
Institut Euŕecom
Department of Mobile Communications

2229, route des Crêtes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-09-235

Computer Aided Design of a Firmware Flashing Protocol
for Vehicular On-Board Networks

September 28th, 2009

Muhammad Sabir Idrees, Yves Roudier

Tel : (+33) 4 93 00 81 90
Fax : (+33) 4 93 00 82 00

Email : {Muhammad-sabir.idrees, Yves.roudier}@eurecom.fr

1Institut Euŕecom’s research is partially supported by its industrial members: BMW Group Re-
search & Technology - BMW Group Company, Bouygues Télécom, Cisco Systems, France Télécom,
Hitachi Europe, SFR, Sharp, STMicroelectronics, Swisscom, Thales.

Computer Aided Design of a Firmware Flashing Protocol
for Vehicular On-Board Networks

Muhammad Sabir Idrees, Yves Roudier

Abstract

Vehicular On-Board Networks consist of up to 70 electronic control units
(ECUs) interconnected by buses and gateways and organized within domains
with different trust levels. This paper describes how the design of a protocol
for deploying a new firmware onto various vehicular ECUs might be auto-
mated. In particular, such a protocol should prevent attacks to the firmware
update process and make sure that no malicious firmware is actually installed
in place of a regular firmware update, despite the fact that itmay be sent
through insecure domains. Designing security protocols for ECU commu-
nication in such architectures can become quite complex anderror-prone,
especially given the computational and deployment constraints that apply in
the domain. This paper discusses how the protocol designer might receive
some help in exploring fundamental design decisions based on the system-
atic review of alternative security architectures and potential threats.

Index Terms

Vehicular on-Board Network, Protocol Design, Security Properties

Contents

1 Introduction 1

2 Design Methodology 2
2.1 Attacker Model . 3
2.2 Threat Analysis . 3
2.3 Security Requirements . 4

3 Specifying the Design Space 5
3.1 System Representation . 5
3.2 Introducing the Security Expertise 6
3.3 Discussion . 7

4 Firmware Flashing Protocol Design 8

5 Related work 9
5.1 Design of Firmware Update Protocols 9
5.2 Prolog Based Protocol Verifiers 10

6 Conclusion and Future Work 11

7 Acknowledgments 11

v

List of Figures

1 On-Board Reference Architecture [1] 1
2 Attacks on Firmware Flashing Process [2] 4
3 Functional View of Firmware Flashing Process 8

vi

1 Introduction

Future visions of road transportation include networked vehicles and intelli-
gent transport systems (ITS) that will enhance the safety of drivers and other road
users. The on-board network of these vehicles contains more than 70electronic
control units (ECUs), electronic sensorandelectronic actuatorsinterconnected by
buses and organized in different domains. Depending on the communicationtask
and system requirements such as flexibility, modularity, scalability, and fault detec-
tion properties, each domain control unit define separate communication network
topology and use different Bus system i.e. LIN, CAN, FlexRay or MOST as shown
in Figure 3.

Numerous firmwares are installed in the ECUs to enable various functional-
ities, for instant vehicle control or maneuverability. In order to verify the state
of the vehicle (system functionality, security), regular firmware diagnosisand up-
dates are required. As of now, the firmware diagnosis and update process is done
off-board, by connecting (hardwired) a diagnosis tool with the on-board network
and performing firmware updates. However, in the future, it will be possible to
perform remote diagnosis and the remote flashing. This will provide several ad-
vantages over hardwired access, such as faster firmware updates, timesaving and
it will improve the efficiency of the system by installing firmware updates as soon
as they are released by the car manufactures.

Figure 1: On-Board Reference Architecture [1]

The remote firmware flashing [1] process relies on a diagnosis request remotely
sent by a service station to the Communication Unit (CU) of an on-board network.
A possible consequence of diagnosis would be the update of firmware issued by
the car manufactures, to improve the functionality of the system. A diagnosis tool
requests the information it needs from the ECU (ECU type, firmware version, etc)
in order to update the firmware.

1

Most existing solutions for implementing firmware update protocols rely on
the development of the lightweight security protocols over the air (SFOTA) [3] and
developing a framework for self-verification of the firmware update [4],in order to
provide end-to-end security. Although these solutions provide a securefirmware
update on a wireless link moreover, the verification of the correct firmwareby using
virtualization techniques. These solution does not consider the impact of firmware
updates on the whole system architecture of the vehicle, e.g., in [3], symmetric
encryption technique is used and it does not deal with key management issues.
Several assumptions regarding trust relationship between vehicle and portal1 are
made, such as that the portal always sends the correct firmware. Furthermore these
approaches do not consider the intrusion and denial of service attackson vehi-
cle and portal. However, there are numerous scenarios, where an attacker attacks
one or both, the portal (service station in our use case) system and the vehicle’s
on-board network, in order to harm driver, gaining information about the driver, fi-
nancial gains, gain information about vehicle manufacturer’s technologyor to gain
personal advantages. Several attacks are identified in [2] for on-board vehicular
network, i.e., gaining access to other domains of the on-board network, theservice
station injects bogus authority keys into the ECU which compromise the overall
security of vehicular on-board architecture.

The design of security protocols for such an architecture can become quite
complex and error-prone, especially when information flows from different trusted
to untrusted domains and vice versa. Our solution to these problem relies on the
development of an expert system for firmware flashing protocols. It is still un-
der development, but it has been able to guide the system architecture designer to
consider possible design solutions to implement firmware flashing protocol. These
design solutions will prevent the development of inconsistent security solutions
and eventually reduce the computation and deployment constraints.

The remainder of this paper is structured as follows. Section II discussesthe
design methodology. In section III, discusses the design space specification. Sec-
tion IV describes related work. Section V presents the future work and Section VI
concludes the paper.

2 Design Methodology

The design of security system usually requires a fully specified system archi-
tecture and it should consider all possible critical situations, indeed, ignoring even
single security factor can lead toward inconsistent security solutions. In order to
consider critical situations during firmware flashing process, we perform an at-
tacker model and threat analysis. Based on attacks and threat analysis,we specify
several security requirements to secure firmware flashing and to ensureoverall sys-
tem security.

1The portal is the central unit surrounded by the vehicles, communicateswith the vehicles over
the wireless connection.

2

2.1 Attacker Model

There are two possible ways to attack vehicular on-board network, through
firmware flashing process [2].

• Attacker abuse the flashing itself in a service station (workshop).

• Gaining access to the Communication Unit (CU) through different resources,
i.e., internet access or personalizing the car.

An attack tree [5] approach is used to capture possible attacks against vehicular
on-board network. Some scenarios of attacks could be that an attacker abuses
the flashing itself in a service station and installs modified firmware into on-board
ECU. On the vehicle side, even if all security checks (authenticity, integrity,con-
fidentiality, etc) are performed, the attacker can get access to other domains of the
on-board network. The attacker can also get access to the Communication Unit by
exploiting vulnerabilities in protocol implementation. If it is not the case, it is still
possible to attack Communication Unit via the Head Unit through internet access
or personalizing the car with external devices such as PDA, Laptop, etc,to abort
the firmware flashing. Another possible attack could be injecting bogus authority
keys into ECUs, which allows the attacker to send fake messages to other domains
within the on-board network or broadcasting the fake warning messages toother
vehicles and Roadside Units (RSU). More detailed attacks on vehicle on-board
network, during firmware flashing process, are shown in Figure 2.

2.2 Threat Analysis

Threat analysis is performed in order to identify the most significant assetsun-
der attack and the level of risk posed by potential attacks on the vehicular on-board
network. The level of risk is defined by the severity of the attack and the probabil-
ity of an attack to be successfully performed. As mentioned in [2], severity of an
attack is measured with respect to operational, safety, privacy and financial aspects
whereas probability of success of an attack depends on the attack potential such as
expertise, knowledge about the vehicle on-board system and the time required to
perform the attack. For example, in order to attack the firmware flashing process,
the attacker should be an expert, that has knowledge about the underlying algo-
rithms, protocols, hardware structure, security behavior, principle andconcepts of
security employed in vehicle on-board network. Depending on the attack poten-
tial (basic, enhanced basic, moderate, high or beyond high) an attackercan attack
on-board assets such as Powertrain Controller, Powertrain peripheral, Head Unit,
In-car Sensors, Chassis&Safety controller and the Communication Unit. Thepur-
pose of threat analysis is to determine and classify the attack potential for each
attack identified in the Figure 2, and to give threat analysis as an input to the expert
system.

3

OBD Flashing Attack

Garage installs modified
 firmware to CU/ECUs

Garage gains access to
 Communication Unit

Abort flashing operation

Reverse Engineering

Flash your own firmware

Faulty or no firmware authentication

Inject bogus authority keys in ECU

Exploit vulnerability
 in flashing protocol

 implementation

Infected CU
 shutting down
 communication

Infected CU reports bogus/more recent version of ECU/firmware

In-Car ECU
(disable or Denial of Service)

Infected ECU not
 responding

CU takes too long
 to respond (timeout)

In-car Communications
(listen, intercept, alter, inject, replay)

Attacker injects wrong firmware version on the domain bus

In-car Communications
(listen, intercept, alter, inject, replay)

Intercept Clear text firmware on domain Bus or backbone

In-car Communications
(listen, intercept, alter, inject, replay)

Man In Middle attack

In-car Communcations
(exploit vulnerability or implementation error)

Rekeying protocol vulnerability

In-car Communcations
(corrupt or fake messages)

In-car Communcation
(exploit vulnerability or implementation error)

HU-CU protocol

Wireless Communcation
(exploit vulnerability or implementation error)

C2C/C2I protocol

Communications Unit (denial of service)
Infected ECU sending too many messages to CU

In-car interfaces
(access)

Bus Probing

Hijacking the authentic session

Figure 2: Attacks on Firmware Flashing Process [2]

2.3 Security Requirements

An analysis of attack tree shows that specific attacks may contribute to differ-
ent attack objective and into different attacks. Several security requirements are
defined to perform secure firmware flashing and to protect overall system against
attacks. These security requirements are the following:

• Code Origin Authenticity: This requirement will ensure that, whenever a
flashing command is sent to ECU, the origin of code is ensured. The receiver
can verify that the received firmware is really from car manufacturer. This
requirement will prevent attacks from installing faulty firmwares.

• Message Source Authenticity: This security requirement will ensure that,
whenever a message arrives at vehicle reception, i.e., the Communication
Unit, message source is authentic.

• Code Integrity: This security requirement will ensure that the firmware data,
received as an update, has not been modified since it left the manufacturer

4

servers. This requirement will prevent attacks from installing faulty or mod-
ified firmware into the ECU.

• Flashing Command Integrity: Whenever ECU receives flashing command
request, the integrity of flashing command must be ensured in order to pre-
vent attacks against sending fake commands for firmware flashing.

• Firmware Data Confidentiality: This requirement will ensure that the firmware
data should remain confidential, when updates are distributed by the manu-
facturer.

• Firmware Update Confidentiality: This requirement will ensure that the at-
tacker should not gain information out of the flashing process about the ver-
sion of firmware being installed or the ECU being updated.

• ECU/CU Availability : This requirement will ensure that the CPU, RAM,
Bus of ECU/CU are available throughout the flashing process.

• Flashing Command Freshness: This requirement will ensure that all the
command sent to the ECU for firmware flashing, possess freshness property.

3 Specifying the Design Space

Analyzing the design of an embedded system like a vehicular on-board net-
work requires combining multiple information about its architecture. This includes
the description of the individual domains and bus systems, the network topology
defined in each domain, the ECUs available, information flow among different
domains and information about external devices (e.g., mobile phones, PDA,lap-
top, Diagnosis Tool), etc. whose interconnection is forming the on-board network.
This collection of information will form the basis for the expertise driven process
of specifying security solutions.

3.1 System Representation

The Prolog language [6] introduces a fairly declarative way of describing and
matching logical patterns2 and has long been used both as a prototyping tool and
as a way to verify logical properties. We decided to introduce descriptionsabout
the architecture of vehicular systems and the assumptions made at design time
using this language for both objectives, as well as an expert system forintroduc-
ing security-related design principles. All such information forms a knowledge
base as presented in the listings below. Prolog facts are used to state features
and properties that are unconditionally true for on-board networks. For instance,
extCom(’DT’,’CU’) states that CU communicates with an external entity DT.
Different security properties can also be specified using Prolog fact expression.

2Prolog also can handle numerical constraints, which we don’t use in this paper

5

For instance, different key sizes might be specified about encryption algorithms,
depending on their availability or security. The Prolog program and interpreter
allows the architecture designer to query the expert system in order to obtain alter-
native design solutions automatically, based on Listing 1 .

% C o m m u n i c a t i o n C h a n n e l s

extCom (’DT’ ,’CU’) .
intCom (’CU’ ,’PTC’) .
domCom(’PTC’ ,’CSC’) .
busCom (’PTC’ ,’ENG’) .
truCom (’ECU1’ ,’ECU2’) .

% N e t w o r k T o p o l o g y

ptcBusSystem (’CAN’ ,’LINE’) .
huBusSystem (’MOST’ ,’Star’) .
cscbusSys tem (’CAN’ ,’LINE’) .

% E C U P r o p e r t i e s

ecuType (’MPC555’ ,’32Bit’ ,’26K’ ,’448K’) .
ecuType (’MPC565’ ,’32Bit’ ,’64K’ ,’1.5M’) .

% E n c r y p t i o n A l g o r i t h m s

symCrypt (’3DES’ ,’48’ ,’168’ ,’64’) .
symCrypt (’AES’ ,’1032’ ,’256’ ,’128’) .
asymCrypt (’RSA’ ,’2048’ ,’123K’) .
asymCrypt (’RSA’ ,’1024’ ,’123K’) .

Listing 1: Facts and Rules about On-Board Network Architecture

3.2 Introducing the Security Expertise

The aim of the Prolog program is to allow the architecture designer to query
the expert system in order to obtain alternative design solutions automatically.

Queries can for instance be answered by combining the inference ruleflash(A,
M, B, E) and free variables using the unification mechanism of Prolog. A query
is based on one or more goals. Executing the expert system program results in
the exploration of the knowledge base using the Prolog engine and its backward
chaining inference mechanism. This approach makes it possible to determine if
precise properties are true or false, after all the requirements and constraints de-
fined about the architectures have been logically combined together. This mecha-
nism is of specific interest for us in that it derives all the system designs that are
valid under all the conditions stated in the knowledge base. For instance, thetool
can search for all situations that match with the assurance that all messagessent
from A to B are confidential, based on facts, which are assumed to be true or given,
and inference rules, which describe security best practices, technical or financial
constraints, deployment and real-time constraints, etc. In case the ECUA com-

6

municates in cleartext with ECUB, the program execution would fail and return a
negative answer.

Using Prolog as the basis for our expert system also makes it possible to evalu-
ate queries with free variables. Prolog introduces a unique pattern-matching algo-
rithm, termed unification, to explore solutions of such only partially explicit logical
statements. For instance the program might walk through goals and search for all
possible authorized messages between ECUB and ECUE.

In our example, the resolution of theflashclause starts with the evaluation of
its first statementextCom(A,M,B) which proves that a specified messageM is
sent by the sender ECUA to the receiver ECUB. The unification algorithm work
its way through the statements until it succeeds in unifying its goal with the head
rule or with a fact. If the goal cannot be unified with the facts the tool will respond
negative. The inference rules allow us to establish a multistep message path from
A to E.

% I n f e r e n c e R u l e s

f l a s h (A, M, B , E) :− extCom (A,M, B) ,
intCom (B ,M,X) , busCom (X,M, E) ,

a u t h e n t i c i t y (A,M, B) ,
i n t e g r i t y (A,M, B) ,
f r e s h n e s s (A,M, B) .

Listing 2: Security Related Inference Rules

The program in this example cares for two different concerns. The first one
deals with communication over the on-board network and aims at establishing the
data flow between A and E and at finding out what are the properties of thediffer-
ent entities involved in the implementation of a distributed function. The Prolog
program can be seen both as a specification of the system and as its simulation.
Thanks to this, threat analysis might be introduced at this stage based on theun-
folding of a scenario, although our example only describes a valid system or valid
security practices based on constructive properties. e detailed multistep message
path approach allows the expert system to consider threat analysis and identified
security requirements for each entity involved in firmware flashing process.

The architecture designer can query the tool based on facts that describe its
integrityintegrity(Sender, Message, Receiver), to ensure the code
integrity requirement for a distributed function. It can also query the tool inorder
to find the best possible place for implementing firewalls. For instance, this might
help solve questions like: can a filtering firewall be implemented at the domain
gateway level to enforce access control on the basis of the packet header or should
this be enforced through end-to-end authentication with the ECU only?

3.3 Discussion

The use of Prolog provides a design exploration mechanism almost for free but
our experience with the demonstrator shows some areas for immediate improve-

7

ment which we are working on. In particular, we plan to buffer results thatwere
proven in other analyses, which a completely declarative Prolog programdoes not
achieve; while this is not so much of a problem with purely logical rules, we ex-
pect to integrate numerical constraints to our analysis. Enumerating all possible
solutions may also be quite time consuming and we are currently working into in-
troducing heuristics to eliminate unsuccessful designs as soon as possible. Both is-
sues mean that the expert system rules cannot be as declarative as onewould hope.
In particular, automotive industry engineers should likely contribute to defining
their organization in order to fine tune the general purpose resolution mechanism
of Prolog with their strategies derived from their experience.

4 Firmware Flashing Protocol Design

The flashing protocol design specifies how the two entities, service station and
the vehicle can, securely communicate with each other and perform firmwareup-
dates without compromising the overall system security, i.e., it specifies the mes-
sages that can be interchanged and the design solutions that should be considered
during a firmware update. A comprehensive functional view for firmwareflash-
ing process is shown in figure 3, where different components exchange messages
among each other. These components are running on different on-board units.

Figure 3: Functional View of Firmware Flashing Process

TheDiagnosisConnectionInitiation component, running on the di-
agnosis interface unit, sends a connection request toDiagnosisRequestManagement
component. A connection answer is then sent and session keys are shared to allow
secure communication channel. To know which version is running on the ECU, a
ECUFirmwareinfoRequestmessage is sent toFirmwareIdentification

8

component. If the type is the expected one then the flashing session started.The
flashing tool sends a request to open a programming session toProgrammingSe-
ssionManagement component. Once the programming session is started the
flashing tool sends the encrypted new software to theFirmwareProgramming
component. At the end, the flashing tool closes the programming session at ECU
level (ProgrammingSessionManagement).

Based on the functional view model, the architecture designer queries the tool
for possible design solutions as shown in listing 3, which states that, the sender DT
sent a request toCU to update ECU firmware in the PTC domain.

% Q u e r y

?− f l a s h (DT, "Firmware Update Message" , CU, ECU−PTCDomain) .

Listing 3: Query for Firmware Flashing Design

Executing the query defined in listing 3, program results in generation of multicast
message path:DT → CU → PTC → ECU , based on the inference rules
defined in listing 2. While establishing the path, the expert system also caches
the characteristics of each entity involved in this firmware update process. This
allows the generation of firmware protocol design based on the computation and
deployment constraint of each entity. For instant, the design solution for firmware
authenticity is based on listing 4.

a u t h e n t i c i t y (A, M, E) :−
ecuTypeCheck (ECU, E) , cha r tEvu (Crypt , ECU) .

Listing 4: Inference rule for Authenticity

In this rule the authenticity clause starts with the evaluation of its first statement
ecuTypeCheck(ECU, E), which deduce the properties of received ECU then
the program walk through the next rule and evaluates the suitable cryptographic
algorithm. For example the requested ECU is MPC555, the program caches all
the property of that ECU and move to the next rule and evaluate the appropriate
cryptographic algorithm for MPC555. Based on the ECU characteristics,it returns
the RSA encryption algorithm with 2048-bit key size. The program returnsback
to the main goal, Listing 2 . In the same way the program applies other inference
rules (integrity, freshness, etc) on the firmware flashing process. In the end of
program it returns both analysis of each rule and appropriate design solution to the
architecture designer.

5 Related work

5.1 Design of Firmware Update Protocols

A security architecture for secure software upload in vehicular networkvia
wireless communication link is presented in [7]. The proposed security architec-
ture is based on the authentication key mechanisms, where keys are used to estab-
lish secure link using SSL, VPN or any secure mode. After establishing a session,

9

symmetric encryption keys are exchanged to send the software in an encrypted
form. Another solution proposed in [7] is to send multiple copies of software in
order to improve the security level of the transmitted data. After some random time
interval the supplier again establishes the link with the vehicle and sends a second
copy of the software, the vehicle compares the two copies sent by the supplier and,
if the two copies are same, vehicle sends an acknowledgment to supplier andauto-
motive company, otherwise it asks to retransmit unmatched packets. This approach
imposed several system constraints in order to ensure the secure software upload
such as memory size, bandwidth and length of encryption keys. In [3] a lightweight
protocol for secure firmware updates over the air (SFOTA) in intelligent vehicles
is proposed. In SFOTA protocol, data integrity can be achieved by forminga hash
chain, each transmitted fragment is hashed and included with the previous frag-
ment. Verifying the signature of the first hash, provides the data authentication.
In order to provide the data confidentiality, symmetric encryption (CBC mode) is
used. Furthermore the data freshness property can be also achieved by receiving
the signed packet, since each packet contains a hash of the previous packet. The
vehicle can verify the order of received packet to attain data freshness. In [4] a
framework for self-verification of firmware update over the air in vehicle ECUs is
proposed. In their work a verification code concept is included in the transmission,
integrity of firmware update can be assured by verifying the verification code. In
the verification protocol, service portal generate the random challenge,calculates
a hash chain of the firmware, and forwards verification code, firmware binary and
the challenge to the vehicle using [3] SFOTA protocol. In the vehicle, these chal-
lenges and verification codes are stored in the control system. They are accessed
by ECU using Virtulization techniques.

5.2 Prolog Based Protocol Verifiers

A Prolog based automatic cryptographic protocol verifier is proposed in [8]. A
simple intermediate representation of protocol is developed using prolog rules and
facts. In their work, an attacker concept is introduced to prove the secrecy prop-
erties, such as determining whether the attacker can get the secret or not.The key
advantage of their verifier is that the algorithm does not limit the number of runs
and, if the verifier does not find the flaw, then there is no flaw in the protocol which
provides the real security guarantees.
In [9], a model of computation for the Naval Research Laboratory (NRL) Protocol
Analyzer is presented. The main intent of this protocol analyzer is to guide the user
in proving the cryptographic protocol. A set of prolog rules and facts are used to
define the protocol. The protocol analyzer analyzes the insecure statesand give the
detail description of all possible states. Furthermore the NRL protocol analyzer
allows the user to check the reachability property. In [10], a prolog based tool:
The Interrogatoris explained. The interrogator search the security vulnerabilities
in cryptographic key distribution protocol. The protocol and all other assumptions
are specified in prolog program. During program execution, the program finds the

10

traces of message modification in the protocol and alerts user about attacks. How-
ever, these approaches provides the post analysis and verification ofimplemented
cryptographic protocols, using Prolog profile. In contrast, our approach is based on
pre-analysis of the system architecture and aims at suggesting fundamental design
solutions for implementing security protocol.

6 Conclusion and Future Work

In this paper we discussed the interest of using Prolog as an expert system
for developing a firmware flashing protocol and presented the organization of our
current prototype. The objective of this approach is to assist the protocol design-
ers in reviewing fundamental design decisions. In particular, automation makes it
possible to evaluate the most complex combinations of the system architecture, its
potential threats, security requirements, and deployment constraints (computation,
cost, performance), thereby offloading the designer from his most cumbersome
tasks. We are currently working on enhancing the performance of our expert sys-
tem implementation.

7 Acknowledgments

This work has been carried out in the EVITA (E-safety vehicle intrusion pro-
tected applications) project, funded by the European Commission within the Sev-
enth Framework Programme (FP7), for research and technological development.

References

[1] E. Kelling, M. Friedewald, M. Menzel, H. Seudie, and B. Weyl, “EVITA -
D: 2.1 specification and evaluation of e-security relevant use cases,” Tech.
Rep., Feb, 2009. [Online]. Available: http://evita-project.org/Deliverables/
EVITAD2.1v1.1.pdf

[2] A. Ruddle, Y. Roudier, S. Idrees, B. Weyl, M. Friedewald, T. Leimbach,
A. Fuchs, S. Grgens, O. Henniger, R. Rieke, M. Ritscher, H. Broberg,
L. Apvrille, R. Pacale, and G. Pedroza, “EVITA - D: 2.3 security
requirements for automotive on-board networks based on dark-side
scenarios,” Tech. Rep., March, 2009. [Online]. Available: http://
evita-project.org/Deliverables/EVITAD2.3.pdf

[3] D. Nilsson and U. Larson, “Secure firmware updates over the air in intelli-
gent vehicles,” inProc. IEEE International Conference on Communications
Workshops ICC Workshops ’08, 2008, pp. 380–384.

11

[4] D. Nilsson, L. Sun, and T. Nakajima, “A framework for self-verification of
firmware updates over the air in vehicle ECUs,” inProc. IEEE GLOBECOM
Workshops, 2008, pp. 1–5.

[5] B. Schneier, “Attack trees,”Dr. Dobb’s Journal, 1999. [Online]. Available:
http://www.schneier.com/paper-attacktrees-ddj-ft.html

[6] A. Colmerauer and P. Roussel, “The birth of prolog,”History of Programming
Languages, ACM Press / Addison-Wesley, 1996.

[7] S. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in an in-
telligent vehicle via wireless communication links,” inProc. IEEE Intelligent
Vehicles Symposium, 2005, pp. 588–593.

[8] B. Blanchet, I. Rocquencourt, and L. C. Cedex, “An efficient cryptographic
protocol verifier based on prolog rules,” inIn 14th IEEE Computer Security
Foundations Workshop (CSFW-14. IEEE Computer Society Press, 2001, pp.
82–96.

[9] C. Meadows, “A model of computation for the NRL Protocol Analyzer,” in
Proc. Computer Security Foundations Workshop VII CSFW 7, 1994, pp. 84–
89.

[10] J. Millen, S. Clark, and S. Freedman, “The interrogator: Protocolsecuity
analysis,” vol. SE-13, no. 2, pp. 274–288, 1987.

12

