistent

modifications that the program has performed. For this,

we could leverage previous work [45] on safe execution

environments.

In the following, we discuss how our scanner matches

a stream of system call invocations (received from the

program under analysis) against a behavior graph. The

scanner is a user-mode process that runs with adminis-

trative privileges. It is supported by a small kernel-mode

driver that captures system calls and arguments of pro-

cesses that should be monitored. In the current design,

we assume that the malware process is running under the

normal account of a user, and thus, cannot subvert the

kernel driver or attack the scanner. We believe that this

assumption is reasonable because, for recent versions of

Windows, Microsoft has made significant effort to have

users run without root privileges. Also, processes that

run executables downloaded from the Internet can be au-

tomatically started in a low-integrity mode. Interestingly,

we have seen malware increasingly adapting to this new

landscape, and a substantial fraction can now success-

fully execute as a normal user.

The basic approach of our matching algorithm is the

following: First, we partition the nodes of a behavior

graph into a set of active nodes and a set of inactive
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nodes. The set of active nodes contains those nodes that

have already been matched with system call(s) in the

stream. Initially, all nodes are inactive.

When a new system call s arrives, the scanner visits

all inactive nodes in the behavior graph that have the cor-

rect type. That is, when a system call NtOpenFile

is seen, we examine all inactive nodes that correspond

to an NtOpenFile call. For each of these nodes, we

check whether all its parent nodes are active. A parent

node for node N is a node that has an edge to N . When

we find such a node, we further have to ensure that the

system call has the “right” arguments. More precisely,

we have to check all functions fi : 1 ≤ i ≤ k asso-

ciated with the k input arguments of the system call s.

However, for performance reasons, we do not do this im-

mediately. Instead, we only check the simple functions.

Simple functions are those for which a symbolic expres-

sion exists. Most often, these functions check for the

equality of handles. The checks for complex functions,

which are functions that represent dependencies as pro-

grams, are deferred and optimistically assumed to hold.

To check whether a (simple) function fi holds, we use

the output arguments of the parent node(s) of N . More

precisely, we use the appropriate values associated with

the parent node(s) of N as the input to fi. When the re-

sult of fi matches the input argument to system call s,

then we have a match. When all arguments associated

with simple functions match, then node N can be acti-

vated. Moreover, once s returns, the values of its output

parameters are stored with node N . This is necessary be-

cause the output of s might be needed later as input for a

function that checks the arguments of N ’s child nodes.

So far, we have only checked dependencies between

system calls that are captured by simple functions. As a

result, we might activate a node y as the child of x, al-

though there exists a complex dependency between these

two system calls that is not satisfied by the actual pro-

gram execution. Of course, at one point, we have to

check these complex relationships (functions) as well.

This point is reached when an interesting node in the be-

havior graph is activated. Interesting nodes are nodes that

are (a) associated with security-relevant system calls and

(b) at the “bottom” of the behavior graph. With security-

relevant system calls, we refer to all calls that write to

the file system, the registry, or the network. In addition,

system calls that start new processes or system services

are also security-relevant. A node is at the “bottom” of

the behavior graph when it has no outgoing edges.

When an interesting node is activated, we go back in

the behavior graph and check all complex dependencies.

That is, for each active node, we check all complex func-

tions that are associated with its arguments (in a way that

is similar to the case for simple functions, as outlined

previously). When all complex functions hold, the node

is marked as confirmed. If any of the complex functions

associated with the input arguments of an active node N

does not hold, our previous optimistic assumption has

been invalidated. Thus, we deactivate N as well as all

nodes in the subgraph rooted in N .

Intuitively, we use the concept of interesting nodes to

capture the case in which a malware program has demon-

strated a chain of activities that involve a series of sys-

tem calls with non-trivial dependencies between them.

Thus, we declare a match as soon as any interesting node

has been confirmed. However, to avoid cases of overly

generic behavior graphs, we only report a program as

malware when the process of confirming an interesting

node involves at least one complex dependency.

Since the confirmed activation of a single interesting

node is enough to detect a malware sample, typically

only a subset of the behavior graph of a malware sample

is employed for detection. More precisely, each interest-

ing node, together with all of its ancestor nodes and the

dependencies between these nodes, can be used for de-

tection independently. Each of these subgraphs is itself

a behavior graph that describes a specific set of actions

performed by a malware program (that is, a certain be-

havioral trait of this malware).

4 Evaluation

We claim that our system delivers effective detection

with an acceptable performance overhead. In this sec-

tion, we first analyze the detection capabilities of our sys-

tem. Then, we examine the runtime impact of our proto-

type implementation. In the last section, we describe two

examples of behavior graphs in more detail.

Name Type

Allaple Exploit-based worm

Bagle Mass-mailing worm

Mytob Mass-mailing worm

Agent Trojan

Netsky Mass-mailing worm

Mydoom Mass-mailing worm

Table 1: Malware families used for evaluation.

4.1 Detection Effectiveness

To demonstrate that our system is effective in detect-

ing malicious code, we first generated behavior graphs

for six popular malware families. An overview of these

families is provided in Table 1. These malware families

were selected because they are very popular, both in our

own malware data collection (which we obtained from
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Name Samples Kaspersky variants Our variants Samples detected Effectiveness

Allaple 50 2 1 50 1.00

Bagle 50 20 14 46 0.92

Mytob 50 32 12 47 0.94

Agent 50 20 2 41 0.82

Netsky 50 22 12 46 0.92

Mydoom 50 6 3 49 0.98

Total 300 102 44 279 0.93

Table 2: Training dataset.

Anubis [1]) and according to lists compiled by anti-virus

vendors. Moreover, these families provide a good cross

section of popular malware classes, such as mail-based

worms, exploit-based worms, and a Trojan horse. Some

of the families use code polymorphism to make it harder

for signature-based scanners to detect them. For each

malware family, we randomly selected 100 samples from

our database. The selection was based on the labels pro-

duced by the Kaspersky anti-virus scanner and included

different variants for each family. During the selection

process, we discarded samples that, in our test environ-

ment, did not exhibit any interesting behavior. Specifi-

cally, we discarded samples that did not modify the file

system, spawn new processes, or perform network com-

munication. For the Netsky family, only 63 different

samples were available in our dataset.

Detection capabilities. For each of our six malware

families, we randomly selected 50 samples. These sam-

ples were then used for the extraction of behavior graphs.

Table 2 provides some details on the training dataset. The

“Kaspersky variants” column shows the number of dif-

ferent variants (labels) identified by the Kaspersky anti-

virus scanner (these are variants such as Netsky.k or

Netsky.aa). The “Our variants” column shows the

number of different samples from which (different) be-

havior graphs had to be extracted before the training

dataset was covered. Interestingly, as shown by the

“Samples detected” column, it was not possible to extract

behavior graphs for the entire training set. The reasons

for this are twofold: First, some samples did not perform

any interesting activity during behavior graph extraction

(despite the fact that they did show relevant behavior dur-

ing the initial selection process). Second, for some mal-

ware programs, our system was not able to extract valid

behavior graphs. This is due to limitations of the current

prototype that produced invalid slices (i.e., functions that

simply crashed when executed).

To evaluate the detection effectiveness of our system,

we used the behavior graphs extracted from the train-

ing dataset to perform detection on the remaining 263

samples (the test dataset). The results are shown in Ta-

ble 3. It can be seen that some malware families, such

as Allaple and Mydoom, can be detected very accu-

rately. For others, the results appear worse. However,

we have to consider that different malware variants may

exhibit different behavior, so it may be unrealistic to ex-

pect that a behavior graph for one variant always matches

samples belonging to another variant. This is further ex-

acerbated by the fact that anti-virus software is not par-

ticularly good at classifying malware (a problem that has

also been discussed in previous work [5]). As a result,

the dataset likely contains mislabeled programs that be-

long to different malware families altogether. This was

confirmed by manual inspection, which revealed that cer-

tain malware families (in particular, the Agent family)

contain a large number of variants with widely varying

behavior.

To confirm that different malware variants are indeed

the root cause of the lower detection effectiveness, we

then restricted our analysis to the 155 samples in the test

dataset that belong to “known” variants. That is, we only

considered those samples that belong to malware variants

that are also present in the training dataset (according to

Kaspersky labels). For this dataset, we obtain a detection

effectiveness of 0.92. This is very similar to the result of

0.93 obtained on the training dataset. Conversely, if we

restrict our analysis to the 108 samples that do not belong

to a known variant, we obtain a detection effectiveness

of only 0.23. While this value is significantly lower, it

still demonstrates that our system is sometimes capable

of detecting malware belonging to previously unknown

variants. Together with the number of variants shown in

Table 2, this indicates that our tool produces a behavior-

based malware classification that is more general than

that produced by an anti-virus scanner, and therefore, re-

quires a smaller number of behavior graphs than signa-

tures.
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Name Samples Known variant samples Samples detected Effectiveness

Allaple 50 50 45 0.90

Bagle 50 26 30 0.60

Mytob 50 26 36 0.72

Agent 50 4 5 0.10

Netsky 13 5 7 0.54

Mydoom 50 44 45 0.90

Total 263 155 168 0.64

Table 3: Detection effectiveness.

False positives. In the next step, we attempted to eval-

uate the amount of false positives that our system would

produce. For this, we installed a number of popu-

lar applications on our test machine, which runs Mi-

crosoft Windows XP and our scanner. More precisely,

we used Internet Explorer, Firefox, Thunderbird, putty,

and Notepad. For each of these applications, we went

through a series of common use cases. For example,

we surfed the web with IE and Firefox, sent a mail with

Thunderbird (including an attachment), performed a re-

mote ssh login with putty, and used notepad for writ-

ing and saving text. No false positives were raised in

these tests. This was expected, since our models typi-

cally capture quite tightly the behavior of the individual

malware families. However, if we omitted the checks

for complex functions and assumed all complex depen-

dencies in the behavior graph to hold, all of the above

applications raised false positives. This shows that our

tool’s ability to capture arbitrary data-flow dependencies

and verify them at runtime is essential for effective de-

tection. It also indicates that, in general, system call in-

formation alone (without considering complex relation-

ships between their arguments) might not be sufficient to

distinguish between legitimate and malicious behavior.

In addition to the Windows applications mentioned

previously, we also installed a number of tools for perfor-

mance measurement, as discussed in the following sec-

tion. While running the performance tests, we also did

not experience any false positives.

4.2 System Efficiency

As every malware scanner, our detection mechanism

stands and falls with the performance degradation it

causes on a running system. To evaluate the performance

impact of our detection mechanism, we used 7-zip, a

well-known compression utility, Microsoft Internet Ex-

plorer, and Microsoft Visual Studio. We performed the

tests on a single-core, 1.8 GHz Pentium 4 running Win-

dows XP with 1 GB of RAM.

For the first test, we used a command line option for

7-zip that makes it run a simple benchmark. This re-

flects the case in which an application is mostly perform-

ing CPU-bound computation. In another test, 7-zip was

used to compress a folder that contains 215 MB of data

(6,859 files in 808 subfolders). This test represents a

more mixed workload. The third test consisted of using

7-zip to archive three copies of this same folder, perform-

ing no compression. This is a purely IO-bound workload.

The next test measures the number of pages per second

that could be rendered in Internet Explorer. For this test,

we used a local copy of a large (1.5MB) web page [3].

For the final test, we measured the time required to com-

pile and build our scanner tool using Microsoft Visual

Studio. The source code of this tool consists of 67 files

and over 17,000 lines of code. For all tests, we first ran

the benchmark on the unmodified operating system (to

obtain a baseline). Then, we enabled the kernel driver

that logs system call parameters, but did not enable any

user-mode detection processing of this output. Finally,

we also enabled our malware detector with the full set of

44 behavior graphs.

The results are summarized in Table 4. As can be

seen, our tool has a very low overhead (below 5%) for

CPU-bound benchmarks. Also, it performs well in the

I/O-bound experiment (with less than 10% overhead).

The worst performance occurs in the compilation bench-

mark, where the system incurs an overhead of 39.8%.

It may seem surprising at first that our tool performs

worse in this benchmark than in the IO-bound archive

benchmark. However, during compilation, the scanned

application is performing almost 5,000 system calls per

second, while in the archive benchmark, this value is

around 700. Since the amount of computation performed

in user-mode by our scanner increases with the number

of system calls, compilation is a worst-case scenario for

our tool. Furthermore, the more varied workload in the

compile benchmark causes more complex functions to be

evaluated. The 39.8% overhead of the compile bench-

mark can further be broken down into 12.2% for the
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Test Baseline
Driver Scanner

Score Overhead Score Overhead

7-zip (benchmark) 114 sec 117 sec 2.3% 118 sec 2.4%

7-zip (compress) 318 sec 328 sec 3.1% 333 sec 4.7%

7-zip (archive) 213 sec 225 sec 6.2% 231 sec 8.4%

IE - Rendering 0.41 page/s 0.39 pages/s 4.4% 0.39 page/s 4.4%

Compile 104 sec 117 sec 12.2% 146 sec 39.8%

Table 4: Performance evaluation.

kernel driver, 16.7% for the evaluation of complex func-

tions, and 10.9% for the remaining user-mode process-

ing. Note that the high cost of complex function evalu-

ation could be reduced by improving our symbolic exe-

cution engine, so that less complex functions need to be

evaluated. Furthermore, our prototype implementation

spawns a new process every time that the verification of

complex dependencies is triggered, causing unnecessary

overhead. Nevertheless, we feel that our prototype per-

forms well for common tasks, and the current overhead

allows the system to be used on (most) end user’s hosts.

Moreover, even in the worst case, the tool incurs signifi-

cantly less overhead than systems that perform dynamic

taint propagation (where the overhead is typically several

times the baseline).

4.3 Examples of Behavior Graphs

To provide a better understanding of the type of behavior

that is modeled by our system, we provide a short de-

scription of two behavior graphs extracted from variants

of the Agent and Allaple malware families.

Agent.ffn.StartService. The Agent.ffn variant

contains a resource section that stores chunks of binary

data. During execution, the binary queries for one of

these stored resources and processes its content with a

simple, custom decryption routine. This routine uses a

variant of XOR decryption with a key that changes as

the decryption proceeds. In a later step, the decrypted

data is used to overwrite the Windows system file

C:\WINDOWS\System32\drivers\ip6fw.sys.

Interestingly, rather than directly writing to the file,

the malware opens the \\.\C: logical partition at

the offset where the ip6fw.sys file is stored, and

directly writes to that location. Finally, the malware

restarts Windows XP’s integrated IPv6 firewall service,

effectively executing the previously decrypted code.

Figure 3 shows a simplified behavior graph that cap-

tures this behavior. The graph contains nine nodes,

connected through ten dependencies: six simple de-

pendencies representing the reuse of previously ob-

Figure 3: Behavior graph for Agent.fnn.

tained object handles (annotated with the parameter

name), and four complex dependencies. The com-

plex dependency that captures the previously described

decryption routine is indicated by a bold arrow in

Figure 3. Here, the LockResource function pro-

vides the body of the encrypted resource section. The

NtQueryInformationFile call provides informa-

tion about the ip6fw.sys file. The \\.\C: logical par-

tition is opened in the NtCreateFile node. Finally,

the NtWriteFile system call overwrites the firewall

service program with malicious code. The check of the

complex dependency is triggered by the activation of the

last node (bold in the figure).

Figure 4: Behavior graph for Allaple.b.
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Allaple.b.CreateProcess. Once started, the

Allaple.b variant copies itself to the file

c:\WINDOWS\system32\urdvxc.exe. Then,

it invokes this executable various times with differ-

ent command-line arguments. First, urdvxc.exe

/installservice and urdvxc.exe /start

are used to execute stealthily as a system service.

In a second step, the malware tries to remove its

traces by eliminating the original binary. This is done

by calling urdvxc.exe /uninstallservice

patch:<binary> (where <binary> is the name

of the originally started program).

The graph shown in Figure 4 models part of

this behavior. In the NtCreateFile node, the

urdvxc.exe file is created. This file is then in-

voked three times with different arguments, resulting

in three almost identical subgraphs. The box on the

right-hand side of Figure 4 is an enlargement of one

of these subgraphs. Here, the NtCreateProcessEx

node represents the invocation of the urdvxc.exe

program. The argument to the uninstall com-

mand (i.e., the name of the original binary) is sup-

plied by the GetModuleFileName function to the

NtCreateThread call. The last NtResumeThread

system call triggers the verification of the complex de-

pendencies.

5 Limitations

In this section, we discuss the limitations and possible

attacks against our current system. Furthermore, we dis-

cuss possible solutions to address these limitations.

Evading signature generation. A main premise of our

system is that we can observe a sample’s malicious ac-

tivities inside our system emulator. Furthermore, we re-

quire to find taint dependencies between data sources and

the corresponding sinks. If a malware accomplishes to

circumvent any of these two required steps, our system

cannot generate system call signatures or find a starting

point for the slicing process.

Note that our system is based on an unaccelerated ver-

sion of Qemu. Since this is a system emulator (i.e., not

a virtual machine), it implies that certain trivial means of

detecting the virtual environment (e.g., such as Red Pill

as described in [36]) are not applicable. Detecting a sys-

tem emulator is an arms race against the accuracy of the

emulator itself. Malware authors could also use delays,

time-triggered behavior, or command and control mech-

anisms to try to prevent the malware from performing

any malicious actions during our analysis. This is indeed

the fundamental limitation of all dynamic approaches to

the analysis of malicious code.

In maintaining taint label propagation, we imple-

mented data and control dependent taint propagation and

pursue a conservative approach to circumvent the loss of

taint information as much as possible. Our results show

that we are able to deal well with current malware. How-

ever, as soon as we observe threats in the wild targeting

this feature of our system, we would need to adapt our

approach.

Modifying the algorithm (input-output) behavior.

Our system’s main focus lies on the detection of data

input-output relations and the malicious algorithm that

the malware author has created (e.g., propagation tech-

nique). As soon as a malware writer decides to imple-

ment a new algorithm (e.g., using a different propagation

approach), our slices would not be usable for the this new

malware type. However, note that completely modifying

the malicious algorithms contained in a program requires

considerable manual work as this process is difficult to

automate. As a result, our system raises the bar signif-

icantly for the malware author and makes this process

more costly.

6 Related Work

There is a large number of previous work that studies the

behavior [34, 37, 42] or the prevalence [31, 35] of differ-

ent types of malware. Moreover, there are several sys-

tems [6, 47, 53, 54] that aid an analyst in understanding

the actions that a malware program performs. Further-

more, techniques have been proposed to classify mal-

ware based on its behavior using a supervised [39] or

unsupervised [5, 7] learning approach. In this paper, we

propose a novel technique to effectively and efficiently

identify malicious code on the end host. Thus, we focus

on related work in the area of malware detection.

Network detection. One line of research focuses on

the development of systems that detect malicious code

at the network level. Most of these systems [20, 32, 33]

use content-based signatures that specify tokens that are

characteristic for certain malware families. Other ap-

proaches check for anomalous connections [19] or for

network traffic that has suspicious properties [49]. While

network-based detection has the advantage that a single

sensor can monitor the traffic to multiple machines, there

are a number of drawbacks. First, malware has signifi-

cant freedom in altering network traffic, and thus, evade

detection [17, 46]. Second, not all malware programs

use the network to carry out their nefarious tasks. Third,

even when an infected host is identified, additional action

is necessary to terminate the malware program.
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Static analysis. The traditional approach to detecting

malware on the end host (which is implemented by anti-

virus software) is based on statically scanning executa-

bles for strings or instruction sequences that are char-

acteristic for a malware sample [46]. These strings are

typically extracted from the analysis of individual pro-

grams. The problem is that such strings are typically spe-

cific to the syntactic appearance of a certain malware in-

stance. Using code polymorphism and obfuscation, mal-

ware programs can alter their appearance while keeping

their behavior (functionality) unchanged [11, 46]. As a

result, they can easily evade signature-based scanners.

As a reaction to the limitations of signature-based de-

tection, researchers have proposed a number of higher-

order properties to describe executables. The hope is

that such properties capture intrinsic characteristics of

a malware program and thus, are more difficult to dis-

guise. One such property is the distribution of character

n-grams in a file [26, 27]. This property can help to iden-

tify embedded malicious code in other files types, for ex-

ample, Word documents. Another property is the control

flow graph (CFG) of an application, which was used to

detect polymorphic variants of malicious code instances

that all share the same CFG structure [8, 24]. More so-

phisticated static analysis approaches rely on code tem-

plates or specifications that capture the malicious func-

tionality of certain malware families. Here, symbolic ex-

ecution [25], model checking [21], or techniques from

compiler verification [13] are applied to recognize arbi-

trary code fragments that implement a specific function.

The power of these techniques lies in the fact that a cer-

tain functionality can always be identified, independent

of the specific machine instructions that express it.

Unfortunately, static analysis for malware detection

faces a number of significant problems. One problem is

that current malware programs rely heavily on run-time

packing and self-modifying code [46]. Thus, the instruc-

tion present in the binary on disk are typically different

than those executed at runtime. While generic unpack-

ers [40] can sometimes help to obtain the actual instruc-

tions, binary analysis of obfuscated code is still very dif-

ficult [30]. Moreover, most advanced, static analysis ap-

proaches are very slow (in the order of minutes for one

sample [13]). This makes them unsuitable for detection

in real-world deployment scenarios.

Dynamic analysis. Dynamic analysis techniques de-

tect malicious code by analyzing the execution of a pro-

gram or the effects that this program has on the platform

(operating system). An example of the latter category is

Strider GhostBuster [51]. The tool compares the view of

the system provided by a possible compromised OS to

the view that is gathered when accessing the file system

directly. This can detect the presence of certain types of

rootkits that attempt to hide from the user by filtering the

results of system calls.

The work that most closely relates to our own is

Christodorescu et al. [12]. In [12], malware specifica-

tions (malspecs) are extracted by contrasting the behav-

ior of a malware instance against a corpus of benign be-

haviors. Similarly to our behavior graphs, malspecs are

DAGs where each node corresponds to a system call in-

vocation. However, malspecs do not encode arbitrary

data flow dependencies between system call parameters,

and are therefore less specific than the behavior graphs

described in this work. As discussed in Section 4, us-

ing behavior graphs for detection without verifying that

complex dependencies hold would lead to an unaccept-

ably large number of false positives.

In [22], a dynamic spyware detector system is pre-

sented that feeds browser events into Internet Explorer

Browser Helper Objects (i.e., BHOs – IE plugins) and

observes how the BHOs react to these browser events.

An improved, tainting-based approach called Tquana is

presented in [16]. In this system, memory tainting on a

modified Qemu analysis environment is used to track the

information that flows through a BHO. If the BHO col-

lects sensitive data, writes this data to the disk, or sends

this data over the network, the BHO is considered to be

suspicious. In Panorama [54], whole-system taint anal-

ysis is performed to detect malicious code. The taint

sources are typically devices such as a network card or

the keyboard. In [44], bots are detected by using taint

propagation to distinguish between behavior that is ini-

tiated locally and behavior that is triggered by remote

commands over the network. In [29], malware is de-

tected using a hierarchy of manually crafted behavior

specifications. To obtain acceptable false positive rates,

taint tracking is employed to determine whether a behav-

ior was initiated by user input.

Although such approaches may be promising in terms

of detection effectiveness, they require taint tracking on

the end host to be able to perform detection. Track-

ing taint information across the execution of arbi-

trary, untrusted code typically requires emulation. This

causes significant performance overhead, making such

approaches unsuitable for deployment on end user’s ma-

chines. In contrast, our system employs taint tracking

when extracting a model of behavior from malicious

code, but it does not require tainting to perform detec-

tion based on that model. Our system can, therefore, ef-

ficiently and effectively detect malware on the end user’s

machine.

Dialog rewriting. In their technical report [9], the au-

thors present Rosetta, a system that extracts relation-

ships (transformation functions) between input and out-

put fields of network protocols. These relationships are
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important to be able to compute the correct values of dy-

namic fields when performing protocol replay or NAT

rewriting. To extract transformation functions, the au-

thors use binary analysis, dynamic program slicing, and

symbolic execution. Their approach resembles the tech-

niques that we use for inferring complex dependencies

between system call arguments. Of course, there are

also significant differences between their work and ours.

First, the problem domain and the goals of the two sys-

tems are entirely different. Second, we use symbolic ex-

ecution as an optimization step and can execute functions

(slices) even when no symbolic formula can be found.

7 Conclusion

Although a considerable amount of research effort has

gone into malware analysis and detection, malicious

code still remains an important threat on the Internet to-

day. Unfortunately, the existing malware detection tech-

niques have serious shortcomings as they are based on in-

effective detection models. For example, signature-based

techniques that are commonly used by anti-virus soft-

ware can easily be bypassed using obfuscation or poly-

morphism, and system call-based approaches can often

be evaded by system call reordering attacks. Further-

more, detection techniques that rely on dynamic analysis

are often strong, but too slow and hence, inefficient to be

used as real-time detectors on end user machines.

In this paper, we proposed a novel malware detec-

tion approach. Our approach is both effective and effi-

cient, and thus, can be used to replace or complement

traditional AV software at the end host. Our detection

models cannot be easily evaded by simple obfuscation or

polymorphic techniques as we try to distill the behavior

of malware programs rather than their instance-specific

characteristics. We generate these fine-grained models

by executing the malware program in a controlled envi-

ronment, monitoring and observing its interactions with

the operating system. The malware detection then oper-

ates by matching the automatically-generated behavior

models against the runtime behavior of unknown pro-

grams.
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