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ABSTRACT

We consider prefiltering for a single–carrier transmission
over frequency–selective channels, where reduced–state
trellis–based equalization is employed at the receiver. While
previously proposed prefiltering schemes are based on the
optimum filters of decision–feedback equalization (DFE),
the prefiltering scheme introduced in this paper is de-
signed according to a signal–to–interference–plus–noise ra-
tio (SINR), whose definition takes into account explicitly the
subsequent trellis–based equalizer and its complexity. In ad-
dition to the prefilter, a finite–length target impulse response
for trellis–based equalization and a feedback filter for state–
dependent decision feedback in equalization, respectively, is
determined. However, it is shown that a direct maximization
of the SINR with respect to all filters results in a biased solu-
tion, and the relation of this solution to an optimum unbiased
solution with improved error rate performance, which is also
derived, is investigated.

1. INTRODUCTION

Single–carrier transmission is still of significant interest for
various practical applications because in contrast to multi–
carrier transmission, it does not suffer from a high peak–
to–average power ratio (PAPR). In particular for devices
in which transmitters of low cost should be employed,
single–carrier transmission is advantageous because ampli-
fiers with a reduced linearity range can be used due to the
low PAPR of single–carrier signals. For example, single–
carrier frequency–division multiple access (FDMA) trans-
mission has been standardized for the uplink of the Long
Term Evolution (LTE) mobile communications system, and
conventional single–carrier transmission schemes are still
frequently employed in military communications.

For a transmission with single–carrier modulation over
frequency–selective channels producing intersymbol inter-
ference (ISI), optimum maximum–likelihood sequence esti-
mation (MLSE) [1] using the Viterbi algorithm (VA) is often
too complex for an implementation. In such a case, subop-
timum trellis–based equalization with a reduced number of
states might be adopted because it offers a very good trade-
off between performance and complexity.

For a reduction of the number of states of the trellis dia-
gram of MLSE, the principles of trellis–based equalization
and decision–feedback equalization (DFE) might be com-
bined [2]. However, such a scheme is prone to error prop-
agation if the feedback of decisions is done outside of the
VA, using tentative decisions. This problem can be circum-
vented if state–dependent feedback is performed within the
VA, exploiting the symbols of the surviving paths of the VA

assigned to the trellis states as has been proposed by Duel-
Hallen and Heegard [3]. The resulting delayed decision–
feedback sequence estimation (DDFSE) algorithm is char-
acterized by an excellent tradeoff between performance and
complexity. A further refinement of DDFSE has been in-
troduced by Eyuboǧlu and Qureshi [4] which is referred to
as reduced–state sequence estimation (RSSE). Here, an addi-
tional reduction of the number of states of the VA is accom-
plished by defining the trellis states via the index numbers of
the subsets of a set partitioning of the signal constellation.

However, DDFSE/RSSE offers an excellent tradeoff be-
tween performance and complexity only if it is combined
with suitable prefiltering in front of equalization. Typically,
the prefilter is designed to transform the channel impulse
response (CIR) approximately into its minimum–phase ver-
sion. Corresponding finite impulse response (FIR) prefilters
have been proposed e.g. in [5, 6].

However, the aforementioned prefilters seem to be not
optimally adjusted to DDFSE/RSSE because they have been
originally designed for DFE, neglecting the fact that not only
the first tap of the prefiltered CIR is relevant for the detec-
tion performance but several consecutive taps whose num-
ber depends on the trellis definition of DDFSE/RSSE. In this
paper, we propose a prefiltering scheme which offers an im-
proved performance compared to the DFE–based prefilters
and is better matched to the characteristics of DDFSE/RSSE.

This paper is organized as follows. In Section 2, the
underlying system model for a single–carrier transmission
over an ISI channel with DDFSE/RSSE in the receiver is de-
scribed, and a filter design criterion which is adjusted to the
characteristics of DDFSE/RSSE is introduced. In Section 3,
it is demonstrated that an optimization of this criterion with-
out any further constraints, as has been done in [7], results in
a biased solution which causes a certain mismatch in subse-
quent trellis–based equalization. In particular, the assumed
useful signal and the error signal of equalization for a certain
time instant are no longer statistically independent for a bi-
ased solution, resulting in a degraded performance of trellis–
based equalization. In Section 4, the optimum unbiased FIR
prefilter is derived which guarantees an improved error rate
performance of equalization. Both solutions are related to
each other in Section 5. Numerical results for the proposed
scheme are presented in Section 6 which demonstrate that it
is able to outperform previously proposed schemes.

Notation: E {·}, ∗, (·)T and (·)H denote expectation, con-
volution, transposition and Hermitian transposition, respec-
tively. Bold lower case letters and bold upper case letters
stand for column vectors and matrices, respectively. IX is
the X ×X identity matrix. P(z) stands for the z–transform
of a sequence p[k]. The correlation sequence of signals



p[k] and q[k] and its z–transform are denoted as ϕpq[κ ] =
E{p[k]q∗[k−κ ]} and Φpq(z), respectively.

2. SYSTEM MODEL

We consider a single–carrier transmission with linear modu-
lation over a frequency–selective channel producing ISI. In
discrete–time equivalent complex baseband representation,
the received signal is given by

r[k] =
qh

∑
κ=0

h[κ ]a[k−κ ]+n[k], (1)

where a[k] denote the independent, identically distributed

(i.i.d.) symbols of the transmit sequence of variance σ2
a

which are taken from a signal constellation A , e.g. an M–
ary phase–shift keying (PSK) or quadrature amplitude mod-
ulation (QAM) constellation. The discrete–time CIR h[k] of
order qh comprises the effects of transmit filtering, channel,
receiver input filtering, and symbol–spaced sampling. n[k]
stands for additive white Gaussian noise (AWGN) of vari-
ance σ2

n . The received signal is prefiltered by an FIR filter

with transfer function F(z) = ∑
q f

k=0 f [k]z−k.

The prefiltered signal is processed by a DDFSE or RSSE
algorithm. For simplicity, we discuss only DDFSE in more

detail1. The states of the reduced–state trellis diagram of
DDFSE are defined as

s̃r[k] = [ã[k−1] ã[k−2] . . . ã[k−qd ]]
T , (2)

where ã[·] ∈ A are equalizer trial symbols. The number of
states per time step is Z = Mqd , 0 ≤ qd ≤ qh. Here, the ex-
treme cases of qd = 0 and qd = qh correspond to DFE and
a full–state VA, respectively. The metric of the DDFSE trel-
lis branch emerging from state s̃r[k − kd ] with trial symbol
ã[k− kd ] is given by [3]

λ (ã[k− kd ], s̃r[k− kd ]) =
∣

∣

∣
u[k]−

qd

∑
κ=0

d[κ ] ã[k− kd −κ ]−

qb

∑
κ=0

b[κ ] â[k− kd − (qd +1)−κ , s̃r[k− kd ]]
∣

∣

∣

2

. (3)

Here, u[k] denotes the prefiltered received signal, u[k] =
f [k] ∗ r[k], and d[k] refers to the target impulse response of
prefiltering of order qd which is used for trellis definition.
b[k] is the causal impulse response of the feedback filter of
order qb employed in metric calculations by which postcur-
sor taps with delays higher than qd can be taken into account
properly, exploiting the contents â[k− kd − κ , s̃r[k− kd ]] of
the registers of the survivor paths of states s̃r[k − kd ] via
state–dependent decision feedback. Here it is assumed that
qb is sufficiently high to cancel the postcursor ISI completely.
The decision delay kd is necessary because f [k] is a causal
FIR filter.

Commonly, f [k] is chosen as the impulse response of the
feedforward filter of a zero–forcing (ZF) or minimum mean–
squared error (MMSE) DFE, and d[k] and b[k] are selected
as the leading and backmost portion of the causal part of the
prefiltered CIR, respectively. However, in general this seems
to be not the optimum choice.

1The resulting filters are also directly applicable to RSSE.

As a novel criterion for filter optimization, we consider
the signal–to–interference–plus–noise ratio (SINR) seen by
the DDFSE algorithm,

SINR =

σ2
a

qd

∑
κ=0

|d[κ ]|2

E {|e[k]|2}
, (4)

cf. also [7], where the error signal e[k] is defined as

e[k] =

q f

∑
κ=0

f [κ ]r[k−κ ]−
qd

∑
κ=0

d[κ ]a[k− kd −κ ]−

qb

∑
κ=0

b[κ ]a[k− kd − (qd +1)−κ ], (5)

representing the difference of the signal after feedforward
and feedback filtering from the desired signal d[k]∗a[k− kd ]
of trellis–based equalization. For (5), perfect feedback in
branch metric computations has been assumed correspond-
ing to error–free symbols in the survivor path registers, as
usual in the design of systems with decision feedback.

In the proposed criterion for filter optimization, the effect
of a possible correlation of e[k] on the performance of trellis–
based equalization with Euclidean metric has been not taken
into account. However, it can be assumed that the perfor-
mance degradation due to correlation is only slight, at least
for the most interesting case of low qd , because an excessive
noise correlation can be avoided by allowing a feedback filter
in addition to the feedforward filter, similar to a DFE.

3. BIAS PROBLEM OF MMSE SOLUTION

In [7], the SINR according to (4) has been maximized, as-
suming a two–sided infinite–length feedforward filter and

setting kd = 0.2 The optimum transfer function F(z) is given
by [7]

F(z) = FLE(z)(D(z)+ z−k0 B(z)), (6)

where D(z) = ∑
qd

k=0 d[k]z−k, B(z) = ∑
qb

k=0 b[k]z−k, k0 = qd +
1, and FLE(z) is the transfer function of the optimum infinite–
length MMSE linear equalizer [8],

FLE(z) =
H∗(1/z∗)

H(z)H∗(1/z∗)+ζ
, (7)

with H(z) = ∑
qh

k=0 h[k]z−k and ζ = σ2
n /σ2

a .
The optimum feedback filter transfer function is obtained

as [7]

B(z) =−
k0−1

∑
κ=0

d[κ ]Pk0−κ(z), (8)

where

Pµ(z) =
Φµ ,min(z)

Φmin(z)
, µ ∈ {1, 2, . . . , k0} (9)

can be identified as the optimum causal infinite impulse re-
sponse (IIR) transfer function of a µ–step forward predictor
for the error signal of MMSE linear equalization eLE[k] [7].
Here, the z–transform Φmin(z) corresponds to a causal, stable

2This corresponds to kd ≈ q f /2 and a large order q f in the FIR filter case

of Section 2.



and minimum–phase sequence ϕmin[k] and results from spec-
tral factorization of the z–transform of the autocorrelation se-
quence of the error signal of MMSE linear equalization,

ΦeLEeLE
(z) =

σ2
n

H(z)H∗(1/z∗)+ζ
, (10)

i.e., Φmin(z) satisfies

Φmin(z)Φ∗
min(1/z∗) = ΦeLEeLE

(z). (11)

Furthermore, the definition

Φµ ,min(z) =
+∞

∑
ν=µ

ϕmin[ν ]z
−ν , µ ∈ {1, 2, . . . , k0} (12)

has been used.

Finally, the desired response d[k] can be obtained via
an eigenvalue problem [7] which completes the solution. It
turns out that the error signal e[k] of the optimum solution
is a moving average (MA) process of order qd . Hence, it
is white only for the case of qd = 0 which is equivalent to
MMSE–DFE.

In the following, we show that this solution suffers from
a bias problem which is detrimental to reduced–state equal-
ization. To this end, we consider the overall transfer function
of prefilter and channel, Ho(z) = F(z)H(z),

Ho(z) =
H(z)H∗(1/z∗)

H(z)H∗(1/z∗)+ζ
(D(z)+ z−k0 B(z)). (13)

Using the identity

H(z)H∗(1/z∗)

H(z)H∗(1/z∗)+ζ
= 1−

1

σ2
a

Φmin(z)Φ∗
min(1/z∗), (14)

it is clear that the overall transfer function can be expressed
as

Ho(z) = (D(z)+ z−k0 B(z))+He(z), (15)

with

He(z) =−
1

σ2
a

Φmin(z)Φ∗
min(1/z∗)(D(z)+ z−k0 B(z)). (16)

The first term of the right hand side of (15) represents the
transfer function to which the metrics of reduced–state equal-
ization including feedback filtering are adjusted; He(z) rep-
resents the deviation of the overall transfer function from this
desired overall transfer function which is investigated in the
following in detail for the special case of qd = 1. Here, we
can rewrite He(z) as

He(z) =−
1

σ2
a

Φmin(z)Φ∗
min(1/z∗)×

(d[0] (1−z−2 P2(z))+d[1]z−1 (1−z−1 P1(z))). (17)

Using the fact that the prediction–error transfer function of
the 2–step ahead predictor P2(z) is given by [7]

(1− z−2 P2(z)) =
ϕmin[0]+ϕmin[1]z

−1

Φmin(z)
, (18)

and that the prediction–error transfer function of the 1–step
ahead predictor P1(z) is the classical whitening filter

(1− z−1 P1(z)) =
ϕmin[0]

Φmin(z)
, (19)

we can further simplify He(z) as

He(z) = −
1

σ2
a

Φ∗
min(1/z∗)(d[0] (ϕmin[0]+ϕmin[1]z

−1)

+d[1]z−1 ϕmin[0]). (20)

Because Φ∗
min(1/z∗) is an anticausal transfer function,

Φ∗
min(1/z∗) =

+∞

∑
k=0

ϕ∗
min[k]z

k, (21)

it is immediately clear that he[k] = 0 for k > 1, i.e., the feed-
back filter cancels all interference within its time span and
there is no residual postcursor interference after feedback fil-
tering. However, (20) shows that there is residual anticausal
intersymbol interference typical for MMSE filtering and also
residual intersymbol interference within the time span of fil-
ter D(z) which is not taken into account in the metrics of
trellis–based equalization, causing a bias. In particular,

he[0] = −
1

σ2
a

(d[0] (|ϕmin[0]|
2 + |ϕmin[1]|

2)+

d[1]ϕmin[0]ϕ
∗
min[1]), (22)

he[1] = −
1

σ2
a

(d[0]ϕ∗
min[0]ϕmin[1]+d[1] |ϕmin[0]|

2).

(23)

Hence, while d[k] is assumed as the overall impulse response
for metrics calculation in trellis–based equalization, the true
overall channel coefficients within the time span of d[k] take
on different values. As a consequence, the assumed useful
signal of trellis–based equalization and the error signal for
time k are no longer statistically independent, causing a per-
formance degradation.

Similar considerations pointing out a degraded probabil-
ity of error due to mismatch, in particular bias, in the as-
sumed target response hold for any qd . For instance for the
case of an MMSE-DFE (qd = 0),

he[0] =−
1

σ2
a

d[0] |ϕmin[0]|
2, he[k] = 0, k > 0. (24)

Here it is well known that an unbiased solution can be ob-
tained by a simple scaling of the filters, decreasing the SINR
by one [9]. Because useful signal and error signal are statisti-
cally independent for the unbiased MMSE–DFE solution, the
error rate performance improves compared to the biased so-
lution although the SINR decreases, cf. [9]. Also for qd > 1,
a bias always leads to a performance degradation of equal-
ization because the error signal for time k contains parts de-
pending on the assumed useful signal for time k.

Inspecting (22) and (23) closer, a simple relationship be-
tween the SINRs of biased and unbiased solution cannot be
deduced in a straightforward way from these equations for
qd = 1 and also from similar equations for qd > 1. Thus, for



qd 6= 0, the construction of an unbiased solution and the rela-
tionship between the SINRs of both solutions requires more
detailed investigations.

As was to be expected, the bias will vanish for σ2
n → 0

because Φmin(z)→ 0 in this case.
In the following, we introduce an SINR criterion which

is unbiased per definition and perform a corresponding filter
optimization. In Section 5, both solutions are related to each
other.

4. OPTIMUM UNBIASED SOLUTION

For calculation of an optimum unbiased FIR solution, we
again consider the overall forward impulse response ho[k] =
f [k]∗h[k]. In order to exclude a bias a priori, the desired im-
pulse response is required to be equal to the overall forward
impulse response within its time span, and the feedback filter
is required to cancel the postcursor ISI completely,

d[k] = ho[k], k ∈ {kd , kd +1, . . . ,kd +qd}, (25)

b[k] = ho[k], k ∈ {kd +qd +1, . . . ,qh +q f }. (26)

Hence, for a given feedforward filter, the desired re-
sponse and the feedback filter are completely specified in the
unbiased solution. Thus, in the following only the determi-
nation of f [k] is addressed. Considering (4), (5), (25), and
(26), the SINR of the unbiased solution can be specified as

SINR =

σ2
a

kd+qd

∑
k=kd

|ho[k]|
2

σ2
a

kd−1

∑
k=0

|ho[k]|2 +σ2
n

q f

∑
k=0

| f [k]|2
. (27)

Using ho[k] = ∑
q f

κ=0 f [κ ]h[k − κ ] or equivalently ho[k] =

f
H h[k] with f = [ f ∗[0] f ∗[1] . . . f ∗[q f ]]

T , h[k] = [h[k]h[k −

1] . . . h[k−q f ]]
T , (27) can be rewritten as

SINR =
f

H
Af

fH Bf
, (28)

with the matrices

A =
kd+qd

∑
k=kd

h[k]hH [k], (29)

B =
kd−1

∑
k=0

h[k]hH [k]+ζ Iq f +1. (30)

Thus, maximizing the SINR is equivalent to solving the gen-
eralized eigenvalue problem

Af = SINRmax,unbiasedBf , (31)

i.e., determining the maximum eigenvalue of B−1
A and the

corresponding eigenvector. Hence, the complexity of compu-
tation of the optimum unbiased FIR solution is mainly gov-
erned by a matrix inversion and an eigenvalue decomposi-
tion, both for a matrix of size (q f +1)× (q f +1).

It should be noted that the obtained solution is similar
in spirit to a solution developed in [10] for joint reduced–
state equalization of several users in a multiple–input single–
output transmission in the GSM/EDGE system. Here we

push the analysis and interpretation of this approach in a dif-
ferent context further.

5. RELATION OF BIASED AND UNBIASED
SOLUTION

In the following, a relation between the optimum biased and
unbiased solution is established for arbitrary qd . First, let us
assume that we have a certain IIR unbiased solution with

SINRu =

σ2
a

qd

∑
k=0

|ho[k]|
2

σ2
e,u

. (32)

Here, σ2
e,u contains noise and precursor ISI contributions, but

no ISI terms corresponding to coefficients of the overall im-
pulse response with lags k ≥ 0. We now modify only the
target response from ho[k] to d[k], 0 ≤ k ≤ qd , and optimize
d[k] for the corresponding biased SINR,

SINRb =

σ2
a

qd

∑
k=0

|d[k]|2

σ2
e,u +σ2

a

qd

∑
k=0

|ho[k]−d[k]|2
. (33)

Differentiating SINRb with respect to d[k], 0 ≤ k ≤ qd , and
setting all derivatives to zero yields the solution

d[k] =
SINRb

SINRb −1
ho[k], 0 ≤ k ≤ qd , (34)

where SINRb is still unknown and can be determined by in-
serting d[k] into (33), yielding the quadratic equation

SINR2
b − (SINRu +2)SINRb +1+SINRu = 0, (35)

with the solution

SINRb = SINRu +1. (36)

Hence, the SINR of any unbiased solution can be improved
by one, introducing a bias of the coefficients in an optimum
way. This implies that, if we choose the feedforward filter of
the optimum biased solution and construct an unbiased solu-
tion by selecting ho[k] = f [k] ∗ h[k], 0 ≤ k ≤ qd , as the tar-
get response, we can return from this solution to the biased
solution by introducing a bias as described above, which in-
creases the SINR by one. Thus, for this unbiased solution
SINRu = SINRmax − 1 holds, where SINRmax is the maxi-
mum SINR of the biased solution. On the other hand, there
cannot be a better unbiased solution with higher SINR, be-
cause introducing again a bias would increase the SINR be-
yond that of the optimum biased solution, which is a contra-
diction.

Therefore, the optimum feedforward filter of the unbi-
ased solution is identical to that of the optimum biased so-
lution (neglecting an arbitrary scale factor). This also holds
for the optimum feedback filters which totally remove the
postcursor ISI in both cases. However, according to (34),
there is a factor of SINRb/(SINRb −1) between the desired
responses of both solutions, and the SINRs differ by one.
Hence, the well–known results for MMSE–DFE (qd = 0)
have been generalized to arbitrary qd . As a consequence,
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Figure 1: SINR vs. qd for a snapshot of a random chan-

nel (qh = 9) for various prefiltering approaches (SNR =
σ2

a /σ2
n = 10 dB).

the optimum unbiased FIR feedforward filter of (31) tends to
the filter (6) for large filter orders.

It should be again emphasized that although the SINR is
reduced for the unbiased solution, its error rate performance
is improved compared to the biased solution, cf. Section 3.

6. NUMERICAL RESULTS

Fig. 1 shows the SINR according to (27) vs. qd for different
prefiltering approaches for a snapshot of a random channel
with qh = 9 and equal tap powers. SNR = 10 dB (SNR =
σ2

a /σ2
n ) is valid. All filter orders have been set sufficiently

high to approach closely an IIR solution. Also shown is the
SINR of the solution of [7] and the SINR which results when
the feedforward filter of [7] is inserted in (27). The latter is
equal to the SINR of the proposed unbiased scheme, which
was to be expected. Also, it can be verified from Fig. (1), that
SINRmax,unbiased = SINRmax−1 on a linear scale not only for
qd = 0 (MMSE–DFE) but for general qd .

Fig. 2 shows the SINR vs. SNR for the same scenario as
for Fig. 1 for the different schemes and qd = 2. Again, it can
be confirmed that the prefilter of [7] is equivalent to that of
the derived optimum unbiased scheme and that performance
gains compared to the DFE–based prefilters can be obtained.

It should be noted that experiments with different snap-
shots have led to similar results.

7. CONCLUSIONS

We have introduced a novel prefiltering scheme for reduced–
state trellis–based equalization which is better adjusted to the
requirements of subsequent equalization than previously pro-
posed schemes. In particular, all filters are optimized ac-
cording to an appropriate SINR criterion. It is shown that
an unconstrained SINR maximization leads to a biased solu-
tion. Introducing suitable constraints, the optimization prob-
lem can be modified in order to avoid a bias. The relation
between both solutions is pointed out.
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