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Abstract
The unsupervised learning of spectro-temporal speech patterns
is relevant in a broad range of tasks. Convolutive non-negative
matrix factorization (CNMF) and its sparse version, convolu-
tive non-negative sparse coding (CNSC), are powerful, related
tools. A particular difficulty of CNMF/CNSC, however, is the
high demand on computing power and memory, which can pro-
hibit their application to large scale tasks. In this paper, we
propose an online algorithm for CNMF and CNSC, which pro-
cesses input data piece-by-piece and updates the learned pat-
terns after the processing of each piece by using accumulated
sufficient statistics. The online CNSC algorithm remarkably in-
creases converge speed of the CNMF/CNSC pattern learning,
thereby enabling its application to large scale tasks.
Index Terms: non-negative convolutive sparse coding, online
pattern learning

1. Introduction
Many signals exhibit clear spectro-temporal patterns; the au-
tomatic discovery of such patterns is highly important in or-
der to understand the signals and for the design of suitable ap-
proaches in related, practical applications. For instance, pat-
terns in speech signals are highly correlated to speaker charac-
teristics and speech contents. Some of the patterns can be de-
fined by humans and learned using supervised approaches such
as neural networks, whereas complex patterns are difficult to
pre-define and annotate, hence the need to resort to unsuper-
vised approaches.

Various unsupervised learning techniques have been devel-
oped need for automatic pattern discovery and are generally
based on the idea of searching for a number of patterns that
can be used to reconstruct training signals most precisely with
respect to a certain objective function and subject to a set of
constraints. The constraints of orthogonal patterns and the min-
imisation of the l-2 reconstruction loss leads to principle com-
ponent analysis (PCA); those of non-Gaussian patterns and the
minimisation of the mutual information (or non-Gaussianity)
leads to independent component analysis (ICA); non-negative
constraints applied to both patterns and decomposition coeffi-
cients leads to non-negative matrix factorisation (NMF) [1].

Such approaches can all be extended by imposing further
constraints. The l-1 minimisation, e.g., Lasso [2], is particu-
larly appealing since it leads to sparse decomposition and al-
lows over-complete patterns, i.e. the number of patterns (usu-
ally referred to as ‘bases’ in the case of NMF) is larger than
the signal dimension. For example, a large number of bases that
lead to indefinite decomposition in NMF can be applied without
difficulties in sparse NMF (SNMF).

All these unsupervised approaches assume independent sig-
nals and therefore they cannot be applied to discover temporal
patterns. A simple solution involves the reconstruction of orig-
inal signals through the concatenation of a window of neigh-
bouring signals and then the retrieval of patterns in the resulting
temporal signals. A more sophisticated approach involves the
sharing of decompositions among a set of bases with a time
shift. The latter leads to a convolutive pattern learning ap-

proach, e.g. convolutive NMF (CNMF) [3] or convolutive non-
negative sparse coding (CNSC) [4, 5].

While promising results have been demonstrated in some
tasks such as speech enhancement [6] and source separation
[7], sparse approaches such as CNMF and CNSC place high
demands on both processing power and memory. It is further
far from straight forward to apply parallel computing due to
the iterative nature of related algorithms. This problem is more
serious for CNSC where the number of bases is usually rela-
tively larger than it is for CNMF. For this reason most related
publications focus on small databases, e.g. TIDIGITS or TIMIT
and learning is often based on even smaller subsets or random
samples [8, 9]. Such partial-learning schemes are clearly unac-
ceptable for complex tasks. For instance, in speech recognition,
a large amount of data are necessary to ensure the learned pat-
terns are speaker independent. To address this problem we pro-
pose in this paper a new, on-line learning approach for CNMF
and CNSC, which processes input signals piece-by-piece and
updates the set of bases using accumulated, sufficient statistics.
With very few iterations for each piece of the signal, learned
patterns quickly converge to local minima of the objective func-
tion thereby facilitating its application to large scale tasks.

In the following sections, we first present the online CNSC
algorithm (CNMF can be regarded as a special case of CNSC
with zero sparsity). In Section 3 the proposed approach is com-
pared with the conventional batch model approach using a toy
experiment. Conclusions and ideas for further work are given
in Section 4.

2. Online convolutive pattern learning
CNSC can be formulated slightly differently depending on the
objective function [4, 5]. We follow the formulation in [5] and
minimise the following:

L(W,H) = |X − X̂(W )|22 + λ|H|1 (1)

where λ is a factor controlling the sparsity ofH , and |.|l denotes
the Frobenius l-norm, which is equivalent to the sum of squares
when l = 2 or to the sum of absolute values when l = 1. X ∈
RM×N

0,+ represents the original signal of length N in the M -
dimensional space, W ∈ RM×R×P

0,+ represents R bases with
convolution range P , and H ∈ RR×N

0,+ are the coefficients. X̂
is the approximate reconstruction of X and has the form:

X̂ =

P−1X
p=0

Wp

p→
H (2)

where
p→
H shifts H by p columns to the right and where Wp ∈

RM×R
0,+ are the corresponding bases of

p→
H .

As presented in [5] the update equations for W and H can
be derived by slightly modifying the procedure presented in the
seminal NMF paper [1], leading to:
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WT

p

←p

H

WT
p
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Wp ←Wp �
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H
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where � is the element-wise product and where the division is
also element-wise. Ξ is a matrix with all the elements equal to

1, and
←p

H is the coefficient matrix shifted p columns to the left.
Note that, for different p, the update for H is different and is
usually averaged over p. The above equations show that most
of the computation is involved in calculating the reconstruction
X̂ , which is of complexity O(M ×N ×R× P ). This is unre-
alistic for complex patterns (large R) and large databases (large
N ). All signals must furthermore be loaded into the memory
for computation and thus memory requirements are prohibitive.

An online dictionary learning (ODL) approach has been
presented recently to address the computational requirements in
the case of independent signals [10]. This approach reads in and
decomposes signals one-by-one and updates the bases each time
a signal is processed, according to accumulated statistics. The
authors show that learning can ‘almost’ converge to a global op-
timum with unlimited training data, subject to some reasonable
assumptions. Although it cannot be applied to convolutive ap-
proaches, this work directly inspired our investigation into an
online approach for learning convolutive patterns, particularly
for CNSC.

Compared to the work addressed in [10] which assumes
independent signals we need to deal with the convolution in
CNSC. We solve this by assuming that signals are convolutively
generated by patterns within a piece of neighbouring signal,
while signals in different pieces are independent. By apply-
ing this assumption and substituting (2) we obtain a modified
learning approach:

Wp ←Wp �
P

u B(p;u)P
q Wq

P
u A(q, p;u)

(4)

where

A(q, p;u) =
q→
H (u)

p→
H

T

(u)

and

B(p;u) = X(u)
p→
H

T

(u)

where u is the piece index. The segmentation of the signal into
pieces is arbitrary. For speech signals, a segmentation according
to sentence boundaries avoids the splitting of voiced patterns
and is thus a natural choice.

Note that the sizes of A(q, p;u) and B(p;u) are indepen-
dent of the data size or number of pieces, and can be regarded as
statistics of the piece u. The computation can now be applied to
signals piece-by-piece, and for each piece, the bases are updated
with a number of iterations using (3) and (4), thereby resulting
in optimal patterns for the data processed so far. An important
aspect of the piece-wise iteration is that the computation only
relates to the present piece, i.e.A(q, p;u) andB(p;u), and that
the contribution of pieces processed previously can be ‘memo-
rised’ using two auxiliary variables

A(q, p) =
X

u

A(q, p;u)

and
B(p) =

X
u

B(p;u)

and hence being used for ‘warm startup’.

Algorithm 1 Online CNCS pattern learning
1: U: number of pieces
2: K: iteration
3: A(i, j) ∈ RR×R, 0 < i, j < P
4: B(i) ∈ RM×R, 0 < i < P
5: A(i, j)← 0, ∀i, j
6: B(i)← 0, ∀i
7: for u := 0 to U-1 do
8: randomize(H)
9: for k := 0 to K-1 do

10: if activeW then
11: W = updateW (A,B,X(u),W,H)
12: end if
13: H = updateH(X,W,H)(Eq.3)
14: end for
15: [Ȧ, Ḃ,W ] = updateW (A,B,X(u),W,H)

16: A(i, j)← A(i, j) + Ȧ(i, j)

17: B(i)← B(i) + Ḃ(i)
18: end for

Algorithm 2 CNSC pattern update
Require: A,B,X,W,H

1: Ȧ ∈ RR×R, 0 < i, j < P
2: Ḃ ∈ RM×R, 0 < i < P

3: Ȧ(i, j) =
i→
H

j→
H

T

4: Ḃ(i) = X
i→
H

T

5: A = A+ Ȧ
6: B = B + Ḃ
7: for p :=0 to P-1 do
8: F ← 0
9: for q :=0 to P-1 do

10: F = F +WqA(q, p)
11: end for
12: Ẇp = Wp � B(p)

F
13: end for
14: Wp =

Ẇp

|Ẇp|22
∀p s.f. Wp ∈ RM×R

0,+

15: return [Ȧ, Ḃ,W ]

This leads to the online pattern learning approach for
CNSC, as shown in Algorithm 1, where the flag activeW in-
dicates if the bases should be updated when updating the co-
efficients (see Section 3). Algorithm 2 illustrates the pattern
update process (4). Matlab code for these algorithms is online
available1.

Besides the handling of convolution, the main difference
between our online pattern learning approach and ODL [10]
is that we do not pursue an optimal H for each signal piece;
instead, we apply a small number of iterations to obtain a sub-
optimalH and assume it is sufficient for accumulating statistics.
This may lead to a sub-optimal solution for a particular dataset
but can remarkably speed up the computation. This form is
largely inherited from the conventional CNSC update. As with
ODL, learned patterns tend to be more and more accurate as the
quantity of data increases; with increasing I , resulting patterns
approach the optimal. The CNSC-style pattern update in Algo-
rithm 2 can be replaced by the quadratic approach as in ODL.
While we do not have space here for an extensive discussion,
the conclusion is that the same accumulated statistics A and B
are necessary and sufficient.

Finally we note that the proposed online learning approach
aims to deliver efficient pattern discovery instead of optimising
coefficients. With the discovered patterns the optimal CNSC de-

1http://audio.eurecom.fr/software
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Figure 1: Value of the objective function (Equation 1) for the
first 20 iterations with online and batch learning.

composition can be conducted on pieces either by applying (3)
or by more efficient techniques such as quadratic optimisation,
and this is amenable to parallel computation.

3. Experiments
In this section, we study the behavior of the proposed online pat-
tern learning algorithm and compare it to conventional batch-
mode CNSC learning. We use a toy experiment proposed by
P. Smaragdis2 in a study of CNMF [3]. The task is to learn
two sets of patterns from individual speech signals of a male
and female speaker respectively, and then to use the correspond-
ing bases to separate the two voices from a segment of mixed
speech. The two individual speech segments that are used to
learn patterns are in the order of 30 seconds in length, are sam-
pled at 16kHz and are mixed together by simple addition with
appropriate zero-padding being applied to the shorter speech
recording. Smaragdis showed that CNMF is able to find pat-
terns that are specific to the individual speakers and that it can
thus be employed to separate the speech signal into to its two
individual components, i.e. speakers. Sparse coding has been
shown to deliver improved performance [7].

The two speech signals are windowed into frames of 32ms
with a frame shift of 16ms, thereby resulting in a frame rate
of 62.5 frames per second. The Fourier transform is applied
to each frame and the magnitude spectrum is used as a non-
negative representation which is suitable for NMF and NCSC.
All results reported here relate to fixed parameters of R = 20,
P = 4 and λ = 0.01. They have not been optimised for the task
in hand and were chosen according to good results obtained on
a small data subset. All experiments were conducted on a desk-
top machine with two dual-core 2.60GHz CPUs and memory
of 4GB.

3.1. Online learning and batch learning
In the first experiment we compare the convergence speed of the
online and batch learning approaches. These experiments were
conducted using the recording of male speech. For the online
approach, each speech segment is divided into 10 pieces, and
two configurations are assessed: active online learning, which
allows the simultaneously updating of both patterns and coef-
ficients (activeW = true in Algorithm 1), and inertial online
learning, which fixes the patterns while optimising coefficients
(activeW = false in Algorithm 1). To avoid unrelated fluctu-
ations in computing capacity we ran the experiments 100 times
and computed the average run-time.

Figure 1 shows the value of the objective function, in Equa-

2http://www.cs.illinois.edu/˜paris/demos/

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Iteration

T
im

e 
(s

ec
.)

 

 
Batch
Online: Active
Online: Inertial

Figure 2: Average run-time for the first 20 iterations with online
and batch learning.

tion 1, for the first 20 iterations. It is interesting to see that
both variants of online learning converge in the first 4 or 5 it-
erations whereas batch learning requires about 20 iterations to
reach the same level. With more iterations, although not shown
here, batch learning achieves better results, according to reasons
we discuss shortly. The comparison of the two online learning
approaches shows that active learning gives better results. This
is to be expected given its facility to update patterns in addition
to coefficient optimisation.

Figure 2 shows the corresponding average run-time for the
first 20 iterations of all three algorithms. We see that, as ex-
pected, inertial online learning is most efficient. Interestingly,
active online learning proves to be more efficient than batch
learning even though an extra pattern update is performed for
each piece. This rather unexpected improvement in efficiency
may be due to the avoidance of large matrix operations in the
case of active online learning.

3.2. Piece length
In the second experiment we study the impact of piece seg-
mentation on the rate of convergence for online approaches.
For that we split the recording of male speech (2085 frames)
into U pieces, and conduct pattern learning as described above.
Note that, if the entire speech signal is treated as a single piece
(U = 1), active online learning is equivalent to batch learning.

The value of the objective function for the two online learn-
ing approaches is shown in Figure 3 for U = 1 to 10 and af-
ter 10 iterations of the algorithm in all cases. We first observe
that the two online learning approaches substantially outper-
form batch learning (U = 1) and that better patterns can be
obtained by learning on smaller pieces.

The corresponding average run-time is shown in Figure 4.
Inertial online learning tends to be more efficient when the
speech signal is segmented into more pieces as the computation
for accompanying pattern updates is saved. Active learning is
more efficient than batch learning (U = 1) with a small number
of pieces; however with a larger number of pieces, it is slightly
less efficient due to the final pattern update which is required
for each piece.

A better understanding of online learning is achieved by
taking both the number of iterations and pieces into account.
First, active online learning can be seen as an extension of batch
learning where the signals are split into multiple pieces instead
of a single piece. The splitting of signals into smaller pieces
allows ‘early learning’ of patterns before all signals are pro-
cessed. The simultaneous updating of patterns and coefficients
leads to faster converge for new data; however, if the pieces are
too small and there are too many iterations, there is a risk that
learned patterns are over-fitted to the most recent piece, thereby
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Figure 3: Value of the objective function for U = 1 and 10
pieces and after 10 iterations of either active or inertial online
learning.
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Figure 4: Average run-time for between U = 1 to 10 pieces and
after 10 iterations of either active or inertial online learning.

leading to some bias. It is thus necessary that the piece length is
configured according to the number of iterations, or vice versa.
In the extreme case where the number of iterations is infinite,
the speech signal should not be split so as to avoid overfitting,
which is the case for batch learning. This means that active
learning never performs worse than batch learning if a suitable
piece size is selected.

Inertial online learning shares the same advantage of early
learning but suffers less from over-fitting. In fact, smaller pieces
are preferred in this case so that coefficient optimisation is more
accurate with a limited number of iterations, in which case there
is a higher chance of converging to global optimum.

3.3. Speech separation

We finally investigate the use of bases learned through on-
line and batch approaches to separate the male/female mixed
speech. Each of the two individual training utterances (1 male, 1
female) are split into 10 pieces and patterns are learned with 10
iterations of each algorithm. The spectrum of the mixed speech
signal is then projected independently onto the two sets of bases
and the reconstruction residual (square error) of the resulting
magnitude spectrum is computed for the individual male and
female speech signals respectively. The error is calculated for
each frame and the accumulated error, computed for the entire
utterance, is used as the evaluation metric.

Results shown in Table 1 are consistent with the above dis-
cussion in that the online approaches tends to give better perfor-

Learning approach Residual Av. learning time (sec.)
Batch 78,5 5.5
Online (Active) 60,9 4.6
Online (Inertial) 70,4 2.7

Table 1: Speech separation performance with batch and on-
line learning. The second column illustrates the reconstruction
residual (error) and the third column illustrates the average run-
time.

mance than batch learning and that active online learning out-
performs inertial online learning, but remains less efficient. The
original and resulting speech files resulting from these experi-
ments are available online3.

4. Conclusion
This paper presents a new online learning approach for unsuper-
vised convolutive pattern learning. Compared to conventional
batch learning and online dictionary learning approaches for
independent signals, the proposed approach processes signals
and updates learned patterns piece-by-piece. This approach re-
tains the convolutive features in signal generation while speed-
ing up convergence significantly. Future work involves employ-
ing quadratic coefficient optimisation and the application of the
online approach to large-scale tasks.
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