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Abstract—We consider prefiltering for a single–carrier trans-
mission over frequency–selective channels, where reduced–state
trellis–based equalization is employed at the receiver, such
as delayed decision–feedback sequence estimation (DDFSE)or
reduced–state sequence estimation (RSSE). While previously
proposed prefiltering schemes are based on the optimum filters
of decision–feedback equalization (DFE), the prefilteringscheme
introduced in this paper is designed according to a signal–
to–interference–plus–noise ratio (SINR), whose definition takes
into account explicitely the subsequent trellis–based equalizer
and its complexity. In addition to the prefilter, a finite–length
target impulse response for DDFSE/RSSE and an infinite–
length feedback filter for state–dependent decision feedback in
DDFSE/RSSE, respectively, is optimized. The developed solutions
lend themselves to an interpretation of the tasks of the optimum
filters. The presented numerical results show that noticeable gains
can be achieved compared to state–of–the–art prefilters.

I. I NTRODUCTION

For a transmission with single–carrier modulation over
frequency–selective channels producing intersymbol interfer-
ence (ISI), optimum maximum–likelihood sequence estimation
(MLSE) [1] is too complex for an implementation if higher–
order modulation is employed and/or the length of the channel
impulse response (CIR) is high. In such a case, suboptimum
trellis–based equalization with a reduced number of states
might be adopted because it offers a very good tradeoff
between performance and complexity.

In order to limit the required number of states of the
Viterbi algorithm (VA), the CIR might be shortened by linear
prefiltering. Various approaches have been proposed in the
literature for the design of the prefilter. In [2], the prefilter
has been chosen for channel memory truncation, i.e., the
overall impulse response of the cascade of channel and prefilter
approximates a desired impulse response (DIR) with an order
which is lower than that of the channel and taps which are
given by the first few channel taps. In [3], Falconer and
Magee have shown how to optimize the prefilter coefficients
and the DIR jointly according to a minimum mean–squared
error (MMSE) criterion. By doing so, the approximation error
can be reduced compared to the approach of [2]. However,
the schemes of [2], [3] do not take into account a possible
correlation of the noise after prefiltering which may lead toa
performance degradation of the VA due to a metric mismatch,
i.e., the Euclidean branch metrics of the VA are no longer
adjusted to the true noise characteristics. The aim of the
scheme proposed in [4] is to control also the noise correlation

when shortening the CIR via prefiltering. However, for all
known linear prefiltering schemes for channel shortening a
coloring and enhancement of the noise is inevitable if the
prefilter has to be designed for a significant shortening of the
CIR corresponding to a drastic reduction of the complexity of
the VA.

In order to avoid the mentioned shortcomings of channel
shortening by linear prefiltering, the principles of trellis–
based equalization and decision–feedback equalization (DFE)
might be combined [5]. However, such a scheme is prone
to error propagation if the feedback of decisions is done
outside of the VA, using tentative decisions. This problem
can be circumvented if state–dependent feedback is performed
within the VA, exploiting the symbols of the surviving paths
of the VA assigned to the trellis states as has been proposed
by Duel-Hallen and Heegard [6], [7]. The resultingdelayed
decision–feedback sequence estimation (DDFSE)algorithm
is characterized by an excellent tradeoff between performance
and complexity. A further refinement of DDFSE has been
introduced by Eyuboǧlu and Qureshi [8] which is referred toas
reduced–state sequence estimation (RSSE). Here, an additional
reduction of the number of states of the VA is accomplished by
defining the trellis states via the index numbers of the subsets
of a set partitioning of the signal constellation.

In [9], it has been shown for the GSM / Enhanced Data
Rates for GSM Evolution (EDGE) system which employs 8–
ary phase–shift keying (8PSK) modulation that the perfor-
mance of MLSE can be closely approached with a DDFSE
or an RSSE operating in a trellis with only a few states.
However, this holds only for a proper prefiltering of the
received signal because only the front part of the overall CIR
can be exploited by DDFSE/RSSE. It is well known that the
minimum–phase equivalent CIR is a suitable overall impulse
response for DDFSE/RSSE corresponding to an allpass pre-
filter transforming the CIR into its minimum–phase version
while leaving the noise characteristics unaffected. Significant
research effort has been devoted to the problem of computing
a finite impulse response (FIR) approximation of the allpass
prefilter with a low computational complexity. For example,in
[10] it has been proposed to employ the cascade of a discrete–
time matched filter and a prediction–error filter. Motivated
by the fact that the feedforward filter of an MMSE–DFE
with infinite–length filters tends to the desired allpass filter
corresponding to the optimum feedforward filter of a zero–



forcing (ZF) DFE for high signal–to–noise ratios (SNRs), also
the feedforward filter of an FIR MMSE–DFE might be chosen
for prefiltering, cf. e.g. [11]. In [12], it has been shown that
for DDFSE, noticeable gains can be achieved by the MMSE–
DFE prefilter for certain channels compared to an allpass
prefilter. Approaches for a fast computation of the MMSE–
DFE prefilter coefficients have been proposed in [13]–[15].

The aforementioned prefilters seem to be not optimally
adjusted to DDFSE/RSSE because they have been originally
designed for ZF–DFE and MMSE–DFE, respectively, neglect-
ing the fact that not only the first tap of the prefiltered CIR
is relevant for the detection performance but several consec-
utive taps whose number depends on the trellis definition of
DDFSE/RSSE. In this paper, we propose a prefiltering scheme
which offers an improved performance compared to the DFE–
based prefilters and is better matched to the characteristics
of DDFSE/RSSE. Our scheme is related to optimum filter
design for fixed delay tree search with decision feedback
for data storage channels according to [16] and an algorithm
for maximum SNR prefiltering for multiple–input multiple–
output (MIMO) systems introduced in [17]. It should be noted
that the filter optimization in [16] was done for magnetic
recording systems with special run–length constraints anda
different detection scheme as considered in this paper. In
[17] the focus lies on prefiltering for joint DDFSE/RSSE
for reception of cochannel EDGE user signals employing a
single–antenna receiver, whereas here we consider a single–
user transmission and, also unlike [17], optimize also the
target impulse response of equalization and the feedback filter
used in metric calculations of DDFSE/RSSE. In contrast to
the schemes of [16], [17] which are based on FIR filters,
the limit case of an infinite–length prefilter and feedback
filter, respectively, is studied. The corresponding results lend
themselves to a clear interpretation of the tasks of the filters
and offer further insight.

This paper is organized as follows. In Section II, the
underlying system model for a single–carrier transmissionover
an ISI channel with DDFSE/RSSE in the receiver is described,
and a filter design criterion matched to the characteristics
of DDFSE/RSSE is introduced. In Section III, the optimum
infinite–length prefilter and feedback filter and the optimum
finite–length target response of the scheme, respectively,are
derived. Numerical results for the proposed scheme are pre-
sented in Section IV which demonstrate that it is able to
outperform previously proposed schemes.

Notation:E{·}, ∗, (·)T and(·)H denote expectation, convo-
lution, transposition and Hermitian transposition, respectively.
Bold lower case letters and bold upper case letters stand for
column vectors and matrices, respectively.[A]m,n denotes the
element in themth row andnth column ofA; IX is theX×X
identity matrix.P (z) stands for thez–transform of a sequence
p[k]. The correlation sequence of signalsp[k] andq[k] and its
z–transform are denoted asϕpq[κ] = E{p[k] q∗[k − κ]} and
Φpq(z), respectively.

II. SYSTEM MODEL

We consider a single–carrier transmission with linear mod-
ulation over a frequency–selective channel producing ISI.In
discrete–time equivalent complex baseband representation, the
received signal is given by

r[k] =

qh
∑

κ=0

h[κ] a[k − κ] + n[k], (1)

where a[k] denote the independent, identically distributed
(i.i.d.) symbols of the transmit sequence of varianceσ2

a which
are taken from a signal constellationA, e.g. anM–ary PSK
or quadrature amplitude modulation (QAM) constellation. The
discrete–time CIRh[k] of order qh comprises the effects
of transmit filtering, channel, receiver input filtering, and
symbol–spaced sampling.n[k] stands for additive white Gaus-
sian noise (AWGN) of varianceσ2

n. The received signal is
prefiltered by a two–sided infinite–length filter with transfer
functionF (z) =

∑+∞

k=−∞
f [k] z−k.

The prefiltered signal is processed by a DDFSE or RSSE
algorithm. For simplicity, we discuss only DDFSE in more
detail1. The states of the reduced–state trellis diagram of
DDFSE are defined as

s̃r[k] = [ã[k − 1] ã[k − 2] . . . ã[k − qd]]
T , (2)

where ã[·] ∈ A are equalizer trial symbols. The number of
states per time step isZ = M qd , 0 ≤ qd ≤ qh. Here, the
extreme cases ofqd = 0 and qd = qh correspond to DFE
and a full–state VA, respectively. The metric of the DDFSE
trellis branch emerging from statẽsr[k] with trial symbolã[k]
is given by [7]

λ(ã[k], s̃r[k]) =
∣

∣

∣
u[k]−

qd
∑

κ=0

d[κ] ã[k − κ]−

qb
∑

κ=0

b[κ] â[k − (qd + 1)− κ, s̃r[k]]
∣

∣

∣

2

.

(3)

Here, u[k] denotes the prefiltered received signal,u[k] =
f [k] ∗ r[k], andd[k] refers to the target impulse response of
prefiltering of orderqd which is used for trellis definition.b[k]
is the causal impulse response of the feedback filter employed
in metric calculations by which postcursor taps with delays
higher thanqd can be taken into account properly, exploiting
the contentŝa[k − κ, s̃r[k]] of the registers of the survivor
paths of states̃sr[k] via state–dependent decision feedback.

Commonly,f [k] is chosen as the impulse response of the
feedforward filter of a ZF–DFE or MMSE–DFE, andd[k] and
b[k] are selected as the leading and backmost portion of the
causal part of the prefiltered CIR, respectively. However, in
general this seems to be not the optimum choice.

As a novel criterion for filter optimization, we consider
the signal–to–interference–plus–noise ratio (SINR) seenby the

1The resulting filters are also directly applicable to RSSE.



DDFSE algorithm,

SINR =

σ2
a

qd
∑

κ=0
|d[κ]|2

E{|e[k]|2}
, (4)

where the error signale[k] is defined as

e[k] =
+∞
∑

κ=−∞

f [κ] r[k − κ]−

qd
∑

κ=0

d[κ] a[k − κ]−

qb
∑

κ=0

b[κ] a[k − (qd + 1)− κ], (5)

representing the difference of the signal after feedforward and
feedback filtering from the desired signald[k]∗a[k] of trellis–
based equalization. For (5), perfect feedback in branch metric
computations has been assumed corresponding to error–free
symbols in the survivor path registers, as usual in the design
of systems with decision feedback.

It should be noted that for the criterion (4) a possible loss
in minimum Euclidean distance for trellis–based equalization
compared to an ISI–free channel has been ignored. However,
for low–to–moderateqd this distance loss is expected to be
small. For instance, a distance loss does not occur forqd = 1,
and the distance loss is limited to 2.3 dB forqd = 2 and
binary PSK even for a worst–case channel [18]. Furthermore,
the effect of a possible correlation ofe[k] on the performance
of trellis–based equalization with Euclidean metric has been
not taken into account. However, it can be assumed that the
performance degradation due to a metric mismatch is only
slight for low–to–moderateqd because an excessive noise
correlation can be avoided by allowing a feedback filter in
addition to the feedforward filter, similar to a DFE, cf. also
the numerical results of Section IV.

III. F ILTER OPTIMIZATION

In the following, filter optimization is performed in three
steps. First,f [k] is optimized for givend[k] and b[k]. In the
next step,b[k] is also optimized resulting in a cost function
which depends solely ond[k] and is finally maximized.

A. Optimization off [k]

For givend[k] andb[k], the optimum transfer functionF (z)
can be directly calculated via MMSE filter theory, cf. e.g. [19],
resulting in

F (z) = FLE(z) (D(z) + z−k0 B(z)) (6)

whereD(z) =
∑qd

k=0 d[k]z
−k, B(z) =

∑qb
k=0 b[k] z

−k, k0 =
qd + 1, andFLE(z) is the transfer function of the optimum
infinite–length MMSE linear equalizer [18],

FLE(z) =
H∗(1/z∗)

H(z)H∗(1/z∗) + ζ
, (7)

with H(z) =
∑qh

k=0 h[k]z
−k andζ = σ2

n/σ
2
a.

B. Optimization ofb[k]

For optimization of the SINR w.r.t.b[k] we insert the
optimum f [k] according to (6) in (4) and consider only the
denominator further, which can be written as

E{|e[k]|2} = E{|eLE[k] ∗ d[k] + eLE[k − k0] ∗ b[k]|
2}, (8)

whereeLE[k] denotes the error signal of MMSE linear equal-
ization,

eLE[k] = fLE[k] ∗ r[k]− a[k], (9)

whose autocorrelation sequenceϕeLEeLE
[κ] has az–transform

ΦeLEeLE
(z) =

σ2
n

H(z)H∗(1/z∗) + ζ
. (10)

The task is now to find the optimum causal MMSE filter
with order qb → ∞ minimizing E{|e[k]|2} for given d[k].2

Invoking causal infinite impulse response (IIR) MMSE filter
theory, cf. e.g. [19], and denoting the input signal of filter
b[k] and its desired output signal asx[k] = eLE[k − k0] and
m[k] = −

∑k0−1
κ=0 d[κ] a[k−κ], respectively, the optimum filter

can be obtained as follows. First, a spectral factorization[20]
of Φxx(z) has to be performed, yielding

Φxx(z) = ΦeLEeLE
(z) = Φmin(z)Φ

∗

min(1/z
∗), (11)

with az–transformΦmin(z) =
∑+∞

k=0 ϕmin[k] z
−k correspond-

ing to a causal, stable and minimum–phase sequenceϕmin[k].
In addition,Φmx(z) is needed which can be calculated to

Φmx(z) = −zk0 D(z)Φmin(z)Φ
∗

min(1/z
∗). (12)

Next, az–transform

G(z) =
Φmx(z)

Φ∗

min(1/z
∗)

= −zk0 D(z)Φmin(z) =

−

k0−1
∑

κ=0

d[κ] zk0−κ Φmin(z) (13)

is calculated which has to be decomposed according to

G(z) = G+(z) +G−(z), (14)

whereG+(z) andG−(z) correspond to the causal part and the
strictly anticausal part of sequenceg[k], respectively, resulting
in

G+(z) = −

k0−1
∑

κ=0

d[κ] Φk0−κ,min(z) (15)

with

Φµ,min(z) =

+∞
∑

ν=µ

ϕmin[ν] z
−ν , µ ∈ {1, 2, . . . , k0}. (16)

2Feedback filters for DDFSE withqb → ∞ have been also considered in
the original paper [7].



Finally, the optimum feedback filter transfer function is ob-
tained as

B(z) =
G+(z)

Φmin(z)
= −

k0−1
∑

κ=0

d[κ]Pk0−κ(z), (17)

where

Pµ(z) =
Φµ,min(z)

Φmin(z)
, µ ∈ {1, 2, . . . , k0} (18)

can be easily identified as the optimum causal IIR transfer
function of aµ–step forward predictor [21] foreLE[k]. Hence,
the optimum feedback filter can be decomposed into a linear
combination of prediction filters foreLE[·] with different
prediction steps.

C. Optimization ofd[k]

Using the optimum coefficientsf [k] and b[k] according to
(6) and (17), the error signal of (5) can be expressed as

e[k] =

k0−1
∑

κ=0

d[κ]we,k0−κ[k − κ] (19)

wherewe,k0−κ[k−κ] is the prediction error which occurs when
eLE[k− κ] is predicted by a causal IIR (k0 − κ)–step forward
predictor from the valueseLE[k − µ], µ ∈ {k0, k0 + 1, . . .},

we,k0−κ[k− κ] = eLE[k− κ]− pk0−κ[k] ∗ eLE[k− k0]. (20)

Hence, the error variance can be compactly written as

E{|e[k]|2} = dH Φwewe
d, (21)

with
d = [d∗[0] d∗[1] . . . d∗[k0 − 1]]T (22)

and the autocorrelation matrix of the prediction error vector

we[k] = [we,k0
[k]we,k0−1[k−1] . . . we,1[k−k0+1]]T , (23)

Φwewe
= E{we[k]w

H
e [k]}. (24)

The elements ofΦwewe
are obtained via inversez–transform

as

[Φwewe
]m,n =

1

2πj

∮

zn−m (1− z−(k0−m)Pk0−m(z))·

(1− z(k0−n)P ∗

k0−n(1/z
∗))ΦeLEeLE

(z)
1

z
dz,

m, n ∈ {0, 1, . . . , k0 − 1}, (25)

with the prediction–error filter transfer functions

(1 − z−(k0−κ)Pk0−κ(z)) =

k0−1−κ
∑

µ=0
ϕmin[µ] z

−µ

Φmin(z)
. (26)

Alternatively, Φwewe
can be closely approximated by using

the fact that the filter impulse responsespk0−κ[k] are stable
and its coefficients are negligible fork > qp with a suitably
chosenqp. Hence,

Φwewe
= [Ik0

−PH ]ΦeLEeLE
[Ik0

−PH ]H (27)

with
P = [p∗

k0
p∗

k0−1 . . . p∗

1], (28)

pk0−κ = [pk0−κ[0] pk0−κ[1] . . . pk0−κ[qp]]
T (29)

and the autocorrelation matrixΦeLEeLE
of eLE[k] of size(k0+

qp + 1)× (k0 + qp + 1).
Finally, with (21) the SINR (4) is rewritten as

SINR =
σ2
a d

H d

dH Φwewe
d

(30)

and can be maximized via the Rayleigh–Ritz Theorem [22],
resulting in the eigenvalue problem

Φ−1
wewe

dopt =
SINRmax

σ2
a

dopt. (31)

Hence, the optimum vectordopt is identical to the eigenvector
of Φ−1

wewe
corresponding to the maximum eigenvalue which

yields the (normalized) maximum SINR,SINRmax/σ
2
a.

D. Discussion and Special Cases

The computational complexity of the proposed prefiltering
scheme is mainly governed by the spectral factorization ac-
cording to (11), the determination of the elements of matrix
Φwewe

according to (25) or (27), and the solution of the
eigenvalue problem (31).

Because the optimum feedforward filter can be decomposed
into the cascade of a linear equalizer and a systemD(z) +
z−k0 B(z), it first eliminates the ISI and then reintroduces
ISI in a controlled manner according to the second factor
of its transfer function (6). This ISI is partially taken into
account for state definition of trellis–based equalizationand
partially cancelled by per–survivor processing within theVA
using the feedback filter coefficients. The total error signal can
be expressed as a linear combination of prediction errors corre-
sponding to prediction of the error signal of linear equalization
with different steps, cf. (19), where the combining coefficients
d[κ] are determined for a maximum SINR. It should be noted
that the error signal contains also residual ISI as typical for
MMSE filtering.

For the case of a target impulse response of order zero,
qd = 0, k0 = 1, (21) simplifies to

E{|e[k]|2} = |d[0]|2 E{|we,1[k]|
2}, (32)

and (26) yields

(1 − z−1P1(z)) =
ϕmin[0]

Φmin(z)
, (33)

i.e., only a one–step prediction–error filter is required for filter
calculations. Furthermore, (33), (11), and (25) result in

E{|we,1[k]|
2} = |ϕmin[0]|

2, (34)

where|ϕmin[0]|
2 is obtained as [20]

|ϕmin[0]|
2 = exp

( 1/2
∫

−1/2

ln

(

σ2
n

|H(ej2πf )|2 + ζ

)

df

)

. (35)



Finally, we can calculate the SINR as

SINR =
σ2
a |d[0]|

2

|d[0]|2 |ϕmin[0]|2

= exp

( 1/2
∫

−1/2

ln

(

σ2
a |H(ej2πf )|2

σ2
n

+ 1

)

df

)

, (36)

which is the well–known SINR of MMSE–DFE [23], as was
to be expected. Of course, the SINR is independent ofd[0]
which causes only a signal scaling, and the feedforward and
feedback filter are equivalent to the feedforward and feedback
filter of MMSE–DFE, respectively.

The involved prediction errors forqd > 0 are in general
not white, in contrast to the white one–step prediction error of
MMSE–DFE (qd = 0). This holds because via (26) and (11),
the power spectral density of a (k0 − κ)–step prediction error
can be written as|

∑k0−1−κ
µ=0 ϕmin[µ] e

−j2πfµ|2.
We note that for a scheme without feedback filtering, matrix

P in (27) has to be replaced by an all–zero matrix andΦwewe

reduces to thek0×k0 autocorrelation matrix ofeLE[k]. Thus,
the solution of Falconer and Magee [3] is obtained in this case.

IV. N UMERICAL RESULTS

For numerical results theSINR is evaluated for different
selected channels. The proposedSINR maximizing prefiltering
scheme (SINR–max) is compared to prefiltering with a ZF–
DFE and MMSE–DFE feedforward filter, respectively, at a
signal–to–noise ratio (SNR) of SNR =

σ2

a

σ2
n

= 30 dB. In the
following, theoretical results for the SINR according to (4) are
presented for different prefiltering schemes. It should be noted
that for SINR results, only theSNR is relevant in addition
to the CIR, but not the adopted modulation scheme. Fig. 1
shows the SINR versusqd for a normalized impulse response
of unit energy of orderqh = 9 with linearly increasing
channel taps (h[0] = const. · 1, h[9] = const. · 10). In Fig.
2 the SINR comparison is given for a random realization of
a mobile communications channel of channel orderqh = 9
with constant power delay profile3, and Fig. 3 shows the
performance for a test channel withqh = 6, as given in [24].

For qd = 0 it has been shown in Section III-D that the
bank of µ–step forward predictors of the proposed prefilter
reduces to a simple single one–step predictor, which turns the
SINR-max prefilter into the MMSE–DFE feedforward filter.
For a higherqd, the SINR–max prefilter includesqd + 1 µ–
step predictors, withµ = {1, 2, .., qd + 1}, which enhances
the SINR significantly, compared to the MMSE–DFE and ZF–
DFE prefilter, which are not designed for maximization of
the SINR according to (4), in contrast to the novel prefilter.
Thus, significant gains of the novel prefilter are expected for
reduced–state equalization. However, it is also anticipated that
only a part of theSINR gain can be realized by trellis–based
equalization because of a certain noise coloring introduced by

3For different realizations of this channel, similar results have been ob-
tained.
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Fig. 1. SINR depending onqd of the different prefiltering schemes for an
impulse response with linearly increasing channel taps.
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Fig. 2. SINR depending onqd of the different prefiltering schemes for a
random realization of an equalizer test channel.

the prefilter, cf. Fig. 4, where|F (ej2πf )|2 is shown for the
channel of Fig. 1 and differentqd.

V. CONCLUSIONS

We have introduced a novel prefiltering scheme for reduced–
state trellis–based equalization which is better adjustedto
the requirements of subsequent equalization than previous
schemes. In particular, all filters are optimized accordingto a
suitable SINR criterion. It has been shown that the prefiltercan
be represented as a cascade of a linear MMSE equalizer and a
target system plus feedback filter, where the infinite–length
causal feedback filter is a linear combination of multistep
prediction filters with different steps and the coefficientsof
the target system result from an eigenvalue problem. In future
work, the approach might be generalized to MIMO systems.
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Fig. 3. SINR depending onqd of the different prefiltering schemes for a
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qd = 2

qd = 1

qd = 0

SINR-max prefilter

MMSE-DFE prefilter

|F
(e

j
2
π
f
)|
2

f

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 4. |F (ej2πf )|2 for the channel of Fig. 1 and differentqd.

REFERENCES

[1] G. Forney, Jr., “Maximum–Likelihood Sequence Estimation of Digital
Sequences in the Presence of Intersymbol Interference,”IEEE Transac-
tions on Information Theory, vol. 18, pp. 363–378, May 1972.

[2] S. Qureshi and E. Newhall, “An Adaptive Receiver for DataTransmis-
sion over Time-Dispersive Channels,”IEEE Transactions on Information
Theory, vol. 19, pp. 448–457, Jul. 1973.

[3] D. Falconer and F. Magee, “Adaptive Channel Memory Truncation for
Maximum Likelihood Sequence Estimation,”The Bell System Technical
Journal, vol. 52, no. 9, pp. 1541–1562, Nov. 1973.

[4] C. Beare, “The Choice of the Desired Impulse Response in Com-
bined Linear–Viterbi Algorithm Equalizers,”IEEE Trans. on Commun.,
vol. 26, no. 8, pp. 1301–1307, Aug. 1978.

[5] W. Lee and F. Hill, “A maximum–likelihood sequence estimator with
decision feedback equalization,”IEEE Trans. on Commun., vol. 25, pp.
971–979, Sep. 1977.

[6] A. Duel and C. Heegard, “Delayed decision–feedback sequence estima-
tion,” in Proceedings of the 23rd Annual Allerton Conference Commun.,
Contr., Comput., Allerton, Oct. 1985.

[7] A. Duel-Hallen and C. Heegard, “Delayed Decision–Feedback Sequence
Estimation,”IEEE Trans. on Commun., vol. 37, pp. 428–436, May 1989.
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