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Abstract

Malware is the root cause of many security threats
on the Internet. To cope with the thousands of new
malware samples that are discovered every day, secu-
rity companies and analysts rely on automated tools
to extract the runtime behavior of malicious pro-
grams. Of course, malware authors are aware of
these tools and increasingly try to thwart their anal-
ysis techniques. To this end, malware code is often
equipped with checks that look for evidence of em-
ulated or virtualized analysis environments. When
such evidence is found, the malware program behaves
differently or crashes, thus showing a different “per-
sonality” than on a real system.

Recent work has introduced transparent analysis
platforms (such as Ether or Cobra) that make it
significantly more difficult for malware programs to
detect their presence. Others have proposed tech-
niques to identify and bypass checks introduced by
malware authors. Both approaches are often success-
ful in exposing the runtime behavior of malware even
when the malicious code attempts to thwart analy-
sis efforts. However, these techniques induce sig-
nificant performance overhead, especially for fine-
grained analysis. Unfortunately, this makes them
unsuitable for the analysis of current high-volume
malware feeds.

In this paper, we present a technique that effi-
ciently detects when a malware program behaves dif-
ferently in an emulated analysis environment and on
an uninstrumented reference host. The basic idea is
simple: we just compare the runtime behavior of a
sample in our analysis system and on a reference
machine. However, obtaining a robust and efficient
comparison is very difficult. In particular, our ap-
proach consists of recording the interactions of the
malware with the operating system in one run and
using this information to deterministically replay the
program in our analysis environment. Our experi-
ments demonstrate that, by using our approach, one

can efficiently detect malware samples that use a va-
riety of techniques to identify emulated analysis en-
vironments.

1 Introduction

The steady growth in the number of malware sam-
ples found every day has elicited an increased effort
by security vendors and analysts to develop auto-
mated malware analysis tools [1,3–6,8]. These anal-
ysis systems typically execute an unknown program
in a restricted environment (a sandbox) and monitor
the program’s runtime behavior. Based on the ob-
served behavior, analysts can then assess the sever-
ity of the threat posed by the malware and develop
appropriate countermeasures. Of course, malware
authors have a vested interest in creating malicious
code that can evade automated screening and anal-
ysis procedures. The reason is that, by remaining
invisible to automated analysis systems, malware
programs can operate (and generate revenue) for a
longer period of time.

To thwart automated screening, malware authors
have developed a number of ways to check for the
presence of malware analysis tools and popular sand-
box environments [19, 32]. When the malware de-
tects indications that a malware analysis system is
present, it typically suppresses the execution of ma-
licious functionality or simply terminates. The way
in which the checks are implemented depends on the
type of malware analysis system that is targeted.
One class of checks leverages input from the run-
time environment (the operating system) to deter-
mine whether an analysis tool is present. Often, such
checks look for files, registry keys, or processes that
are specific to individual analysis tools. A second
class of checks exploits characteristics of the execu-
tion environment that are different between a real
host and an emulated or virtualized system (which is



frequently used to implement the analysis sandbox).
For these checks, small variations in the semantics of
CPU instructions or timing properties are leveraged
to determine whether a malware process is run in an
emulator or a virtual machine (VM).

To solve the problem of “analysis-aware malware”
researchers have explored two kinds of approaches.
One class of approaches focuses on the development
of analysis platforms that are more difficult to de-
tect by malicious code. Cobra [38] is one of the
first systems that introduced the idea of stealth (or
transparent) malware analysis. To this end, the sys-
tem performs dynamic translation of the malicious
code under examination. That is, every code block
is disassembled and inspected before it is executed.
During this process, each instruction that could be
used to detect Cobra is replaced with a safe version,
called a stealth implant [37]. Later, researchers pro-
posed Ether [16], a system that leverages hardware
virtualization to remain invisible to malware checks.

Both Cobra and Ether have been shown to be
difficult to detect by current malware. However,
both systems also induce a significant performance
penalty, in particular when performing fine-grained
analysis. Unfortunately, this level of analysis is
required for comprehensive reports such as those
produced by Anubis (our own malware analysis
tool [1, 8]) or similar systems [3–6]. This is because
these systems need, at least, to inspect the argu-
ments of Windows API library functions in addition
to system calls, and often track additional informa-
tion during runtime. The main reason for the perfor-
mance impact is the fact that Cobra and Ether oper-
ate on individual instructions or single-step through
the process execution. Interestingly, the authors of
Ether note that their fine-grained analysis “is not
meant to be used for real-time analysis,” while the
authors of Cobra note that the performance of their
tool is “within the limits of interactive analysis.”
Given these limitations, these systems are not suit-
able for automated analysis of high-volume malware
feeds. For example, Anubis receives several thou-
sand malware samples every day, and this number is
likely to be significantly larger for commercial anti-
malware companies.

A second class of approaches to address the prob-
lem of analysis-aware malware is to detect the fact
that a malware sample behaves differently in differ-
ent environments. Recently, researchers have pro-
posed a tool in which the execution of a malware
sample in an emulated (analysis) environment is
compared with the execution trace of this sample on
a reference system [22]. A deviation is considered to
be caused by a malware check that results in the ex-

ecution of a different program path. The basic idea
is appealing in theory, because it promises a very
general mechanism to detect malware that behaves
differently in an analysis environment than it does
on a reference system. However, there are a number
of problems that must be solved in practice. In par-
ticular, it is important to perform the detection of
deviations efficiently, and any deviation must be the
result of a malware check and not due to unrelated
differences between the execution traces. Unfortu-
nately, the previously-mentioned tool [22] fails to ad-
equately address both challenges. First, the tool uses
Ether to produce the reference trace, which causes
an unacceptable performance penalty. Second, mal-
ware samples are simply executed twice, once on the
analysis environment and a second time on the ref-
erence system. However, as our experiments demon-
strate, executing the same malware program twice
can lead to different execution runs, even when no
anti-analysis checks are present. Thus, a difference
between two execution traces is not a reliable indi-
cator for the presence of any anti-analysis checks in
malware samples.

In this paper, we present a tool that reliably and
efficiently detects malware that changes its behav-
ior inside an (emulated) analysis environment, that
is, malware with split personality. To perform the
detection, we leverage the basic insight that, given
the same inputs, the execution of a program should
be the same in our analysis environment and on a
reference system. More precisely, we first use a ker-
nel driver on the reference host to efficiently record
a trace of the system calls (and their arguments)
that are executed by the malware under analysis.
This system call log contains both the output ar-
guments (the values produced by the program and
consumed by the operating system) and the input ar-
guments (the values provided by the operating sys-
tem and consumed by the program). In the next
step, the malware is executed in the analysis envi-
ronment. Our analysis environment is a modified
version of Anubis, which is an extension of Qemu, a
full-system emulator. Based on the system call log,
we can supply the same input arguments that the
program previously received on the reference system.
That is, we can perform precise replay of the mal-
ware process. This allows us to check whether the
system calls (and their output arguments) that we
observe in the analysis environment correspond to
the ones we expect from the reference system, given
the previously-recorded information. Since the in-
puts to the processes are the same, we expect any
deviation to be the result of a check that detected



our analysis system, and hence, caused the malicious
code to follow a different execution path.

Our Windows process replay infrastructure, a
core component of the analysis environment, is com-
prehensive and supports features that require special
handling, such as multiple threads, memory-mapped
files, and deferred system calls. This is necessary
to handle the complex internals of Windows pro-
cesses and make the system work on real malware
programs. Our experimental results show that the
proposed system can identify a wide range of differ-
ent anti-analysis checks. Moreover, the system can
successfully execute (replay) programs that do not
contain checks, and can detect malware in the wild
that implements anti-emulator checks.

The main contributions of this paper are as follows:

• We propose a reliable and efficient approach to
detect malware with split personality. Our ap-
proach works by comparing the system call trace
recorded when running a malware program on
a reference system with the behavior observed
in the analysis environment.

• We have implemented a comprehensive replay
infrastructure for Windows processes that al-
lows us to execute the program under analysis
with the same inputs on the reference system
and the analysis environment.

• We demonstrate that our tool is successful in
detecting a variety of checks used to identify
analysis environments, including malware sam-
ples in the wild that contain checks that evade
Anubis.

2 Problem Statement

The ultimate goal of an automated malware anal-
ysis tool (such as Anubis) is to obtain an understand-
ing of the runtime behavior of malicious code that
is as complete as possible. In practice, these anal-
ysis tools typically follow a dynamic approach and
simply run an unknown program, monitoring its run-
time behavior. The two main issues that limit the
completeness of the results delivered by a dynamic
analysis tool are (a) limited test coverage and (b)
malware programs that detect and evade the analysis
environment. To address the problem of limited test
coverage, researchers have proposed extensions that
explore multiple execution paths [10, 30, 39] or that
scan non-executed code regions using static analy-
sis [13].

To address the problem of malware that detects
the analysis environment, researchers have proposed

stealthy (transparent) analysis tools [16,38] that are
more difficult to identify. As mentioned previously,
these tools are effective and can gather system call
traces in an efficient fashion. However, for a more
fine-grained analysis that includes more than system
calls, the tools have to resort to a mode in which in-
dividual instructions are inspected and logged. This
is too slow for handling current malware feeds, which
typically contain many thousand samples every day.
Unfortunately, for a complete and comprehensive
analysis, Anubis and other tools need to see more
than a system call trace, and hence, require a fine-
grained analysis. For example, Anubis examines
Windows API library calls, and it tracks data flow
dependencies.

Transparent malware analysis. One could con-
sider directly modifying Anubis or a similar analysis
tool to make it invisible to malware checks. To assess
the promise of this approach, it is useful to examine
the different ways in which malware can detect an
analysis environment. Following the terminology in-
troduced by the authors of Ether [16], a transparent
(undetectable) malware analysis system has to ful-
fill five basic requirements. We will discuss these
requirements in the context of Anubis, since this is
the system for which we have implemented the tech-
niques presented in this paper. However, the discus-
sion holds in general for all approaches that execute
the malware (and the operating system) in an emu-
lator or a virtualized environment. There are alter-
native techniques (such as CWSandbox or Joebox)
where parts of the analysis system run inside the
malware process or in the same operating system.
In these cases, the malware executes at a privilege
level that is similar to the analyzer, and, as a result,
the analysis platforms cannot be transparent [16].

The first requirement for transparency states that
the analysis tool has to run in a higher privilege level
than the program it analyzes. This requirement is
trivially satisfied by approaches that run the target
in an emulator or a virtual machine. This is also
true for the second requirement, which states that
all side-effects introduced by the analyzer must not
be accessible through non-privileged (malware) op-
erations.

The third requirement dictates that the seman-
tics of the instruction set used by the analyzer has
to be the same as the one used by a real host. This
condition is difficult to fulfill for an emulator. An
emulator basically provides a software implementa-
tion of a complex hardware device (a CPU). Hence,
it is always possible that there are differences that
can be detected. Indeed, previous work has pointed



out CPU semantics attacks [16, 19, 22, 27, 32] based
on differences between emulated and real CPUs, and
such attacks are also used actively by malware in the
wild. The checks used by these attacks exploit un-
documented side-effects of x86 instructions or look
for the presence of CPU-specific mode registers that
are typically not present on the emulated processor.

The fourth requirement mandates that exception
handling must be transparent. This also demands
that system calls (including system call results) have
to be the same on the analysis platform and on a real
host. The authors of Ether state that this require-
ment can be fulfilled by Anubis and other emulator-
based systems “with careful design.” However, in
practice, there are many ways in which the presence
of an emulator can be detected by checking for ar-
tifacts in the operating system environment. This
includes specific processes, drivers, or registry val-
ues in the guest operating system. For example, in
a typical installation of Windows in VMware Work-
station, the registry contains over 300 occurrences of
the string VMware. While it is in principle possible
to hide these artifacts, it is difficult in practice. As
a result, many environment attacks [11] exist that
look for resources in the guest operating system to
identify a malware analysis environment or the emu-
lator/virtual machine used by the malware analysis
tool.

The fifth requirement states that, for a transpar-
ent malware analysis system, there has to be an
identical measurement of time. That is, instructions
need to take the same time on the emulator as on
the real machine. Clearly, this is not possible, since
emulators and virtual machines add additional over-
head that make the execution slower than on a native
system. Given the large number of possible chan-
nels through which a process can time its execution,
timing attacks [32] are very difficult to mitigate. In-
deed, systems such as Ether explicitly exclude timing
checks based on input from external resources (such
as an NTP time server on the Internet) from their
threat model.

Given the complexity of the analysis system as
well as the range of CPU semantics, environment,
and timing attacks that a malware author has at
his/her disposal, making Anubis invisible to indi-
vidual checks is clearly an uphill battle. Similarly,
Garfinkel et al. [20] concluded that realizing a VMM
that is indistinguishable from native hardware is dif-
ficult to the point of impracticality. Thus, we envi-
sion a more general approach to address the problem
of analysis-aware malware. Our approach is a two-
step process.

Detecting malware with split personalities.
In the first step, we detect whether a malware pro-
gram has a split personality. This is the focus of the
tool presented in this paper. That is, the goal of the
tool presented here is to detect malware programs
whose runtime behavior in an emulator-based mal-
ware analysis system (such as Anubis) is different
from the behavior that these programs exhibit on a
reference system (a system where the malware anal-
ysis system is not present). Note that we consider
an emulator (such as Qemu, which is used by Anu-
bis) to be part of the analysis environment. Thus,
our system also recognizes malware that checks for
the presence of Qemu. The behavior of a program
is defined as the system calls (types and arguments)
that this program invokes. We believe that this is a
reasonable assumption, because system calls are the
means through which a program communicates with
its environment and by which it can cause persistent
changes to the operating system or other hosts (via
the network).

It is important that a tool that identifies split-
personality malware work reliably and efficiently.
We strive for a system that has no false negatives
or false positives. False negatives are more severe,
since they imply that the analysis failed to detect
a sample with a split personality, possibly missing
a severe threat. False positives typically result in
a performance loss, because malware samples with
split personalities induce additional analysis effort.
With regards to efficiency, we require that the de-
tector do not add substantial overhead to the cur-
rent Anubis analysis process. Currently, the Anubis
analysis environment comprises ten Qemu workers
on two physical machines. Although the machines
are fully utilized, they still do not manage to pro-
cess our daily sample feed. Thus, any increase in
overhead immediately translates to a lower number
of samples that can be analyzed.

Handling malware with split personalities.
The second step is to leverage the information col-
lected during the process of detecting the malware’s
split personality to improve the analysis results. One
possibility is to rerun malware samples with split
personalities in a transparent but costly analysis
framework such as Ether. In this setup, our pro-
posed system acts as an efficient and reliable filter
to detect those malware programs that require ad-
ditional analysis. Currently, this approach would be
practical, as the fraction of malware programs that
attempt to detect the analysis environment is quite
low. For example, in a previous work [7], we found
that less than one percent of the samples in the Anu-



bis database execute known checks to detect our an-
alyzer or are packed with executable protectors (such
as Armadillo and tElock) that are known to recog-
nize or fail on Qemu. This is consistent with the
findings in a related study [11], in which the authors
show that about 4% of malware samples behave dif-
ferently when run inside a virtual machine. However,
as the fraction of split-personality malware rises, al-
ternative solutions are required. A promising venue
is to carry out additional analysis to identify the root
cause for deviating behavior. Once this root cause
(likely, the malware check) is found, the analysis en-
vironment can be adapted to automatically bypass
such checks. An emulation technique for “emulation-
resistant” programs, which follows this general ap-
proach, was described in [22].

3 Our Approach

In this section, we discuss our approach for de-
termining whether a given malware program has
split personalities. As mentioned previously, this ap-
proach is based on the basic idea of comparing the
execution of the malware on a reference system with
the execution on the analysis system. We will see
that for our approach to be efficient and reliable, we
need to extend this basic idea with a mechanism to
log inputs passed to the malware on the reference
system (i.e., values read from the operating system),
and to replay those inputs when running the mal-
ware on the analysis system.

3.1 Efficient Detection

Claim 1: The runtime behavior of a program can be
characterized by the sequence of the system calls it
executes.

We justify this claim on the basis that system calls
are the mechanism through which a (user-mode) pro-
cess influences its environment (the operating sys-
tem) as well as external hosts (through the network).
Thus, to capture the kinds of actions that a malware
is performing and that it may be interested in con-
cealing, we argue that it is sufficient to inspect the
sequence of system calls that it executes (of course,
considering both the types of the system calls and
their parameter values). This view is consistent with
a large body of prior work that uses system calls to
model malware behavior or the effect of exploits on
legitimate processes.

On the basis of Claim 1, comparing the behavior
of a program on two different systems boils down
to checking that its executions produce the same se-
quence of system calls (same types and parameter

values). Since this comparison requires only coarse-
grained analysis, instead of more precise, but expen-
sive, fine-grained analysis of individual instructions,
this analysis can be done efficiently.

3.2 Reliable Detection

To discuss reliable detection of split-personality
malware, we first introduce the concept of execution-
equivalence. We say that two systems are execution-
equivalent if all programs that (a) start from the
same initial state (i.e., memory and registers are ini-
tialized with the same values) and that (b) receive
the same inputs on both systems exhibit the same
runtime behavior.

For this definition, we also assume that a pro-
gram has no race condition (that is, the results of
the computation are independent of the scheduling
of individual threads). We believe that this is a rea-
sonable assumption for most programs. Also, by
violating the assumption, a malware author cannot
bypass our detection. Instead, programs with race
conditions might be incorrectly detected as split-
personality programs.

Claim 2: When the behavior of a program is dif-
ferent on two execution-equivalent systems, this dis-
crepancy is the result of CPU semantics or timing
attacks.

The fact that the behaviors of the same program
on two execution-equivalent systems are different im-
plies that the execution of one (or more) CPU in-
structions on these systems yielded observable effects
for the program, and the program used these effects
to follow a different execution path. The effects can
be caused by CPU instructions that either have a
different semantics or different timing properties on
the two systems. This is precisely the characteriza-
tion of CPU semantics and timing attacks.

Of course, it is not true that CPU semantics or
timing attacks necessarily lead to different behaviors.
That is, it is possible that a malware program con-
tains checks to detect an analysis environment, but
decides to ignore the results of these checks. How-
ever, in this case, the analysis is able to observe the
entire behavior of the malware binary, and hence, we
do not consider such programs as split-personality.

The astute reader might notice that Claim 2
specifically focuses on CPU semantics and timing
attacks, but excludes environment attacks. The rea-
son is that environment attacks cannot be detected
as behavioral differences when executing a malware
binary on two execution-equivalent systems. This is
because environment attacks analyze and branch on



input values that are read from the operating sys-
tem. Since execution-equivalence implies that the
program receives identical input values on both sys-
tems, the behavior of the program will be the same.
However, as we will see, the design of our system
makes the analysis environment transparent to these
kinds of attacks. Hence, our detection is concerned
only with detecting split-personality malware that
performs CPU semantics or timing attacks.

Claim 2 motivates the design of our detection ap-
proach. That is, by running a malware program on
a reference system and an analysis system, any dif-
ference in the observed behavior allows us to reliably
convict this malware as split-personality. Of course,
this is only true when the reference system and the
analysis system are execution-equivalent.

3.3 Making Systems Execution-Equivalent

Claim 3: To be able to reliably detect split-
personality malware by comparing its behavior on an
analysis system with its behavior on a reference sys-
tem, these two systems must be execution-equivalent.

To make two systems (such as our analysis and
a reference system) execution-equivalent, we have
to ensure that programs start from the same initial
state, and that their inputs are identical. To provide
identical starting states, we use the same operating
system environment for both the analysis and the
reference system. This guarantees that the operat-
ing system components such as the program loader
and the runtime libraries (e.g., the Windows API
functions) are the same. Furthermore, we disable
any randomization mechanisms that could rearrange
the address space layout of a process at load time.

Ensuring that the inputs to both programs are
identical is more complicated. While identical OS in-
stallations provide identical file system objects, run-
ning the same program independently can lead to
different behaviors even when the program has no
split personality. As an obvious example, the pro-
gram could use input from a remote host that re-
turns different results for different client connections.
More subtle examples include programs that use the
current time and system information such as the cur-
rent processor load. Thus, it is not possible to simply
execute a malware program on the reference system
and on the analysis system and expect that different
behaviors are reliable indicators for different person-
alities.

Our solution to provide identical inputs to a pro-
gram consists of recording the system calls of the
program that executes on the reference system, and
later replaying these system calls on the analysis sys-

tem. That is, we run the malware on the reference
system in log mode. In this mode, the sequence of
system calls and all of its in and out parameters are
logged. Then, on the analysis system, we run the
malware in replay mode. In this mode, whenever
the program invokes a system call, we intercept the
call and retrieve the corresponding call from the log
trace. Then, instead of letting the OS handle the
call, we simply replay the logged system call, that
is, we return control to the malware, after setting
the return code and all the out parameters to the
corresponding values observed during the log phase
on the reference system. For example, in our ap-
proach, when a program attempts to read a file in
replay mode, it is not given access to the actual file
stored on the disk of the analysis system. Instead,
the program is provided with the content of the file
as it was read in log mode on the reference system.

An important advantage when replaying inputs
recorded on a reference system is that environment
attacks are not effective. That is, when the malware
attempts to access resources on the analysis system
that could reveal its presence, the system replays
the resources that were present on the reference sys-
tem. Thus, during analysis, environments attacks
will result in the same behavior as on the reference
system, effectively making our analysis transparent
to this attack vector.

Unfortunately it is not possible to simply replay
all system calls that the malware program invokes
on the analysis system. In fact, there are a number
of system calls that are not safe to replay. For ex-
ample, if we replayed the return value of a system
call that allocates new memory by simply return-
ing the address of the memory buffer that was allo-
cated on the references system, the program would
likely crash when accessing this memory. The rea-
son is that the operating system has not created the
necessary virtual memory mappings internally, while
the program assumes that memory was correctly re-
served. As a result, the access results in a page fault.
Thus, the replay component replays values only for
those system calls that read data from the environ-
ment. The input channels we consider are the file
system, the registry, the network, and time compu-
tations. This ensures that system calls that obtain
input values from the environment receive the proper
data recorded on the reference system. Other sys-
tem calls that are used for management purposes
(such as system calls for allocating memory, spawn-
ing threads, etc.) are monitored but passed directly
to the underlying OS.



3.4 System Call Matching

Assume that we have a system call trace that cap-
tures the behavior of a malware program on the ref-
erence system. We then execute the malware on the
analysis system. For each system call that is ob-
served, we can check whether the type and the in
arguments of this call match the one in the log. If
this is the case, we replay the return value and the
out arguments. When the type of the observed sys-
tem call or its arguments are different, we have iden-
tified a deviation in the expected behavior and, thus,
can mark the malware as having a split personality.

Unfortunately, the situation is not that easy in
practice. The reason is that small timing differences
can cause small, temporary deviations in the behav-
ior of a process that is replayed. For example, a lit-
tle delay in the delivery of an interrupt can cause
a process to issue additional system calls. More
concretely, consider the WaitForSingleObject func-
tion, which waits until the specified object is ready to
be accessed or until a timeout expires. This function
is often called in a loop that spins until an operat-
ing system object is ready. Depending on the time
it takes until the object is ready, it is possible that
the program has executed more (or less) invocations
on the reference system than in the analysis environ-
ment. Another example would be the delivery of a
signal that could lead to the execution of a system
call at slightly different points along the execution
trace of a process.

The previously-outlined deviations result in
slightly different system call traces. However, these
changes do not result in any differences with regards
to the actual malware behavior. That is, the persis-
tent changes (outputs) that the program produces
are still identical. To handle these cases, we have to
slightly relax our definition of equal behavior. More
precisely, we do not require that the sequences of
system calls produced in log and replay mode are
exactly the same, but we allow some flexibility to
account for small differences. This flexible match-
ing approach is based on the observation that small
differences are usually localized in time and tend to
quickly disappear as the program continues execu-
tion.

The algorithm for performing flexible system call
matching in replay mode is simple (refer to List-
ing 1). We use two queues to keep track of short-
lived differences in the executions. One queue, called
buf extra, records the system calls that have been
invoked by the program but that were not found in
the log. The other queue, called buf skipped, holds

1 buf_skipped = []
2 buf_extra = []
3 def flexible_syscall_match(log , curr_syscall ):
4 # check for deviation
5 if len(buf_skipped) == L or len(buf_extra) == L:
6 deviation_detected ()
7

8 # expire old entries in the buffers
9 # (if they aren ’t "write" operations)

10 expire(buf_skipped)
11 expire(buf_extra)
12

13 # get the next matching syscall from the log ,
14 # -1 if none
15 pos , candidate_syscall =
16 get_next_matching_syscall(log , cur_syscall)
17

18 # the next syscall in the log matches
19 if pos == 0:
20 return candidate_syscall
21

22 # if no match or extra syscalls ,
23 # search a match in the skip buffer
24 if pos == -1 or pos > 0:
25 s_pos , s_candidate_syscall =
26 get_next_matching_syscall(buf_skipped ,
27 curr_syscall)
28 if s_pos >= 0:
29 buf_skipped.remove(s_candidate_syscall)
30 return s_candidate_syscall
31

32 # if found a match in the log
33 # but not in buf_skipped , add to skip buffer
34 if pos > 0:
35 for (i = 0; i < pos; i++):
36 buf_skipped.append(log[i])
37 return candidate_syscall
38

39 # no match: add to extra bucket
40 buf_extra.append(candidate_syscall)

Listing 1. Flexible matching algorithm
(pseudo code).

those system calls that were in the log trace but were
not invoked in the current execution.

At each system call invocation, our algorithm
compares this system call (curr syscall) with the
one at the current head of the log. If the algorithm
finds a match, the algorithm returns this system call
and advances one step in the log (line 18).

If the first entry in the log does not match the
current system call, the algorithm first searches the
queue of system calls that were previously skipped.
If a match is found, it is removed from the queue and
is returned to the corresponding handler (lines 22–
30).

If no match is found at the head of the log or in
the skip buffer, it may be the case that additional
system calls were executed in log mode that were
not invoked in this execution. Then, we try to find a
match in the log by skipping over one or more of the
calls at the head of log (a sort of look-ahead oper-
ation). If this procedure yields a match, then those
system calls in the log that needed to be skipped are



added to buf skipped, and the match is returned to
our corresponding handler (lines 32–37).

If no match is found, i.e., the current system
call was not invoked in log mode, it is added to
buf extra and passed to the operating system.

Our algorithm uses two configurable parameters,
L and M. L is used to detect deviations in the be-
havior of two executions. More precisely, if at any
point during the replay, the number of system calls
that have been skipped or added with respect to the
log trace reaches L, then the algorithm concludes
that the current execution of the application is dif-
ferent than in log mode (lines 4–6). To avoid the
accumulation of short-lived, localized differences, we
remove system calls inserted in the buf skipped and
buf extra queues after M executions of the match-
ing algorithm (lines 8–11, we do not show the imple-
mentation of the expire function for sake of space).

4 Implementation

Our approach requires a logging infrastructure
that is capable of recording and replaying Windows
system calls inside and outside of virtual machines.
Here, we will describe our implementation of this in-
frastructure and a number of interesting, technical
challenges that it required to tackle.

4.1 Log and Replay Infrastructure

Our log and replay infrastructure consists of two
parts: a user-space application and a kernel driver.
The user-space application is responsible to load and
start the driver and to control its operations by send-
ing specific I/O control codes. It is also responsible
to start the process that has to be analyzed, to com-
municate the process ID of the sample to the driver,
and to receive and store the data generated during
the logging phase.

The driver is the core part of our system. It is
responsible to trap all the system calls and either log
or replay all the information exchanged between the
Windows kernel and the monitored application. This
is achieved by hooking the System Service Descriptor
Table (SSDT). Each entry in the SSDT contains the
entry point of a Windows system call, so when an
application invokes such a call, the SSDT is queried
to find the address of the function that is responsible
to serve it.

When the driver is loaded, every entry in the
SSDT that contains a system call address is over-
written with an address that points to one of our
handler functions. However, since it is still necessary
to be able to invoke the original functionalities, the

addresses of the original system calls are stored in a
backup table (and restored when the kernel module
is removed).

It would have been extremely impractical to man-
ually write each of the 283 function handlers that
wrap all the Windows XP system calls. In addition,
the function parameters often contain complex data
types such as pointers to structures (that sometimes
recursively contain references to other structures),
making a manual approach even more complicated.

To address these problems, we implemented a tool
that automatically generates the source code for the
handler functions. This generator tool receives as in-
put the system call declarations and the definition of
all the system call arguments (especially, data struc-
tures). We extracted this information from the Win-
dows Research Kernel. Then, for each system call,
our tool creates the source code of two handler func-
tions, one to be used in log mode and the other in
replay mode.

In log mode, all our system call handlers have
the same purpose: To dump all the data that is
exchanged between the application and the kernel,
working like a proxy between the user-space pro-
gram and the original system call handlers. This
is done by recursively logging the content of all the
parameters before and after the original system call
is invoked. Additionally, the return value of the sys-
tem call is also logged. The kernel driver contains a
buffer that is used by the handler functions to tem-
porarily store all the parameter values of the system
calls. For performance reasons, the driver does not
write the contents of the buffer into a file. Instead,
the user-mode program contacts the driver at given
intervals, copies the content of the buffer into user
space, and finally stores it in a binary log file.

In replay mode, the driver has two main tasks:
To provide the application with the same input data
that was stored during the execution in the reference
environment, and to analyze the application behav-
ior looking for deviations from the expected one.

As explained in Section 3, it is not possible to
blindly intercept all the system calls and replay their
parameters. Some functions have important side ef-
fects in the kernel (e.g., when the program requires
to allocate new memory) and, therefore, they must
be forwarded to the original handler to be processed.
Other system calls (e.g., when the program reads the
value of a key from the registry) can instead be safely
replayed by substituting all the out parameters and
the return value with the corresponding values ex-
tracted from the log file. We say that the handler
forwards a system call in the former case, and replays
it in the latter.



Finally, the last task of the driver during the re-
play phase consists of monitoring the application be-
havior for possible deviations, which is done by us-
ing the flexible matching algorithm described in Sec-
tion 3.

In the rest of this section, we will describe a num-
ber of practical aspects of our log and replay infras-
tructure.

4.2 Handle Consistency

In Windows, handles are opaque integers that are
used as an abstraction to provide a uniform inter-
face to kernel objects. Depending on the context in
which they are used, handles may refer to files, reg-
istry keys, processes, timers, events, communication
ports, etc. Since we replay some of the system calls
and we let the operating system execute others, in
replaying mode, an application will have two kind of
handles: live handles that refer to existing objects in
the kernel, and replayed handles that were retrieved
from the log file and passed to the application by
one of our replaying function handler. For example,
if the application tries to open a file, we intercept the
OpenFile system call and we replay all the outgo-
ing parameters, including the FileHandle, i.e., the
reference to be used by the program for any further
operations on the file. However, since the OpenFile
system call is intercepted by our driver and it is never
received by the kernel, the handle we return does not
reflect any actual object in kernel memory.

The problem arises because certain system call
wrappers (e.g., the wrapper for Close) can operate
on both kinds of handles. To operate correctly, these
system calls need to distinguish if they are passed
a live handle (which cannot be replayed) or a re-
played handle (which cannot be forwarded to the
OS). Therefore, our system maintains a list of all re-
played handles. Then, when a system call wrapper
receives a handle that is not in the list of replayed
handles, it simply forwards the call to the operating
system.

4.3 Networking

Windows does not have special system calls ded-
icated to networking operations. Instead, most
of functionalities are exported using an undocu-
mented interface through NtDeviceIOControlFile,
a generic system call that is used by user-space ap-
plications to communicate with device drivers.

NtDeviceIOControlFile has two general-
purpose, opaque parameters, called InputBuffer
and OutputBuffer, which are used to exchange

information between the application and the driver.
The specific data and the format of these param-
eters depend on the functionality required by the
application. To correctly implement our network
handlers, we had to reverse engineer the parameters
used by the most common network operations
and understand their formats and semantics. For
instance, when the RECV function is invoked, it
requires the first word of the input buffer to be a
pointer to a data structure in the process memory
that contains (among other data) a pointer to a
byte array that will store the data received from the
network socket.

In replay mode, the driver analyzes the param-
eters of the NtDeviceIOControlFile. If the func-
tion specified by NtDeviceIOControlFile is one of
the functions that our tool supports, then the corre-
sponding handler is invoked with the values from the
log file (thus, replaying the network operation that
was requested). Otherwise, the system call is simply
forwarded to the operating system. This avoids dis-
rupting services using the NtDeviceIOControlFile
interface that we have not reverse engineered. We
have currently implemented support for TCP sock-
ets. Support for UDP system calls could be added
in a similar way.

4.4 Deferred Results

An additional issue that arises with logging and
replaying network traffic is that networking system
calls often return before results are available (e.g.,
before the data requested from the network is ready
to be sent to the user-space program). This phe-
nomenon is referred to as deferred results and occurs
commonly also with file system-related system calls.

More precisely, whenever a system call returns a
STATUS PENDING result, it means that the required
action was successfully initiated but the results are
not yet available to the application. Then, the pro-
gram thread has to wait until the operation is com-
pleted by invoking NtWaitForSingleObject (or the
similar NtWaitForMultipleObjects) on the event
handler that was specified when the operation was
initially requested.

To log deferred results, we follow a two-step
strategy. First, when a system call handler has
some of its output parameters deferred, it simply
stores the memory location of each deferred pa-
rameter to an internal Deferred Parameters List
(DPL). The second step occurs in the handler of
the NtWaitForSingleObject system call. The han-
dler forwards the call to the OS. If the result is
STATUS SUCCESS, it means that the deferred data is



now available. Then, the values for the parameters
that were saved in the DPL can be retrieved, and
they are inserted into the correct position in the log.

Replaying deferred results is simple. In fact, when
a handler needs to replay a system call with deferred
results, it immediately copies all the data (including
the values of deferred parameters) into its output pa-
rameters and returns it to the application. However,
to prevent changing the application behavior, it also
replays the STATUS PENDING return code. This cre-
ates the impression for the application that certain
parameters are indeed deferred (even though they
have already been copied to the application). There-
fore, the application synchronizes its execution using
the NtWaitSingleObjection system call, following
the same execution path that was followed in the
reference environment.

4.5 Thread Management

Managing multi-threaded applications poses ad-
ditional challenges. In particular, in log mode, we
need to ensure that all threads of the process under
test are properly identified so that we can distin-
guish system calls made by different threads. To
do this, our handler for the NtCreateThread system
call initializes a new log for every new thread. It
then simply forwards the system call to the OS, and
records the thread ID assigned to this new thread.
We use the thread ID to uniquely associate a thread
to its log. Other call handlers then get the thread
ID of the currently executing thread and use it to
store the execution information in the correct log.
Logs also store the relative order in which threads
invoked system calls.

In replay mode, the handler for the
NtCreateThread system call lets the OS han-
dle the call and associates the newly created threads
(their thread IDs) to the corresponding logs accord-
ing to the order of the NtCreateThread invocations.
Other system calls, similarly to what done in log
mode, use the thread ID to retrieve the correct log
and replay inputs. Absent race conditions between
the threads, this is sufficient to correctly replay
multiple threads. While we did not find malware
samples that relied on race conditions, it would
be possible to handle these cases, for example, by
forcing that multiple threads are scheduled in the
same relative order, as outlined by the authors
of [35].

4.6 Memory Mapped Files

Memory mapping is a technique used in most
modern operating system to map all or part of the

content of a file to a memory area in the process
address space. When a file has been mapped into
memory, the program can freely read and modify
its content without invoking any additional system
call. This would prevent our system to load and
replay those operations. [29] proposes an interrupt-
based technique to intercept the access to a memory-
mapped area and dump its content whenever the
process modifies this area. However, we found that
in our case, the most common uses of memory map-
ping can be safely handled by simply forwarding the
memory map to the OS.

In Windows, memory mapping is commonly used
by the process loader to load dynamic libraries
(DLLs) into memory. Dynamic libraries should be
considered an input of the application and therefore
should be, at least in principle, logged and replayed
by our system. However, it is much more efficient to
have the same copies of the libraries in the reference
and analysis environments and let the application
free to load them from disk. For this reason, when
our kernel module receives a request to open or mem-
ory map a system library, it deactivates the replay
for the system call and it forwards the request to the
operating system.

A second very common use of memory mapping
that we observed in malicious samples is to create
and later execute an executable file. To address this
problem, we parse the log file that has been gener-
ated in the reference environment. Every time we
find a file that is created by the process and then
memory-mapped, we remove from the log the system
calls responsible to open and create the file. Then,
during the replay phase, the matching algorithm will
be unable to find a match for the system call that was
removed from the log file. Therefore, the system call
is added to queue of extra system calls, and it is for-
warded to the operating system. As a consequence,
the handle for the memory-mapped file is generated
by the operating system (i.e., it is a live handle), and
other system calls that operate on this handle will
not be replayed by our system. The practical effect
is that the application is going to create the file and
operate on it also during the replay mode.

4.7 Current Limitations

Implementing a system to correctly log and re-
play system calls under Microsoft Windows is a very
complex task. In many cases, we had to rely on re-
verse engineering internal, undocumented Windows
data structures and behaviors.

The current prototype supports a large set of
functionalities and can be used to analyze real pro-



grams and malware samples. However, as any pro-
totype, it still has some limitations that we can sum-
marize in the following areas:

• Multiple processes: The current prototype is not
able to log and replay the input if the program is
composed of multiple processes. In practice, if
the different processes do not communicate with
each other, we can still instruct our system to
analyze one process at a time.

• Random numbers: Correctly replaying applica-
tions that rely on random numbers to take non-
deterministic decisions would require to replay
the random number generator of the reference
system on the analysis system. While the ran-
dom number generator of Windows is imple-
mented in user mode (and, thus, is not readily
accessible from our kernel driver), its entropy
sources are located in the kernel [17]. In the
current implementation, we already log and re-
play most of the sources, with the exception of
the KSecDD device driver. By also logging and
replaying the data generated by this driver, we
would be able to replay random numbers.

• Inter-process communication and asynchronous
calls: Our prototype does not replay any local
procedure call (LPC) communication. All the
related system calls are forwarded to the operat-
ing system, with the risk of causing a deviation
in the application execution.

• Complex memory map scenario: As we ex-
plained in the previous section, our support for
memory mapping is not complete and does not
support, for example, the use of mapped area
as a shared space between different processes.

Some of the previous limitations may seem quite
severe. In fact, it is possible for an attacker to ex-
ploit our limitations to prevent our log/replay infras-
tructure to work properly. However, these attacks
would only cause our system to detect a deviation
and raise an alert. As a consequence, we would sim-
ply incur the performance penalty of re-running the
sample with a more fine-grained and expensive ana-
lyzer, such as Ether.

It is also possible to evade our system when a
malware program delays the checks that aim to de-
tect the presence of the analysis environment. This
is similar to postponing malicious behavior for some
time (e.g., some minutes) so that the analysis system
will stop monitoring the process before the sample
starts any malicious activity. Unfortunately, there
is not a simple solution for this problem, with the
exception of running the analysis for a longer time.

In addition, it might be possible to evade our flexi-
ble matching algorithm by dividing the malicious ac-
tivities into a number of very short (and far apart)
sequences of system calls, so that the localized dif-
ferences would fly under the radar of our detection
mechanism. Even though this is possible in theory,
we did not investigate how difficult it would be to
implement in practice a (malware) program in this
way.

Finally, another limitation of the current imple-
mentation is that malware that gains access to ker-
nel structures (i.e., rootkits) could detect our driver
component and take some countermeasures to avoid
detection. However, we do not believe that this
is a significant problem. First, a previous study
of current malware trends showed that only 3.34%
of samples install kernel drivers [7]. Second, it is
likely that such malware would perform environment
checks (and, thus, would be detected by our tool)
before attempting to gain control of the kernel, oth-
erwise, the malware author would expose some of
the program’s malicious functionality to the analy-
sis system. Finally, we could resort to transparent
solutions to implement our log and replay system. In
fact, we believe we could have used Ether, running
in the fast coarse-grained mode, for this. However,
we have not explored this possibility because Ether
was not available when we started our project.

5 Evaluation

We evaluated our system by conducting four dif-
ferent experiments involving a number of real-world
programs. All tests have been run on Microsoft Win-
dows XP Service Pack 3, installed in a VMware vir-
tual machine and on the Anubis system (i.e., on a
Qemu image). Both systems were installed from the
same CD-ROM and were updated to the same patch
level.

In our experiments, we use interchangeably Anu-
bis or VMware as the reference system (and the
other, as the analysis system). Since our tool is de-
signed to detect differences in the behavior of an ap-
plication when it is run in two different environments
(any two environments), it is not necessary that one
is always selected to be the reference system, nor
that the reference system be a physical machine. Of
course, if a malware attacks both systems (i.e., it is
capable of detecting both Qemu and VMware), we
may fail to detect it. To avoid this problem, it is
possible to use a real machine as the reference sys-
tem, and reset the computer state using hardware
devices, e.g., a hard disk write-cache card such as
coreRestore [2]. However, for our experiments, using



Sample Syscall Replayed
Log Size (VMware & Qemu)

SystemTime 123 100%
Registry 195 100%
Network 512 100%
FileSize 128 100%
FileRead 114 100%
Four Threads 252 100%

Table 1. Simple Log and Replay test.

a virtual machine or emulator as a reference system
made it easier to rollback to a clean state after each
test. Finally, both Anubis (Qemu) and VMware are
actively targeted by real-world malware with split
personality.

Experiment I. For the first experiment, we eval-
uated the ability of our system to correctly log and
replay all the input channels we identified in Sec-
tion 3.

For these experiments, we use VMware as the ref-
erence system and Anubis as the analysis system.
The test suite included six simple programs we de-
veloped to read and write data from different chan-
nels, i.e., the file system, the registry, the system
time, and the network. We also combined different
input/output operations together in a multi-thread
application. Table 1 shows the number of system
calls that were logged and the fraction of those that
were correctly replayed (or forwarded to the operat-
ing system if no replay was required for that partic-
ular call) during the replay phase. A value of 100%
means that the system was able to reach the end
of the log without detecting any deviation from the
logged behavior, thus demonstrating the ability of
our system to properly log and replay that input
channel.

Experiment II. In our second experiment, we
want to show that our tool can detect a variety of dif-
ferent, real-world detection attacks (which we man-
ually inserted into a real-world malware).

We obtained the source code of SDBot, a well-
known botnet application. We first compiled and
tested in our system a vanilla version of this bot,
which did not include any check to detect if it is
running in a virtual machine. In Anubis (which is
used as the reference system in this experiment), the
application generated a log file containing 1,905 sys-
tem calls. Upon inspecting this trace, we found that
the 1,524th system call is responsible for spawning a
new process. Since the creation of a new process is
not currently supported by our tool, we consider two

executions of SDBot equivalent if their behavior is
the same up to the NtCreateProcess call. For this
experiment, we designated VMware as the analysis
system.

We then created 6 different versions of the SDbot
program, each time adding to the code a different
test to detect VMware. We extracted these tech-
niques from several publicly available tools such as
Red Pill, Scoopy, VMDetect, and SourPill. When-
ever one of these tools combined together different
approaches, we separated them in different programs
to test them separately.

We ran each sample in log mode under Anubis
and replayed it under VMware. As shown in Ta-
ble 2, all the samples containing a VMware detec-
tion attack were correctly detected by our tool. It
can be seen that under VMware, each sample ex-
ecuted only 460 system calls. This is because the
application terminated immediately after detecting
the presence of the virtual machine. The behavior
under Anubis and VMware is clearly different, and,
therefore, it was flagged by our tool.

Experiment III. In this experiment, we show
that our tool can correctly log and replay real-world
malware that does not try to detect if it is running
in an analysis system.

The test suite used in the third experiment con-
sisted of 10 malicious samples randomly chosen from
the Anubis database among the malware known not
to contain any virtual machine detection techniques.
We first ran the samples in VMware (reference envi-
ronment), logging their system calls. Then, we exe-
cuted the samples in Anubis, once without replaying
any inputs, and once in replay mode. The log col-
lected during the execution of the samples contained
between 1,136 and 30,066 system calls.

Table 3 reports the results of the experiments.
The table contains three columns. The first column
reports the name that the Kaspersky anti-virus scan-
ner associates with the malicious sample. The sec-
ond column shows the result of the experiments with
the system call replay disabled, i.e., with the system
configured to pass all the system calls to the operat-
ing system. In this case, the kernel module was not
replaying any input data to the application. The
third column shows the results when the system call
replay was enabled. In the table, a result of OK in-
dicates that the flexible matching algorithm found
the behaviors to be identical. This means that the
behavior on the analysis system matched the behav-
ior on the reference system until the system call log
was exhausted (or an unsupported functionality was
encountered).



Sample Syscall Log Size Result
SDBot + CPUID Time Check 460 Detection (deviation)
SDBot + GDT Check 460 Detection (deviation)
SDBot + LDTR Check 460 Detection (deviation)
SDBot + RedPill Check 460 Detection (deviation)
SDBot + VmWare Port Check 460 Detection (deviation)
SDBot + STR Check 460 Detection (deviation)

Table 2. Experimenting with SDBot and different VM detection techniques.

It can be seen that, even with system call replay
disabled, the behaviors were the same in five cases.
The main reason for this is that the two Windows in-
stallations are identical. However, in the remaining
five cases, with system call replay disabled, our tool
detected a deviation in the program behavior. When
the replay was enabled, as shown in the last column
of the table, the matching succeeded for all ten sam-
ples. This result demonstrates the importance of
replaying the input in our approach: Without the
replay, even on two identical systems, the behavior
of an application can in fact be different between the
two executions.

Experiment IV. Finally, in this experiment, we
show that our tool is capable of detecting real-world
malware that behaves differently when running in-
side an analysis system.

To populate the test suite, we extracted random
samples from the Anubis database by querying for
executables packed with one of the packers that are
known to either detect or not to work properly un-
der Qemu (e.g., Armadillo and tElock). Notice that
these are the packers that the authors of Ether found
not to be analyzable under Anubis [16]. In all cases,
our technique was able to report the attempts of the
samples to detect the presence of the analysis sys-
tem.

During our test, we also found a sample
(Heur.Trojan.Generic in Table 4) that worked prop-
erly under Anubis, but immediately terminated in
VMware, and a sample (Backdoor.Win32.SdBot)
that raised an Internal Error in VMware, but had
a normal execution in Anubis.

Performance. The overhead introduced by our
system largely depends on the type of operation per-
formed by the program under analysis. For instance,
writing a large amount of information to a file re-
quires our logging module to dump and store the
full data in the log. However, in our experiments, we
noticed that our tool introduced on average 1% over-
head when logging and replaying malware samples.
When used in combination with an emulator-based

malware analysis system such as Anubis, the delay
this adds to the overall analysis time is negligible.

We also compared the time required to analyze
a malware with Anubis and Ether. To perform a
fair comparison, we run Anubis with all its anal-
ysis enabled, and Ether in one of its fine-grained
analysis modes. We report here the result of run-
ning one test case that is representative of the dif-
ferent performance of these two systems. In particu-
lar, we executed the command 7za.exe a test.zip
1KB rand file, which compresses a 1KB-long ran-
dom file. Its execution under Anubis took 4.267 sec-
onds. In our VMWare reference machine with our
kernel module it took 1.640 seconds. The same ex-
ecution in Ether running in memwrite mode took
77.325 seconds (approximately 20x slower). There-
fore, even considering that in our experiment we
have to run each sample twice, we can still ana-
lyze split-personality malware one order of magni-
tude faster than under Ether.

6 Related Work

Since malware is a significant security threat, a
large body of work exists that presents techniques to
analyze and detect malicious code. In this section,
we first highlight a number of systems that use dy-
namic and static approaches for combating malware.
Then, we focus on the different ways to detect mal-
ware analysis environments, emulators, and virtual
machines. Finally, since we propose a component to
replay malware, we survey related work in the area
of process and system replay.

Malware analysis and detection. The tradi-
tional approach to detect malware, as implemented
in anti-virus scanners, is based on (string) signatures
that match specific malware binaries [36]. Because
code obfuscation and runtime packing can be used to
easily evade this type of detection, researchers have
proposed more sophisticated techniques, for exam-
ple, detection based on model checking [12], recogni-
tion of structural similarities between malware sam-



Sample Syscall Replay Disabled Syscall Replay Enabled
Email-Worm.Win32.Bagle.fk OK OK
Backdoor.Win32.Rbot.bng FAIL OK
Backdoor.Win32.Agent.eny OK OK
Email-Worm.Win32.Zhelatin.cl FAIL OK
Trojan-Downloader.Win32.Agent.alnx OK OK
Backdoor.Win32.Rbot.ccb FAIL OK
Backdoor.Win32.SdBot.gen FAIL OK
Virus.Win32.Parite.a OK OK
Trojan-Downloader.Win32.Dluca.gen OK OK
Hoax.Win32.Renos.wu FAIL OK

Table 3. Real Malware with no VM-checks.

Sample Packer Deviation Detected?
Trojan-Proxy.Win32.Bypass.a tElock YES
Heur.Trojan.Generic PE Patch.UPX YES
Backdoor.Win32.Agobot.aow Armadillo YES
Trojan-Spy.Win32.Banker.pcu tElock YES
Worm.Win32.AutoRun.pga Armadillo YES
Trojan-Spy.Win32.Bancos.zm tElock YES
Trojan-Downloader.Win32.Agent.acrm tElock YES
Backdoor.Win32.SdBot.fme Armadillo YES
Trojan.Win32.KillAV.or Armadillo YES
Net-Worm.Win32.Kolab.ckp Armadillo YES

Table 4. Real Malware with VM checks.

ples [24], and semantics-aware analysis of code tem-
plates that implement specific functionality [13].

Dynamic detection techniques are complementary
to static analysis and typically aim to detect the ex-
ecution of malicious code based on system call pat-
terns [28]. Tools exists to intercept Win32 function
calls [21], or to perform taint analysis and track data
dependencies between system calls and library func-
tions [9,40]. This allows one to capture the behavior
of malware in a more precise fashion and identify
operations that are related.

Currently, the most popular approach for mal-
ware analysis relies on sandboxes [1,3–6,8]. A sand-
box is an instrumented execution environment that
runs an unknown program, recording its interactions
with the operating system (via system calls) or other
hosts (via the network). Often, this execution envi-
ronment is realized as a system emulator or a virtual
machine.

Stealth and transparent analysis. Since emu-
lators and virtual machines are popular choices for
implementing dynamic analysis systems, there have
been a number of attempts to develop checks (pieces
of code) to detect them.

Red pill [33] is arguably the most well-known
check to determine whether code is executed under

VMware. More checks have later been developed for
VMware [19, 23, 32], but also for system emulators
such as Bochs and Qemu [19, 31, 32]. To this end,
researchers have looked for instructions that behave
differently on an emulator than on a real host, us-
ing both manual [19,32] and automated fuzz testing
techniques [31].

The increased efforts to detect emulators and vir-
tual machines have prompted researchers and practi-
tioners to look for ways to hide the presence of such
execution environments. Initial work [26] focused
on removing specific artifacts in VMware that are
targeted by well-known checks. Later, researchers
proposed more complete systems that use virtual-
ization [16] or dynamic translation in combination
with stealth implants [38] to remain transparent to a
wider range of malware checks. While these systems
are successful in hiding their presence, they incur
a performance penalty that is prohibitive when de-
ploying them in large-scale automated malware anal-
ysis setups.

In addition to systems that attempt to remain
transparent to malicious code, researchers have
looked at ways to detect that a malware sample con-
tains such detection checks. To perform this detec-
tion, the systems presented in [11] and [22] compare



the behavior of a sample on a reference (real) host
with the behavior of this sample on an analysis (or
virtual) host. However, both systems simply exe-
cute the malware under analysis in two different en-
vironments. Unfortunately, as our experiments have
demonstrated, re-running the same sample twice can
lead to different behaviors that are not the result of
any malware checks. Hence, this analysis approach
is not reliable. In addition, the system presented
in [22] also uses a very costly technique (Ether in
fine-grained analysis mode) to produce a reference
system call trace.

Process and system replay. A number of systems
exist that aim at providing deterministic replay of an
application or of an entire system [14]. For example,
ReVirt [18] uses the virtual machine UMLinux to
monitor a process and create logs of its interaction
with the guest operating system. The logs are cre-
ated on the host OS and can then be used to replay
the entire virtual machine. However, ReVirt modi-
fies the host and guest operating system and requires
the analyzed programs to be run inside their virtual
environment UMLinux. It is a powerful approach
that allows comprehensive replaying, but it cannot
analyze a program that contains virtual machine de-
tection checks, since it uses a virtual machine itself.
Flashback [35] is a debugging tool for Linux that al-
lows process replaying. It creates shadow processes
at various checkpoints that mirror the state of a pro-
cess at a given time. In addition, the system traps
system calls to log their parameter values. In con-
trast to our solution, Flashback provides its own sys-
tem calls to enable user programs to programmati-
cally create snapshots at certain checkpoints. For
this reason, it needs to modify the operating system.
Another replaying tool is Jockey [34], which inserts
trampoline functions into system call code to direct
the program flow to its own code where system call
parameter values are recorded. These logs are then
used in replay mode to reproduce the behavior of a
process. Finally, Tornado [29] enables to replay the
application input by intercepting and replaying the
system calls. Unfortunately, a common drawback of
all the four aforementioned approaches is that they
run on Linux. Thus, they cannot be used to analyze
Windows binaries.

ExecRecorder [15] is a virtual-machine-based log
and replay framework for post attack analysis and
recovery. It can replay the execution of an en-
tire system by checkpointing the complete system
state (virtual memory and CPU registers, virtual
hard disk and memory of all virtual external de-
vices) and logging all architectural non-deterministic
events. ExecRecorder is based on the system emu-

lator Bochs [25]. An advantage of ExecRecorder is
that it can also run Windows in its virtual environ-
ment. However, it also suffers from the drawback
that virtual machine detecting malware cannot be
analyzed.

7 Conclusions

Malicious code is one of the most significant se-
curity threats on the Internet. To assess the mali-
cious potential of the thousands of new malware bi-
naries that are discovered every day, dynamic mal-
ware analysis systems (sandboxes) have proven to
be valuable tools. As a reaction, malware authors
have started to add checks to their code that de-
tect the presence of such sandboxes. When a check
determines that the malware program is analyzed,
it typically hides malicious functionality or simply
crashes. As a result, security analysts might mistak-
enly classify a binary as benign or underestimate its
threat.

In this paper, we present a technique to reliably
and efficiently identify malware programs that at-
tempt to detect the presence of Anubis (which is
our emulator-based sandbox) and similar tools. Our
technique works by recording the system call trace of
a program when it is executed on an uninstrumented
reference system. Then, the binary is run on the
analysis system, replaying the inputs that have been
previously seen. Whenever the program shows a dif-
ferent behavior, we conclude that the malware has
a split personality; that is, it has used CPU seman-
tics or timing attacks to identify the presence of our
sandbox. In this case, the binary can be forwarded to
a more costly, but fully transparent, analysis system
for further examination. Our experiments demon-
strate that our system effectively and efficiently de-
tects binaries with split personalities, while it can
successfully replay programs that do not contain any
checks for Anubis or the emulator (Qemu).
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