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Abstract—Unfortunately, malicious software is still an un-
solved problem and a major threat on the Internet. An impor-
tant component in the fight against malicious software is the
analysis of malware samples: Only if an analyst understands
the behavior of a given sample, she can design appropriate
countermeasures. Manual approaches are frequently used to
analyze certain key algorithms, such as downloading of encoded
updates, or generating new DNS domains for command and
control purposes.

In this paper, we present a novel approach to automatically
extract, from a given binary executable, the algorithm related
to a certain activity of the sample. We isolate and extract these
instructions and generate a so-called gadget, i.e., a stand-alone
component that encapsulates a specific behavior. We make sure
that a gadget can autonomously perform a specific task by
including all relevant code and data into the gadget such that
it can be executed in a self-contained fashion.

Gadgets are useful entities in analyzing malicious software:
In particular, they are valuable for practitioners, as under-
standing a certain activity that is embedded in a binary
sample (e.g., the update function) is still largely a manual and
complex task. Our evaluation with several real-world samples
demonstrates that our approach is versatile and useful in
practice.

I. INTRODUCTION

Malicious software (malware) is the driving force behind
many of the attacks on the Internet today. For example, spam
e-mails are commonly sent via spambots, denial-of-service
attacks caused by botnets threaten the availability of hosts
on the Internet, and keyloggers steal confidential information
from infected machines.

Although malware has been around for a long time, it
has been significantly evolving in its nature. For exam-
ple, whereas malware was largely distributed as individual,
stand-alone programs ten years ago (e.g., viruses, worms), it
is now being increasingly deployed as software that can be
remotely controlled by its creators. Most malware instances
implement some kind of communication channel between
the running instance and the attacker. Typically, this channel
is used to update, control, and communicate with malicious
software. For example, the attacker can use the channel to
send a malware instance new URLs that should be advertised

via spam e-mails, new binary files that should be executed
on the compromised host, or a list of targets for logging
keystrokes. This remote configuration mechanism gives an
attacker flexible control over the infected machine. Hence,
she can arbitrarily configure the compromised host to carry
out her malicious deeds.

Understanding what actions a given sample performs is
important to be able to design corresponding countermea-
sures and mitigation techniques. For a security analyst, un-
derstanding the remote control mechanisms is especially in-
teresting as these provide valuable clues about the malware.
Unfortunately, analyzing the configuration mechanisms (and
also all the other activities of a malware binary) is a
challenging and complex task. Typically, the analyst does not
have access to the source code of the malware sample. As a
result, the analysis needs to operate on the binary executable.
Furthermore, the analysis is complicated by the fact that
the adversary can arm the binary with different kinds of
obfuscation and evasion techniques (e.g., [1], [2]) to hamper
and resist analysis. Thus, there is general consensus among
practitioners that the static analysis of malware is generally
a difficult task [3].

Because of the shortcomings of static techniques, dynamic
analysis techniques are often used in practice. However, dy-
namic analysis also has some limitations (e.g., execution of
a single path, identification of virtual environments, etc.) [4],
[5]. Furthermore, such systems do not provide support for
automatically extracting the configuration mechanism or
other aspects of a sample under analysis.

In practice, a human analyst often needs to spend a consid-
erable amount of time manually decoding and analyzing the
malware sample in order to understand the key algorithms
embedded in the sample. An example for such a key
algorithm is the domain generation algorithm of malware
samples that use domain flux [6]. With domain flux, each bot
periodically generates a list of domains that are then used
to contact the attacker. As the attacker knows the domain
generation algorithm, she can set up an infrastructure and
register these domains in advance. During the analysis, the
analyst is interested in extracting these embedded algorithms



such that she can also precompute the domains that will be
used in the future [7].

Another example of a key algorithm that needs to be man-
ually analyzed is the decoding function that is embedded in a
sample. The malware uses this function to decode obfuscated
configuration files [8]. With the decoding function at hand,
the analyst can decode and analyze spam templates that are
sent to the malware.

In this paper, we aim at improving the state of the art by
presenting a novel approach to automatically extract from a
given malware binary the instructions that are responsible for
a certain activity of the sample. We term these instructions
a gadget since they encapsulate a specific behavior that
can autonomously perform a particular task. The key idea
behind our approach is that the malware binary itself has to
contain all necessary instructions to perform the malicious
operations that we are interested in. Hence, if we are able to
isolate and extract these instructions (i.e., gadgets) in such a
way that we can reuse them again in another application, we
can perform a specific task of the malware (e.g., download
the current set of URLs that should be advertised in spam
mails) in a self-contained way, without the need of executing
the whole malware binary. Note that we do not need to
understand the behavior of the malware. We can simply
reuse the code extracted from the sample.

To achieve this goal, we have implemented a tool called
INSPECTOR (abbreviation for Inspector Gadget) that au-
tomatically extracts gadgets from a given malware binary.
In a first phase, INSPECTOR performs dynamic program
slicing [9] on the malware binary to extract a slice (i.e.,
an algorithm) with “interesting” behavior. This could be,
for example, a slice that downloads a piece of binary data
from the Internet, deobfuscates this data to obtain a binary
executable, and then writes this file to the hard disk.

Clearly, applying program slicing to malicious input is
a difficult task. However, we show in several case studies
that INSPECTOR can indeed handle common obfuscation
techniques such as binary packing or self-modifying code
found in real-world malware. Note that we extract com-
plete algorithms from the binary. This is more complex
and difficult than only extracting specific functions (such
as in [10]) since we need to consider all dependencies
between functions, their side-effects, and relevant auxiliary
instructions (e.g., stack manipulation, or loops).

In a second phase, INSPECTOR generates a stand-alone
gadget based on the extracted algorithm. This gadget can
then be executed to perform the specific task that was
embedded into the malware binary. During the gadget gen-
eration process, we recursively include all intermediate code
and additional data regions such as global variables into the
gadget (i.e., closure analysis). All extracted memory regions
are relocated such that we can later on execute the extracted
code in another environment, the so called gadget player.

The gadgets we generate can perform all necessary actions
that the original function embedded in the malware sample
is to perform. That is, we do not need additional helper
applications to relay the traffic between the extracted code
and the network (e.g., such as network proxies as in [10]).

The case studies we used in our evaluation demonstrate
that the gadgets we automatically generate provide the same
malicious functionalities that were originally embedded into
the malware samples. For example, we show that we can
generate a gadget that autonomously downloads data from
the network, and decodes it using a proprietary algorithm to
obtain an executable. Another gadget we extracted enables
us to decode encrypted network traffic. Furthermore, our
transformation enables an analyst to influence the behavior
of a given gadget by manipulating the function calls invoked
by the extracted code. Using this feature, the analyst can
perform a deeper analysis of the malicious functionality
provided by the gadget. For example, she can intercept date
checks, and return arbitrary values to the gadget to determine
the effect on the execution.

In practice, executing extracted gadgets instead of the
original malware has the following important advantages:

• Since we are dealing with malicious software, the
sample is potentially harmful. If we can extract only
the parts relevant to a certain computation and execute
them in a stand-alone fashion, we reduce our exposure
to the malicious code.

• We can immediately carry out a certain operation the
malware performs, instead of requiring to wait for time-
outs, sleep operations, or commands that are sent over
the command and control server.

• We can identify in-memory buffers that hold decrypted
data. These can be extracted easily with the help of the
gadget compared to running the sample in a debugging
environment, and manually inspecting memory.

Further, we also show how some gadgets can be inverted.
That is, we can use a gadget as a black box to compute what
specific input causes a given output. Inverting gadgets is use-
ful in many real-world scenarios. For example, inversion can
be invaluable for automatically decoding a network trace that
was encoded by a specific malware sample under analysis.
In this work, we show how INSPECTOR can use optimized
brute-forcing techniques to compute these inverse gadgets,
and demonstrate with the help of a practical example the
usefulness of this technique.

In summary, we make the following contributions:

• We propose and implement a novel approach to en-
hance malware analysis. The core idea is to automati-
cally extract self-contained, proprietary algorithms from
a malware sample that can then be reused to execute
the specific malicious functionality embedded in the
sample.



• We introduce a technique to transform the extracted
algorithm into a stand-alone executable (that we denote
a gadget). This is a challenging task since we need
to handle all dependencies (e.g., global variables and
auxiliary instructions), and also relocate all code.

• We discuss how gadgets can be inverted. That is, we
show how we can use a given gadget to compute the
input for an observed output. This technique is useful,
for example, for automatically decrypting an obfuscated
network trace that the malware generates.

• To demonstrate the practical feasibility of our approach,
we present several case studies with real-world malware
samples from different families (e.g., spam bots, key-
loggers, etc.). The experiments support our thesis that
gadget code can be reused, while only requiring a very
limited amount of manual analysis.

II. SYSTEM OVERVIEW

In this section, we first briefly review the problem we
are attacking, and provide a high-level overview of our
approach.

A. Problem Definition

The problem of gadget extraction is defined as follows:
Given a binary of a malicious sample and an interesting
behavior that we have identified during its execution, we
would like to extract this behavior as a stand-alone code
fragment with all its instructions and data dependencies.
Furthermore, when starting the code execution of this self-
contained application, care needs to be taken to isolate the
gadget from the rest of the system so that it cannot exhibit
any unexpected and unforeseen malicious behavior (e.g.,
such as attacking the analysis environment).

B. System Overview

The gadget extraction process implemented by INSPEC-
TOR consists of three consecutive phases: Dynamic analysis,
gadget extraction, and gadget playback. The overall process
is illustrated in Figure 1 in a schematic way.

In order to obtain an initial overview of the behavior
exhibited by the malware sample, in a first step, we execute
the sample in an analysis environment, specifically in a
dynamic analysis sandbox [11]. This step provides us with
a detailed overview of the actions performed by the sample.
Besides logging all system activity such as network commu-
nication, file activities (such as created or modified files), and
process interaction, the sandbox also performs detailed taint
tracking analysis [12]. At the end of the dynamic analysis
phase, we obtain a set of log files that contain all collected
information. Using these log files as a starting point, we can
then query the execution run for “interesting” behavior. In
this work, we focus on configuration mechanisms of modern
malware. Hence, a behavior that is interesting from our point
of view would be the download and subsequent decoding

of a malware binary. Also, the generation of domains that
are relevant to the communication channel between the
malware and the attacker would be worth analyzing. Besides
the semi-manual, guided finding of starting points for the
extraction of gadgets, we also implemented two heuristics
to automatically identify these interesting behaviors (see
Section III-C2 for details).

In a second step, our tool automatically extracts all the
code responsible for the interesting behavior exhibited by the
analyzed binary. The starting point of the extraction process
is a sink that specifies when an interesting behavior has
been observed. Commencing at this position, we perform
backward binary program slicing and forward searching [9],
[13]. For example, writing tainted data to the hard disk and
then executing this data indicates an update process of the
malware. The sink would be the creation of a new file. We
would then search backwards for all instructions related to
the creation of the file (including all network communication
and the decoding process), and extract all related code and
data. The collected taint information can be used to link
all invocations of library or system calls that provide data
that is propagated into the calls. These invocations, together
with intermediate code and necessary data regions, are then
extracted into the gadget.

In a third step, INSPECTOR provides a gadget player to
enable a security analyst to execute the extracted gadgets.
This program can be used to re-invoke the behavior, and it
integrates the gadget into the running environment. Similar
to per-process virtual machines [14], the gadget player serves
as a thin layer between the gadget and the environment, pro-
viding dynamic data such as network input or file contents
to the gadget. Thus, we can reuse the extracted behavior and
execute specific tasks as if the complete malware binary is
being run. For example, the extracted gadget can be used
to contact the update server of a given malware sample,
and download and decode the newest version of the original
malicious code – without the need of executing the malware
binary. The gadget player also applies strict policies for files
the gadgets are allowed to access. It also has detailed logging
capabilities on calls to the environment and memory.

To ease the management of generated gadgets, we main-
tain a gadget repository, in which all extracted gadgets are
stored such that they can also be used later on.

III. AUTOMATED EXTRACTION OF ALGORITHMS

In this section, we present details on finding and extracting
behavior from running samples. First, we explain how we
perform detailed analysis that provides INSPECTOR with the
required log files, and allows a human analyst to select
behavior that she is interested in. Second, we discuss the
behavior extraction process. We use a running example
throughout the rest of the paper to illustrate the details of
our technique.
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Figure 1. Schematic overview of gadget extraction process: (1) Execute the binary in analysis environment, perform dynamic analysis including taint
tracking. (2) Extract gadget that represents specific behavior, intermediate code and additional data regions are extracted as well. (3) Gadgets can be
autonomously executed within gadget player to perform a specific task.

A. Running Example

To illustrate the inner working of INSPECTOR, we explain
the underlying concepts with the help of a running example,
and the following settings: The malware binary we wish
to analyze downloads a file from a static domain and a
static URL. Since the downloaded file is encrypted, the
malware first needs to decode the binary. Once this is
finished, the downloaded file is executed. This is a popular
update mechanism, a task often encountered when analyzing
malware. We wish to extract from the given malware sample
a gadget that encapsulates all these tasks in a stand-alone
fashion. In later sections, we will extend this basic example
as needed.

B. Generating Activity Logs

INSPECTOR first executes the malicious binary inside an
analysis environment in order to gain an initial overview of
the activities exhibited by the sample. Specifically, we use
ANUBIS, a tool that performs dynamic malware analysis
based on an instrumented processor emulator [15], [16].
The version of ANUBIS we use already implements some
advanced features such as taint analysis, and the recording
of all executed instructions [17]. We extended the tool to
meet our specic analysis needs.

Besides concealing malicious behavior inside a safe envi-
ronment, the analysis environment enables us to perform de-
tailed taint analysis during the execution run. ANUBIS marks
each byte returned by a system call with a unique label, and
then keeps track of how labels are propagated during the
program execution [12]. This enables us to observe how the
input and output of different calls are related, and we are
able to link individual computations. During the inversion
of gadgets (see Section V), this detailed taint analysis is
necessary to detect the interrelationship between all inputs of

an output. The collected taint information is stored together
with all arguments passed to and obtained from the operating
system via library, or system calls in the log files.

Note that we also keep track of all disassembled instruc-
tions executed by the program, as well as the instruction flow
(i.e., the sequence in which blocks of code and API functions
are executed). These log files, which we call instruction
and flow log, ease the later analysis of obfuscated malware.
More precisely, we are able to analyze packed, or self-
modifying binaries, reason about which conditional branches
were executed, and keep track of statically undecidable call
targets. To further aid the analysis process, we also record
all memory accesses by the program and generate memory
dumps of active pages during the program’s execution.

A human analyst can use the generated analysis report to
manually find the behavior she is interested in. For example,
she may ask a question such as “What activity leads to
the creation of this specific file?” Once she has spotted an
interesting behavior in the analysis report, she can instruct
INSPECTOR to extract a gadget related to this activity. The
tool then analyzes all the collected log files and extracts
from them the corresponding algorithm. Besides this semi-
manual, guided extraction of gadgets, we also developed
two heuristics to automatically locate activity that is worth
investigating (see discussion in Section III-C2).

C. Selecting and Extracting Algorithms

As explained above, INSPECTOR can map a behavior
selected by an analyst to a position inside the flow log
(i.e., we denote this location flow position) of one of the
monitored processes. Typically, a behavior directly corre-
sponds to a system, or function call. However, it can also
map to a set of instructions matching certain criteria (e.g.,
decoding of encoded data, as discussed later on). This



mapping is possible since we have all the relevant context
information, and can find in the log files all activity related
to the specified behavior. In case manual help is needed,
INSPECTOR provides context information to the analyst in
order to help her select the relevant flow. In the running
example of the HTTP download, the flow position would be
a call to one of the file management functions provided by
Windows, such as WriteFile, or CreateFile.

Once we have identified the relevant flow position, our
tool extracts a slice: It attempts to find all necessary data
sources required to calculate the parameters passed to this
function call, and extracts them. This is implemented by
recursing on taint labels consumed by the API calls, as
well as searching the memory logs for instructions defining
variables (i.e., memory locations) read by the function
invocation. We need to recursively identify all sources that
somehow influence the parameters of the flow position since
these instructions are potentially relevant to the algorithm we
are about to analyze. We perform backward binary program
slicing to compute this closure: We need to make sure that,
during the extraction process, all relevant code and data is
included recursively. When INSPECTOR finds a point which
can be run in a self-contained fashion, this position is marked
as the entry point and analysis ends. At the end of the
process, the extracted code contains all information required
to execute the specific behavior at the flow position in a
stand-alone way.

1) Forward Searching and Backward Slicing: In some
scenarios, the behavior selected by an analyst is not the
intended endpoint of a chain of actions. Consider the case
where the program downloads an encrypted list of URLs
that are used to trigger keylogging activity. Here, extracting
the download activity does not gain enough insight into the
sought URLs since we are interested in the decoded list of
URLs.

Thus, before extracting an algorithm, our tool allows the
analyst to also search forward from a given position in
the flow log (i.e., the initial flow position), filtering for
function calls or instruction sequences that operate on data
provided by the selected behavior. The analyst then needs
to specify one or multiple function calls or blocks of code
as an endpoints where the search stops. The analyst can
also let INSPECTOR apply heuristics to determine the most
likely endpoints. From there, we then perform backward
slicing, and make sure that all relevant endpoints are also
included in the closure such that the extracted algorithm is
self-contained.

2) Heuristics for Detecting Endpoints: INSPECTOR uses
the following heuristics to detect endpoints of interesting
behavior. While calls to string comparison functions, or
execution of code containing string handling instructions
(such as rep scas) might not stand out particularly (or
even be invisible when statically linked into an application),
their occurrence is interesting when we perform forward

searching. This is because it is an indication that the
computations on the data that the instructions have touched
have finished. In the case of encoded URLs, different string
comparison functions might be used once the URLs have
been decoded. Our tool can point out such behavior where
data provided by the selected behavior is accessed. With
this, an analyst can refine the selected flow position from
the initial download to the point where the data is likely to
have been decoded.

In fact, to support this frequent scenario of data decoding,
INSPECTOR also provides the possibility to focus on data
that has been processed by a list of mathematical instructions
which indicate cryptographic activity [18]. Our empirical
results indicate that this heuristic can reliably detect generic
decoding functions, and select flow positions used as a
starting point for the algorithm extraction.

3) Closure Analysis: In some situations, INSPECTOR can
decide to deliberately exclude certain dependencies from the
closure of extracted code based on two key observations.

First, we might simply not have all context information.
This is due to the fact that the default application of IN-
SPECTOR is to extract functionality from malicious binaries.
We do not perform any static code extraction from the
given sample, since this is, in general, a difficult task in
the case of malware [1]–[3]. All analysis is based on log
files generated during the dynamic analysis run (i.e., we can
only reason about executed instructions and taken control
paths). Whenever the backward slicing algorithm encounters
a conditional jump whose alternative branch can redirect
execution into a block containing code not executed during
the dynamic analysis phase, the dependencies introduced
by the condition are not added to the closure. Instead, the
extracted algorithm is modified to include instructions that
set the condition bits to force the branch to take the path
that was observed during dynamic analysis.

Second, sometimes, a behavior is only triggered under
a certain condition. In our running example, for instance,
the update process might only occur on a special day of
the week. Unfortunately, we can only include the specific
behavior that we have seen during the dynamic analysis
phase. At the same time, once we see a specific behavior, we
wish to generate a gadget that always executes this behavior.
Thus, INSPECTOR applies the same technique as discussed
above to force the execution along a known path. We then
include only this path, and skip the others. As a positive side
effect, the program slicing is sometimes able to compute
smaller closures, as whole blocks of functionality can be
ignored during the extraction phase.

IV. GADGET PREPARATION AND REPLAY

In this section, we describe the process of encapsulating
an extracted behavior so that it can later be re-invoked.
Further, we introduce and outline the details of our system,
the gadget player, that can be used to execute the gadget.



A. Gadget Format and Relocation

The format in which INSPECTOR stores the gadget code
is a dynamically loadable library (DLL). This simplifies
importing the behavior into the player for gadget execution
(see next section). There are a number of ways in which we
can bind and execute the gadget: On the one hand, we can
use LoadLibrary to dynamically load a gadget. On the
other hand, we can even statically link tools with the gadget.

To ensure that the gadget code runs in this relocatable
fashion, all references to absolute code addresses (e.g.,
absolute call targets) are rewritten to use relative addressing.
In contrast to static analysis, this step is simple as we know
the complete execution flow of the extracted behavior.

While the library solves the problem of storing the gadget
code, memory locations are not as straightforward. Such
memory regions are typically statically allocated (i.e., the
program expects them to be at a certain address). However,
when re-executing the gadget, these memory locations might
already be occupied by the system that is invoking the
gadget.

Therefore, before exporting the code segment, all in-
structions are audited for static memory accesses: Using
the memory logs, we decide if an instruction accesses
a relocated memory area. If so, the disassembly of the
instruction provides the immediate operands that might have
to be patched. More precisely, we modify operands which
are dereferenced directly or which are used as base-address
for a memory access. Thus, we patch all operands so that
they point to a location where we can ensure that the system
will be able to allocate the memory for the gadget. Likewise,
we parse the memory areas themselves for any static pointers
that might point to relocated memory areas, and patch these
appropriately.

As a last step, INSPECTOR extracts all static memory
areas into a data file. For each area, it stores where the
code will expect the data to be mapped and extracts the
content from the ANUBIS memory snapshots at the point in
execution where the extraction of the closure has finished.
This corresponds to the entry point of the gadget. Therefore,
when the gadget executes, all memory areas will contain
exactly the same values as during the recorded execution.

Running Example: Using this slicing technique, IN-
SPECTOR is able to extract a self-contained code fragment
that performs the specific malware task. In our running
example, the gadget includes all instructions relevant to
calculating the URL of the file to be downloaded. Since
the file is downloaded via HTTP, calls to recv, or similar
functions related to network activity, are also included in the
gadget. Furthermore, all the instructions related to decoding
the downloaded content are also added.

At the end of the extraction process, the gadget contains
all code and data related to actually performing the down-
load, decoding the content, and saving the result to the hard

disk. Note that we are not limited by function boundaries
(as in [10]).

B. Gadget Player

To reuse a previously recorded behavior, INSPECTOR
provides the so-called gadget player. The player’s main
functionality consists of three tasks: Memory management,
execution containment, and environment interface.

1) Memory Management: From the gadget’s data file, the
player’s memory management unit can identify all fixed,
preinitialized memory areas that the gadget will rely on.
Typically, such memory areas contain static strings and
other global variables. These areas must be allocated and
filled with the same values as were present in the analyzed
process before the logged behavior started execution in
ANUBIS. Additionally, the memory manager can also be
called through the environment interface (see below) to
handle dynamic memory allocation requests (e.g., through
RtlAllocateHeap). Thus, while essential for proper
execution of the gadgets, this unit additionally provides
the player with a complete view of the memory buffers
accessible to the gadget, and allows monitoring for changes
made to them.

After initializing memory areas for the gadget, the player
can load the behavior code, and start executing the gadget.
As introduced in the previous section, a representation of
the observed behavior is extracted into dynamically loadable
libraries (DLLs). Thus, loading the behavior code can be
easily achieved through the LoadLibrary function, which
takes care of loading the code, and setting the appropriate
permissions for it.

2) Execution Containment: When starting the actual code
execution, special care must be taken to isolate the gadget
from the player’s memory, and handle possible crashes of the
extracted code. Since the gadget is extracted automatically,
we must make sure that we handle the execution robustly
as there might be possible shortcomings of our extraction
process. Also, because we deal with malicious code, special
care must be taken in order to avoid undesired side effects.
One possibility to guarantee isolation is by implementing
gadget emulation. That is, the extracted code would be
emulated. Because of performance considerations, we opted
against this choice. In fact, emulation is not well-suited for
tasks such as floating point operations that are known to be
notoriously difficult to handle.

Our solution follows a different approach: As described
in the previous section, most memory accesses have been
statically rewritten to use the memory regions set up by
the memory manager. Thus, the execution containment unit
can natively run the gadget code, securing its execution
inside a separate thread. For this thread, handlers for invalid
memory accesses as well as execution of illegal instructions
are registered to catch the most common source of errors.
Further, during gadget extraction, we verify that the code is



free of any direct references to API or system calls. Thus,
any kind of system interaction is forced to go through the
environment interface (see below), allowing us to hinder the
gadget from executing unintended malicious behavior. Last,
the gadget’s execution duration is limited to a configurable
threshold in order to avoid deadlocks inside the extracted
code.

A different approach [10] to contain the execution envi-
ronment would be to implement software-based fault isola-
tion (SFI) [19], [20]. Alternatively, one-way isolation [21]
or similar techniques could be combined with concepts from
NATIVE CLIENT [22] to contain execution. In the current
prototype of INSPECTOR, the static rewriting of memory
accesses is used. Our experience shows that it is a reliable
and efficient way to contain the execution run within the
player.

3) Environment Interface: The third component provided
by the player is the environment interface. This component
serves as the mediator between the gadget and the environ-
ment hosting the gadget player. During gadget start-up, the
environment interface registers a callback function inside the
gadget. This callback, implemented as a simple multiplexor
function, is then invoked by the gadget each time a system
or Windows API call would have been invoked during the
malware execution.

Therefore, the environment interface must implement
every kind of function that a gadget might request. This
can be easily realized given the following key insight: By
default, it is sufficient to redirect execution to the origi-
nal library implementing the requested function instead of
implementing functionality by hand. We can, thus, simply
relay their implementation to an actual library. However, if
an analyst wishes to manually interfere with the function
call (e.g., to trigger a different behavior by returning a
specific value), the environment interface also supports this.
The analyst can manually implement a callback, which then
performs the desired functionality. This can be especially
useful in situations where the analyst decides to sanitize (or
manipulate) data provided to or requested by the gadget.

During gadget extraction, INSPECTOR can verify that
all required functions have been implemented in the en-
vironment interface, and inform the analyst about missing
functionality. If the gadget player encounters a request for
an unknown function (e.g., because the gadget was extracted
by a newer version of INSPECTOR), it can decide to ignore
the call, and continue execution. Obviously, this approach
only works for functions that do not pop their arguments
(i.e., use the cdecl x86 calling convention), since the stack
layout might otherwise become corrupted.

4) Callback Handling: In the following, we describe
two characteristic examples where we chose to imple-
ment functions inside the environment interface. In Mi-
crosoft Windows, the two functions RegGetValue and
RegQueryValueEx provide means to retrieve the type

and data for a specified registry value. Returning values
provided by the hosting environment would be an acceptable
solution here. However, intercepting the calls, and allowing
the gadget player to return false information can uncover
interesting information. Consider our running example of the
update mechanism via HTTP: In this example, the download
request could contain bits to indicate information about
the host operating system version, allowing the attacker
to provide different downloads, specifically targeted at the
available host environment. By allowing the player to fake
this information, INSPECTOR can easily trick the gadget
into retrieving updates for a broad range of possible host
environments. Therefore, a simple configuration option in
the gadget player can save the analyst from having to re-run
the gadget (or even the whole malware) in many different
operating systems.

As a second example, consider Microsoft Windows’s net-
working interface: In this example, the environment interface
provides a wrapper for the actual networking implementa-
tion. Whenever calls to connect, InternetConnect,
and related functions are encountered, the wrapper has the
possibility to alter parameters before actually establishing a
connection. Such parameters include the destination host and
port. In our running example, this is particularly convenient
for a security analyst in the case where the update binary
is hosted on a fast-flux service network [23]. When running
the download gadget repeatedly, it is very likely that the
analyst will see different IP address in subsequent DNS
lookups. Thus, each time, the request is served by different
machines. Through a configuration option, the gadget player
can be instrumented to always contact the same IP address,
and allow to pinpoint the dates when a specific host starts
serving a different, or updated binary.

Alternatively, instead of serving live network traffic, the
network wrapper can also be instrumented to replay previ-
ously recorded network dumps (from pcap files, a format
supported by many network analysis and recording tools).
This technique enables interesting use cases from a forensic
point of view: When provided with corresponding traffic
dumps, the download gadget can extract binaries that were
served at a different point in time. In cases where the
network traffic contains dynamic data (such as keys used
during the obfuscation process), we need to pay special
attention. In the next section, we detail how this case can
be handled by inverting gadgets.

V. GADGET INVERSION

Until now, the gadget discussion focused on cases in
which malware samples interact with the environment or
remote hosts (e.g., command and control servers). That is,
the focus of the analysis was on what output information a
gadget must produce so that the analyst can interact with a
remote server. In practice, though, the inverse use case is
also interesting.



Consider, for example, the case of information leakage
due to a keylogger. Suppose that an analyst is given a net-
work dump that contains information stolen by a keylogger
where the data is encoded using a proprietary algorithm
embedded into the malware. Furthermore, suppose that the
analyst has a copy of the malware sample that is responsible
for stealing the data. The task is now to find out what
information was stolen (i.e., to determine what data was
encoded by the malware and sent out over the network).
To achieve this goal, the main idea is to first extract the
gadget that is responsible for stealing and encoding the
data. Second, we use the gadget and compute the input that
leads to the output observed in the network dump. Thus, we
would be able to determine what information was stolen in
a reactive, forensic analysis setting.

In the following, we discuss how we realize this in
practice. First, we need to change our perspective: In the
previous sections, we treated the gadget as an object that
invokes various library and system calls to interact with the
operating environment and that translates (possibly altered)
data in order to produce arbitrary output. In this section, we
apply the same concepts as before. However, we simplify the
gadget to a mere transformation oracle between input and
output. This oracle can then be used to answer the question:
“Using a given gadget, what output is generated if a certain
input is provided?”

As we explained in Section II-B, INSPECTOR has com-
plete knowledge over which sources provide data to which
sinks based on the different types of log files we generate.
This knowledge has byte granularity (i.e., for each byte in
a sink, we can identify all input bytes that have an impact
on the byte’s value). We denote the relationship between
different input bytes (sources) and an output byte (sink) a
source-sink dependency. These dependencies can be used
together with the gadget as an oracle. That is, we can
brute-force, for each output byte, which input bytes need
to be supplied to generate exactly this output. For a given
output, we can, thus, determine what input leads to such an
output. Hence, we can effectively invert the computation of
the gadget transformation function. Although the brute-force
approach we use to achieve this goal has some limitations in
practice (see Section V-C), it is able to automatically deliver
the expected results for certain kinds of gadgets.

To inverse a gadget, we use the following algorithm: Let
o ∈ O be the set of output bytes we are interested in and ov
the concrete value of the output byte o for which we seek to
determine the input(s). Similar, i ∈ I denotes the set of all
input bytes transformed by the gadget. In a first step, using
the source-sink dependencies, we find the set of dependent
input bytes Do ⊆ I that have an influence on o, i.e., ∀o ∈
O : Do = {i|i ∈ I ∧ o depends on i}. Then, for each
element in O, the set of candidate inputs Co is determined
by selecting all possible combinations of input values in
Do: ∀o ∈ O : Co = {(vi1 × . . . × vin)|(i1, . . . , in) = Do ∧

vi = value(i), vi ∈ [0..255]}. Finally, for each candidate
input c ∈ Co, the gadget oracle is used to compute the
candidate output oc which can be compared to the desired
value ov . When an acceptable candidate c is found (i.e., both
outputs ov and oc match), the process is repeated with the
next element in O.

Special attention is required in the case where two or
more output bytes o, p ∈ O share dependent inputs, i.e.,
Do ∩Dp = D(o,p) 6= ∅. Here, each input candidate cp ∈ Cp

can be discarded immediately if at least one input value
vi ∈ cp is assigned a different value than the same input byte
in a previously accepted candidate co ∈ Co. We call such
inputs between o and p conflicting, or dispute candidates.
Thus, the sequence in which output bytes are chosen must
be done in such a way that those outputs containing less
dispute candidates are selected first. If, at some point, no
acceptable candidate for an output byte q can be found, the
inversion algorithm must discard the previously accepted
candidate co ∈ Co, where D(o,q) 6= ∅, and search for the
next acceptable candidate c′o (i.e, perform backtracking).
If no other acceptable candidate can be found (and no
dispute between o and another, previous element exists), the
algorithm aborts with an error. Such a situation can occur, if
there exists no input for the output O chosen by the analyst
or INSPECTOR fails to find all source-sink dependencies for
the selected behavior.

Otherwise, all output bytes are eventually assigned
with an acceptable candidate input. By combining these
candidates to a single set of input values Iaccept =⋃

o∈O {co|co ∈ Co ∧ ov = oracle(co)}, we can thus answer
the inverse question for a selected set of output values.

A crucial factor of this inversion strategy is that INSPEC-
TOR assumes that the correspondence between input byte
positions and output byte positions will remain constant
as input changes. This implies that the algorithm does not
handle optional or variable-length tokens in the input.

A. Inversion Example

To explain our approach in more detail, we revisit the
example introduced at the beginning of this section. A
keylogger steals sensitive data from a compromised host,
encodes it using a proprietary algorithm, and then sends it
out over the network to the command and control server.
As an analyst, we only have access to the encoded network
traffic and a copy of the keylogger. The goal is now to find
out what data has been stolen by the malware.

Based on the network traffic, we know all the expected
values of the output O. Next, we need to identify the
corresponding sources Do influencing the output. When
recording the behavior of the keylogger in the analysis
environment, INSPECTOR will identify a number of source-
sink dependencies between the input bytes (e.g., stolen infor-
mation read from the browser process) and the output bytes
(encoded data sent over the network) since they are related to



each other due to taint analysis. Based on this information,
we can compute how each output byte depends on the input
bytes. Once we have identified the dependent inputs, we
can compute the candidate inputs and use them together
with the gadget: For each candidate input c ∈ Co, we test
with the help of the gadget what output is generated for this
particular input. If the output matches the expected value, we
have identified an input (i.e., a piece of information that was
stolen). By repeating this process, we can recover, step by
step, the complete input that was recorded by the keylogger.

B. Implementation Details

Inverting gadgets consists of two basic tasks: Extracting
source-sink dependencies and evaluating input candidates.

1) Extracting Dependencies: During the dynamic anal-
ysis phase, we perform detailed taint tracking and record
all dependencies between two labels. This enables us now
to keep track of how a given sink is influenced by sources
(i.e., what input bytes have an impact on a given output
byte). The output of this first task is a mapping between
source and sink bytes of a gadget.

2) Evaluating Input Candidates: The task of finding
acceptable input candidates is implemented using a small
helper application, the brute-forcer, and an extension to the
gadget player.

Using the mapping file from the first step, the brute-forcer
implements the generation of the set of input candidates as
explained earlier. Additionally, it determines the sequence
in which the output bytes will be checked. Then, starting
with the first output byte, each possible input candidate is
evaluated by calling the gadget player.

The gadget player is extended as follows: Each call
to the environment interface can be handled by a chain
of optional interceptor components. Each interceptor has
the ability to inspect incoming function calls, and modify
outgoing function arguments. It can also decide to call
the next interceptor (or if there is none, the environment
interface). Our implementation of the brute-force component
is based on such an interceptor: On start-up, the brute-forcer
initializes the interceptor with the current candidate inputs
to provide to the gadget, and it registers all values it should
check on incoming call arguments. During gadget execution,
the interceptor keeps track of all function calls made by
the gadget, and checks for input or output parameters in its
list of monitored arguments. For each monitored outgoing
parameter, the parameter value is overwritten with the pro-
vided candidate value. If the interceptor finds a monitored
incoming argument, it examines the parameter’s content. If
a mismatch to the expected parameter is found, execution
aborts and signals an error. Otherwise, call handling is
delegated to the next interceptor. Once the interceptor has
successfully verified all provided input arguments, it exits
signaling successful execution.

With this extension, the extracted gadgets and the gadget
player can be used in the inversion process without any
modification. Once the interceptor has signaled successful
execution to the brute-forcer for all output bytes, we have
successfully inverted a gadget computation.

C. Inversion Applicability
A critical factor of our gadget inversion – as in every

brute-forcing system – is related to the size of the input
candidate set. If the number of candidate inputs |Co| that
must be evaluated for a certain output byte o is very
large, the time to identify an appropriate input set quickly
becomes unmanageable. Likewise, the time necessary for
finding an acceptable candidate for each output byte grows
exponentially with the number of shared dependent inputs.

In order to assess the feasibility of inversion in different
scenarios, consider the following three examples:

Base64 Encoding: In Base64 encoding (i.e., a specific
type of MIME encoding), the set of input bytes is trans-
formed into a base64 representation. According to RFC
2045, this is computed as follows: “A 24-bit input group
is formed by concatenating 3 8-bit input groups. These 24
bits are then treated as 4 concatenated 6-bit groups, each
of which is translated into a single digit in the base64
alphabet.” [24].

The input for each step consist of three bytes (= 24 bits).
For the computation, this is split into smaller parts of six bits
each. Therefore, the set of input bytes is at most two i1,2,
which is then transformed into one byte of printable output
o1. With |Co| = 65536 and max(|D(o,p)|) = 1,∀(o, p) ∈ O,
gadget inversion is trivially possible.

XOR Encryption: When using XOR encryption, the
computation is rather simple: One byte of input is xor-ed
with one byte of the key to obtain one byte of output. Given
that the key is known (e.g., it is statically encoded in the
gadget), |Co| = 256 and D(o,p) = ∅,∀(o, p) ∈ O, gadget
inversion is even simpler than in the Base64 encoding exam-
ple. If the key is part of the inversion input (e.g., it is part of
the data received over the network) the algorithm will start
with max(|D(o,p)|) = 1,∀(o, p) ∈ O and |Co| = 65536.
However, after the first n candidates have been found (where
n is the size of the key), the dispute candidates decrease the
size of the input set to the previous case. This is because
the algorithm has “found” the key to use.

Strong Encryption: For gadgets relying on strong en-
cryption schemes such as RSA, the inversion fails with
growing sizes of the output n. Since every output byte
depends on all bytes of the key and input, |Co| = 256n

and |D(o,p)| ≈ n,∀(o, p) ∈ O make inversion impossible
for large n.

Based on these examples, we can see that in the general
case the following holds for the set of candidate inputs:

|Co| ≤ 256max(|D(o,p)|)+1,∀p ∈ O



This indicates that we can only perform brute-forcing if and
only if |D(o,p)| is small since else the computational effort
to try all possible inputs quickly becomes intractable.

D. Possible Extensions

We have integrated the brute-forcing approach into IN-
SPECTOR and can use it to invert certain computations of
gadgets as we explain in the next section. In the future, we
plan to improve the current approach as follows.

In addition to the source-sink dependencies, INSPECTOR
also knows all instructions that modify the source data into
sinks. Thus, we can perform symbolic execution to limit the
search space, or we can – for simple transformation algo-
rithms – even extract algebraic formulae. These formulae
could be analyzed with a constraint solver to circumvent
the costly input brute-forcing. However, brute-forcing is
general and can also be used for encoding and encryption
algorithms that cannot be stated as a compact formula, we
opted against the solver approach. Moreover, as INSPECTOR
can identify all dependencies that can be solved easily,
a hybrid approach, combining a constraint solver and the
brute-forcing approach, could yield better results. In this
hybrid model, INSPECTOR could first solve all possible
inputs, minimizing the number of parameters that need to
be guessed.

Another possible improvement of the current approach
would be through input parallelization: We can combine
the set of independent output bytes (i.e., elements that do
not contain common source-sink dependencies) and check
multiple input candidates within a single gadget invocation.
In practice, this improvement applies to many real-world
scenarios: Most encoding, as well as simple obfuscation
gadgets could be inverted significantly faster.

VI. EVALUATION

In order to demonstrate the feasibility of our approach,
we generated gadgets in six case studies that involved well-
known real-world malware from four different families. Our
experiments show that we can reliably extract gadgets from
a variety of samples in versatile ways. We chose these case
studies because they cover the typical tasks that a malware
security analyst would be interested in.

Table I summarizes various properties of the extracted
gadgets. In particular, we can see that all but one exe-
cutable used for the evaluation were packed. This shows that
INSPECTOR can indeed handle state-of-the-art, obfuscated
malware samples. Further, one can see that the gadget
extraction was able to extract rather concise code snippets,
eliminating most of the original executable’s instructions
during the closure analysis.

A. Domain Flux: Conficker

Bot families such as Torpig [6] and Conficker [25] employ
the technique of domain flux to hinder the tracking of the

communication channel between a bot and the attacker.
With domain flux, using a proprietary algorithm, each bot
instance periodically generates a list of domains that are
used for obtaining commands from the attacker. The bot
then contacts a subset of these domains until it finds an active
domain (that has been registered by the attacker) from which
it can receive commands. We are interested in extracting
the domain generation algorithm (DGA) such that we can
compute the set of domains used by a bot on a given date.

In our experiments, we studied Conficker.A since it em-
ploys the technique of domain flux to regularly generate a
new set of domains that are contacted by the malware binary
for updates. The malware implements the algorithm shown
in Figure 2a in order to generate 250 domains. Note that all
known details about the DGA were published in a paper by
Porras et al. [25], who had to manually analyze the sample.
There exist two parts of the report that are relevant for our
analysis. First, Conficker contacts a remote HTTP server in
the function get_date_from_url to obtain the current
timestamp. Hence, an analyst cannot modify the local clock
to trick the binary into generating domains for a particular
date. Whereas an analyst could still change the timestamp
in the HTTP reply, in the future, such an approach could
potentially be complicated by the malware by switching to
an SSL-based protocol instead of a cleartext one. Second,
the function to actually generate domains contains floating
point operations (that are supported by INSPECTOR).

In order to analyze Conficker, we first execute the sample
within our analysis environment. After sleeping for 30
minutes, Conficker starts the DGA, and once the algorithm
has been completed, it begins to resolve domains to also
contact remote servers.

At this point, we can stop the execution, and begin to
automatically extract the gadget. Since we are interested in
the DNS activity, the flow position with which we start
is a call to the function gethostbyname. From there
on, INSPECTOR performs backward slicing based on all
the collected log files, and identifies the code related to
this function call. The tool recursively examines all code
locations which influence the chosen flow position, and
extract all relevant code together with the necessary data.

The output of the extraction and preparation process is a
fully-functional gadget. The gadget includes all code related
to the DGA, and we depict the data dependency graph in
Figure 2b. The automatically extracted algorithm closely
matches the manual analysis results shown in Figure 2a.
Note that our gadget does not include a date check: Since the
alternative path was not taken during the dynamic analysis
phase, it is excluded in the preparation phase. The gray boxes
depict taint information, where the bold text indicates that
this input influences the actual computation of the DGA.

Note that we do not need to understand the algorithm: We
can simply treat it as a black box to generate the current
set of flux domains used by Conficker. When executing



Table I
OVERVIEW OF GADGETS EXTRACTED BY INSPECTOR.

Sample Gadget # Instructions # Functions # API function Contains dynamically
extracted1 extracted references unpacked code

Conficker Domain Flux 385 (511) 8 23 yes
Pushdo Binary Update 926 (1410) 15 19 no
Cutwail Spam Template 2091 (3575) 51 19 yes
URLZone Configuration 1036 (1430) 27 17 yes
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(a) Logic behind Conficker’s domain generation algo-
rithm (based on manual analysis [25]).

_mbscatabs

sin log

rand strok _strnicmp atoi

InternetOpenUrlA HTTPQueryInfoAInternetOpenA

Wed, 18 Nov 2009
23:42:00 GMT

 Jan
Nov ==        ...   

Nov{ 18 
2009

xvxpaobp.info
muvuljzkews.biz
yuzsxurg.com
oybigc.biz
...

GetSystemTime

fetch_date_from_url()

parse_date_from_url()

generate domains()

(b) Excerpt from Conficker’s data dependency graph for domain generation algorithm
(automatically generated by INSPECTOR, annotated for presentation).

Figure 2. Analysis results for Conficker’s domain generation algorithm.

the extracted gadget in the player, the gadget outputs the
current set of 250 domains. An additional advantage of our
gadget is that it does not need to sleep for 30 minutes before
starting the DGA. In contrast, it immediately begins with the
computation and outputs the results.

To verify that our gadget correctly generates domains, we
compared its output with the output of a human-generated
tool that is based on manual analysis of the binary [7]. In
all tests on 16 different days, our tool correctly computed
the set of domains.

The gadget also enables an analyst to compute a set of
domains for an arbitrary date, even one that lies in the future.
As shown in Figure 2b in bold, INSPECTOR can extract
which bytes are relevant for the computation of the DGA.
In this specific case study, these are nine bytes related to
a timestamp that are extracted from the HTTP response.
Based on this information, an analyst can then implement
a callback or an interceptor component in the environment

1To facilitate handling of jump targets, the current implementation of
INSPECTOR tries to preserve a function’s structure whenever possible.
Thus, instructions excluded from a gadget’s code body are replaced by
no-operation instructions (NOPs). Table I shows number of non-NOP
instructions (number of all instructions are given in brackets).

interface that returns a different timestamp. As a result,
the gadget performs the DGA for a different timestamp,
effectively computing the set of flux domains for an arbitrary
date. The callback interface in the environment interface,
hence, eases the analyst’s job and the analyst is able to adjust
the gadget to her requirements.

B. Fetching Binary Updates: Pushdo

A common task that is implemented by malware instances
is an update mechanism. That is, the malware downloads an
arbitrary binary executable from the network, decodes it, and
then executes this file. In fact, we have used this common
mechanism as our running example throughout the paper.

In this case, we wish to recover the decoded binary
executable. Therefore, we extract from the given malware
binary a gadget that can perform the downloading and
decoding steps in a self-contained manner. A good example
for malware with this behavior is Pushdo. This sophisti-
cated malware is capable of downloading additional compo-
nents onto an infected machine, while hiding the attacker’s
traces [26].

After starting the sample in ANUBIS, we can observe
several HTTP packets between the analysis environment and



a remote server. This activity is followed by file creation,
and then the execution of the created files. At this point, we
stop the analysis and extract a gadget that implements the
file decoding and creation. Starting with the content that is
written to a file, INSPECTOR detects the dependencies to the
input received in the HTTP reply. Thus, the gadget includes
the entire HTTP conversation, together with the code for
building the appropriate request.

During execution, the gadget queries the environment for
various system properties by reading registry values and
performing low-level file system interactions. For our experi-
ments, we allowed all read accesses to the host environment,
ignoring any changes requested by the gadget code. After
this initialization phase, the gadget starts to contact a remote
server. Once successfully connected, it downloads binary
data using the standard HTTP protocol, then transforms this
data, and writes the result to a file.

Over a period of 16 days, we used this gadget to actively
monitor binary updates served by three different command
and control servers observed in recent ANUBIS submissions.
While the extracted gadget always tries to contact the same
IP for updates, we used a configuration option in the player
to modify the contacted host. The results show that each
server delivered a different executable (measured by the
MD5 checksum of the decrypted binary). However, the
served files per server did not change over the monitoring
period.

C. Binary Update Decryption: Pushdo

In the previous case study, we demonstrated how we are
able to actively download and decode a binary from a live
command and control server. In some situations, however, it
would be convenient for an analyst to have the possibility to
passively decrypt recorded, or live network traffic generated
by a machine infected with Pushdo. An analyst can then
examine (in a forensic setting) the binaries downloaded by
a specific host.

Unfortunately, the nature of the update protocol used by
Pushdo creates some challenges for the analyst. Instead of
downloading a static URL during the update process, a
Pushdo client first generates a random sequence of bytes
to be used as decryption key. This key is then encoded and
appended to the static part of the URL. In turn, the command
and control server splits the URL into static and key parts,
decodes the key, and uses it to encrypt the file sent to the
requesting client [26].

Within the network dump, we can, thus, only observe
the encoded key. Therefore, we need to invert the Pushdo
gadget from the previous example to obtain the decoded
key. As the target of the brute-forcing process, we specify
the outgoing HTTP request. INSPECTOR then automatically
identifies the sources from the random number generator,
and searches for acceptable input values until the generated
request matches the one found inside the recorded network

traffic. Once the requests match, we have found the key to
use for the decryption. With this information, we can then
analyze the HTTP reply and decrypt its content.

We have tested the decryption on ten different network
dumps and were able to successfully extract the downloaded
binary in all cases. On average, the inversion process finished
after less than 40 seconds. This demonstrates the effective-
ness and usefulness of the gadget inversion on real malware
behavior.

D. Binary Update Generation: Pushdo

To further evaluate the capabilities of the gadget inversion,
we extended the previous use case as follows: After extract-
ing the decryption key, we specified the binary the gadget
should write to file. That is, since the file content depends on
data received from the update server, we allowed the brute-
forcer to manipulate the bytes received from the network.

The practical use case for this problem is the following:
An administrator can redirect binary update requests from a
machine infected with Pushdo to a local HTTP server. This
HTTP server uses our gadget inversion technique to generate
an encrypted binary that uses, as key, the encoded key
received within the request. The pushed binary (which could
actually be a disinfection tool in this case) is subsequently
downloaded, decoded, and executed by the requesting host.

In principle, the same concepts as in the pcap decoding
example can be applied to this use case. However, we
have to consider an additional difficulty: Even for small
applications, a typical Windows binary is much larger than
several kilobytes in size. Therefore, brute-forcing a complete
binary within a reasonable amount of time is infeasible. Our
solution to this is simple: We encrypt a minimal helper
application that contacts our HTTP server and downloads
an (unencrypted) DLL that contains the actual payload.

For our tests, we used TinyPE [27], a binary of 140 bytes
in size, and a simple HTTP server written in Python. On
a MacBook Pro with a 2.8 GHz Intel Core 2 Duo CPU,
we were able to generate an encrypted binary within 444
seconds on average. However, an interesting property allows
us to significant improve these results: Using INSPECTOR,
we can see that, similar to the XOR encryption mentioned
in Section V-C, each of the four key bytes is used inde-
pendently for decrypting one fourth of the network input.
This allows us to split the 232 possible keys/requests into
4 ∗ 256 independent, encrypted inputs. Upon receiving an
HTTP request, these inputs can be combined to form a
single, valid reply. On the same machine, we can, thus, pre-
compute all possible replies in well below 1.5 days.

E. Template-based Spamming: Cutwail

Current spambots typically use template-based spamming,
a specific technique of sending spam in which the attacker
sends each bot a spam template that describes the structure
of the spam message to be sent [28]. In addition, the bot



also receives additional meta-data (e.g., recipient list or a
list of URLs) that is then used to generate and send new
spam mails.

In this use case, we are interested in extracting a gadget
that performs the proprietary communication between a host
and the command and control server, together with all
relevant decoding steps. Such a gadget enables us to obtain
the spam template, and we can observe what spam mails
a bot is supposed to send out currently. This allows us to
track the botnet, and we can use the collected information to
significantly improve existing systems such as AutoRE [29]
and Botlab [30]. These systems rely on executing a copy
of the bot and collecting spam mails that are sent out.
They reconstruct the actual template from this collected data.
Using our gadget extraction approach, we can immediately
obtain the full template, and do not need to reconstruct it
based on network traces and the running of a (potentially
dangerous) copy of the malware sample.

A bot that is commonly seen in connection with Pushdo is
Cutwail [26]. This malware family is often downloaded by
machines infected with Pushdo via the update mechanism,
and it is responsible for sending out spam mails. The
downloading of the templates, and the entire communication
between an infected machine and the command and control
server is encoded using a proprietary algorithm. A key of
length n is used that is embedded in the binary [26]. The
algorithm that the malware uses is the following:

1) Cutwail divides the encrypted string into blocks of
length that equal to the length of the current key.

2) Each block is then XORed with the key.
3) The result is reversed (byte 1 and n are swapped, 2

and n− 1, etc.).
4) Even-numbered blocks (e.g. Block 2, 4, . . . ) are also

NOTed.
5) Finally, the remaining bytes which do not fit into a

full sized block are simply NOTed.
The communication is handled in three stages. First,

Cutwail downloads the current configuration settings, which
includes information such as the connection timeout, the
maximum numbers of attempts to send out mails, and the
delays that the malware should respect. Second, a handshake
is performed. Third, the malware downloads the spam tem-
plate together with all meta-information such as target e-
mail addresses. Once this data is decoded using the above
algorithm, Cutwail starts to send out mails.

During the analysis of Cutwail, in order to extract the
gadget, we first execute a Cutwail sample in our analysis
environment. Once the bot starts to send out spam mails,
we can terminate the dynamic analysis step since we can
be sure that all relevant communication has already taken
place. We select all calls receiving the encrypted content
as our initial flow positions. INSPECTOR then extracts the
relevant algorithm, and generates a stand-alone gadget that
executes the same operations.

"{_FIRSTNAME} {_LASTNAME}" <{MAIL_FROM}>

Hello my new friend, I search a good man at other
country...\n For me it to communicate for the first
time with the person from other country, by
Internet.\nAnd it
...

{nReceived}
Message-ID: <{DIGIT[10]}.{SYMBOL[8]} {DIGIT[6]} @{nHOST}>
From: {TAGMAILFROM}
To: <{MAIL_TO}>
Subject: {SUBJECT}
Date: {DATE}
MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="----=_NextPart_000_0006_{_nOutlook_Boundary}"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express {_nOutlookExpress_4}

Figure 3. Excerpt from spam template extracted by Cutwail C&C
communication gadget.

Upon invocation of the extracted gadget, we obtain in-
formation from the same command and control server that
was contacted during the dynamic analysis run. This is
because the IP address to contact is hard-coded inside the
binary. We can, again, use the configuration options of the
gadget player to modify this IP address, enabling us to
monitor multiple command and control servers concurrently.
Figure 3 shows an excerpt of a decoded spam template.
The configuration options are simple key-value pairs such
as knockdelay 60 or maxtryconn 5. Note that the
spam engine never stores any of this decoded information
in a file, but keeps all information only in memory. Thus,
this information cannot be obtained by simply executing
the spam engine. An analyst needs to manually analyze the
operations with a debugger, or by some other means.

F. Configuration of Keylogger: URLZone

Modern keyloggers enable an attacker to specify which
websites should be monitored on the machine of a vic-
tim [31]. Each time the victim accesses one of these sites, the
keylogger starts to record the information that the attacker
is interested in. For example, the attacker is often interested
in username and password combinations, or similar sensi-
tive data. The dynamic configuration mechanism is usually
implemented by downloading a configuration file from the
command and control server right after the keylogger has
started. The configuration file is commonly encoded using
a proprietary algorithm. Thus, the malware first decodes the
file, and then starts to monitor the activities of the victim.

In this case study, we are interested in extracting a gadget
that contains the instructions related to downloading and
decoding the configuration file. We can then monitor the
current configuration of a keylogger, and learn which web-
sites are interesting for an attacker. Since we can periodically
execute the gadget, we can also continuously observe the



=======================POST=======================
...
[ITBEGINBLOCKHOOK]
ITHOST=|banking.postbank.de|End
ITPAGE=|/app/login.d*|End
ITMETHOD=|2|End
ITIFINIT=|%DISP%|End
ITREQMATH=|jsOn=*&accountNumber=*&pinNumber=*|End
...
---------------------- STATA ---------------------
ITINJHOST=|my.hypovereinsbank.de|End
ITINJPAGE=|/*?view=/*|End
...
ITINJPASTE=|%HYPOBAL%+%AMOUNT%-%TRUEAMOUNT%|End
ITINJPASTEMN=|<span class="negative-balance">

%HYPOBAL%+%AMOUNT%-%TRUEAMOUNT%</span>
<span class="negative-balance">EUR</span>|End

Figure 4. Configuration options revealed by URLZone download gadget.

activities of an attacker, and detect changes in the attacked
target websites.

URLZone is one of the most advanced keyloggers cur-
rently found in the wild. Besides common functionality
found in modern keyloggers such as the ability to collect
user credentials entered by the victim or the ability to inject
HTML code into web pages, this malware can also perform
man-in-the-middle attacks against banking applications [32].
The malware downloads an encoded configuration file from
the command and control server that specifies which URLs
should be monitored for credentials.

Similar to the previous case studies, our goal is to extract a
gadget that enables us to obtain the current configuration file
from the command and control server in a decoded format.
Hence, we start by executing a sample of URLZone in our
analysis environment. Once the malware has downloaded
the current configuration file, we stop the execution, and
begin with the gadget extraction process. Similar to the
Pushdo gadget above, based on the download activity, we
let INSPECTOR find an appropriate target flow in order to
start the gadget extraction.

In experiments, using the gadget, we monitored one active
command and control server over a period of eleven days by
invoking the gadget on an hourly basis (note that this server
is still active at the time of writing this paper). On each
invocation, the gadget successfully extracted a configuration
file, as well as templates for altering displayed webpages to
conceal its information stealing attack [32]. Extracts from
this data can be seen in Figure 4. Interestingly, all downloads
provided the same decrypted content. This could be because
URLZone has been seen in the wild for quite some time.
Thus, the current templates could have proven to be reliable.
Also, the monitoring time might not have been long enough.

VII. RELATED WORK

Given the importance and the threat that malicious code
poses, it is not surprising that there has been a significant
amount of work on malware analysis and detection, both
using static and dynamic techniques (e.g., [33]–[36]). Also,

binary program slicing [9], [13], [37] and taint analy-
sis [12] are standard techniques that are frequently used.
Compared to previous approaches, our novel contribution is
the automated extraction of proprietary algorithms that are
embedded in malware. That is, we reuse existing code and
transform it into a stand-alone gadget that can be used to
(re)execute specific malware functionality.

Concurrently and independently of our work, Caballero
et al. proposed BCR [10]. BCR is a tool that aims to
extract a function from a (malware) binary so that it can
be reused later. Compared to BCR, INSPECTOR has the
following advantages: First, BCR is only able to extract a
single function, while we extract the entire functionality from
a binary. Finding a particular, interesting function (and its
entry point) is a difficult task in itself. We do not have to
solve this problem, since our techniques extract the entire
algorithm that translates program inputs (via system calls)
to program outputs. Of course, such external inputs and
outputs are much easier to identify than internal functions.
Second, we embed an extracted algorithm automatically into
a stand-alone component (a gadget) that can be used by an
analyst to “replay” malware actions. This is different from
BCR, where the analyst has to manually develop additional
code that makes use of the extracted functionality. As an
example, with BCR, an extracted encryption routine would
need to be embedded into a network proxy to be able to
download and decrypt a binary update. In our case, IN-
SPECTOR will generate a gadget that automates the complete
process of downloading and decrypting this binary update.
Third, we provide a mechanism to invert the functionality
of an algorithm so that we can find the inputs that lead to
certain outputs. This is valuable when an analyst wants to
decrypt/decode data that was previously encrypted/encoded
by a malware sample.

Lin et al. introduced an attack that extracts an interface
to functionality in a benign program to add malicious
functionality [38]. The idea is to re-use existing code within
a binary (in a sense similar to return-oriented program-
ming [39], [40]) and transform the binary such that malicious
activities are performed (e.g., turning an e-mail client into
a spam-sending trojan). The general concept of reusing
binary functionality is related. However, we are interested
in isolating the algorithm from a given (malicious) binary
that is responsible for a certain activity.

Our approach could be seen as an extension to the
problem of protocol dialog replay [41], [42]. However, while
these approaches only inspect the network-level aspects of
malware communication (between the malware program and
its command and control server), we also include the host-
level operations. For example, we can decrypt an encoded
binary that was downloaded from a remote server. Clearly,
the ability to do this is valuable for practitioners in the field.

While our approach is based on ANUBIS, the techniques
we introduced in this paper are general and can also be



realized with the help of other malware analysis platforms
(such as BitBlaze [43]).

VIII. LIMITATIONS

Adversarial code is difficult to analyze. Our system needs
to observe a sample’s malicious activities inside our analysis
environment. That is, we need to see a behavior in the
ANUBIS system in order to collect the relevant log files
for starting our extraction process. Thus, attacks against the
dynamic analysis environment or the taint analysis are a
concern for us.

ANUBIS is based on an unaccelerated version of the
system emulator QEMU. While standard techniques for
detecting virtual machines do not apply to this tool, it might
be possible to detect the analysis environment using other
means (e.g., emulator specific hardware names, ANUBIS-
specific artifacts, etc.). Emulator detection versus stealthy
analysis is a continuing arms race, and detectability is
currently a limitation of dynamic analysis environments. As
a possible solution, and to address emulator checks, we
can attempt to resort to stealthy analysis techniques such
as multi-path exploration [44].

As mentioned in previous sections, our system is con-
servative in the sense that we only include instructions we
have seen during the recorded execution and fix branches in
the gadget accordingly. This can cause undesired side-effects
as input during gadget execution could require the original,
excluded code paths. As a result, the gadget’s behavior may
differ from the behavior of the malware when processing
that input. This could be improved by statically analyzing
excluded code regions and include them if possible.

Evading taint tracking is problematic for the features
of our system that rely on data tainting (e.g., the gadget
inversion). However, note that the extraction of algorithms
and the generation of gadgets is not dependent on data
tainting. Thus, the core parts of the systems can deal with
this kind of evasion attempts.

Further, our current slicing algorithm works on single
threads. If multiple threads interleave execution by providing
data to, or modifying data from each other, we cannot handle
this situation. However, an improved tracking of threads and
their interdependencies can overcome this shortcoming, and
would not require conceptual improvements.

Although our prototype implementation has some limita-
tions, our evaluation results shows that we can successfully
operate on complex, real-world malware samples. Thus, we
believe that our approach is useful for security practitioners
in many different ways.

IX. CONCLUSION

Unfortunately, malicious software (i.e., malware) is still
a major threat on the Internet today. In fact, malware
has become the main driving force behind many attacks.
Unlike a decade ago, malware-based attacks are mainly

aiming to make a financial profit, and the attackers are
targeting Internet users with the goal of using the victims’
compromised machines for sending spam, launching denial
of service attacks, and stealing confidential data.

In this paper, we improve the state of the art in malware
analysis by presenting a novel approach to automatically
extract, from a given malware binary, the instructions that
are responsible for a certain activity of the sample. These
instructions, which we call gadgets, encapsulate a specific
behavior that can autonomously perform a particular mali-
cious task (e.g., such as domain generation for command
and control).

Our approach is valuable for analysts in the field as un-
derstanding a certain activity that is embedded in a malware
sample (e.g., the update function) is still largely a manual
and difficult task.
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