
On the Resilience of the Dependability

Framework to the Intrusion of

New Security Threats

Marc Dacier

Symantec Research Labs,
marc dacier@symantec.com,

http://www.symantec.com/research

Abstract. B. Randell has been instrumental, with others, in the defi-
nition of the dependability framework. Initially thought of with a strong
emphasis on accidental faults, it has paid more attention over the years
to intentional ones and, thus, to classical security concepts as well. Re-
cently, a couple of incidents have received a lot of attention: the Hydraq
and Stuxnet worms outbreaks. They have been used to highlight what
is being presented as a new and growing security concern, namely the
so-called advanced persistent threats (a.k.a. apts). In this paper, we
analyse how resilient the historical dependability framework can be with
respect to these sudden changes in the threats landscape. We do this by
offering a very brief summary of the concepts of interest for this discus-
sion. Then we look into the Hydraq and Stuxnet incidents to identify
their novel characteristics. We use these recent cases to figure out if the
existing taxonomy is adequate to reason about these new threats. We
eventually conclude this chapter by proposing some future avenues for
research in that space.

Keywords: dependability, resilience, security, intrusion detection, fault
tolerance, attack, vulnerability, advanced persistent threat.

1 Introduction

Among his many contributions, B. Randell is famous for having participated,
for more than 30 years, to a collaborative effort aiming at formalizing prop-
erly the basic concepts and taxonomy of dependable and secure computing. The
most recent document presenting the results of this work dates from 2004 [2].
Quoting that document, one can read that “[. . .] the aim is to explicate a set

of general concepts, of relevance across a wide range of situations and, there-

fore, helping communication and cooperation among a number of scientific and

technical communities [. . .]”. The wide acceptance of these concepts, all around
the world and across scientific disciplines, is a testimony of the success of this
life-long investment. A system in that taxonomy is an entity that interacts with
other entities. B. Randell likes to repeat that any good definition must be re-
cursively applicable. It is therefore interesting to envisage that taxonomy as a

http://www.symantec.com/research
Marc Dacier

Marc Dacier

Marc Dacier

Marc Dacier
Eurecom Institute
and Symantec Research Labs
marc_dacier@symantec.com
http://www.eurecom.fr/dacier

Marc Dacier

Marc Dacier

system itself, interacting with the real world. Having adopted that viewpoint,
the author wonders how resilient the taxonomy is. Our definition of resilience

is the one given by J.-C. Laprie in [9], namely:

Definition 1. The persistence of service delivery that can justifiably be trusted,

when facing changes.

In particular, we are interested in looking at the very recent changes we are
facing in the security threats landscape. Are these so-called “advanced persistent
threats,” or apts, disruptive events that make the taxonomy unfit for its purpose
or, on the contrary, do the concepts, as they are, persist in delivering the service
we expect from them?

In the following, we will address these points by, in Section 2, offering a brief
summary of the concepts we need in this discussion. In Section 3, we describe
the Hydraq and Stuxnet incidents, two recent examples of apts. In Section 4,
we revisit the notions of intrusion, attack and vulnerabilities by building upon
the work done in the maftia European project (see [3] and [10]). Section 5
concludes this document by offering some perspectives for future research based
on the previous analysis.

2 The Basic Concepts

The purpose of this Section is to ensure that this document is self-contained but
we invite the readers familiar with [2] to skip it as it is taken almost verbatim

from it. Conversely, we strongly encourage the others to read [2] as it contains
much more interesting material than what we can offer here.

Dependability is a global concept that subsumes the usual attributes of
reliability, availability, integrity, maintainability, etc. The notions presented here
are the results of a very long process initiated in the 80’s that led to a book
entitled Dependability: Basic Concepts and Terminology [8] that contained the
very same text in five different languages: English, French, German, Italian and
Japanese. As more people became aware of these concepts and start using them,
a continuous effort has taken place to expand, refine and simplify them. [2]
offers a synthesis of all these years of interactions between communities and
defines dependability as an integrating concept that encompasses the following
attributes:

– Availability: readiness for correct service
– Reliability: continuity of correct service
– Safety: absence of catastrophic consequences on the user(s) and the envi-

ronment
– Integrity: absence of improper system alterations
– Maintainability: ability to undergo modifications and repairs

Correct service is delivered when the service implements the system func-
tion and a failure occurs when the delivered service deviates from the correct
one. An error is the part of the total state of the system that may lead to its

subsequent failure. The adjudged or hypothesized cause of an error is called a
fault.

[2] derives eight elementary fault classes, according to eight basic viewpoints.
Security is more directly concerned with a subset of these faults, the malicious
human-made ones. They are grouped into two classes:

1. Malicious logic faults that encompass development faults as well as op-
erational faults.

2. Intrusion attempts are operational external faults. The document notes
that an intrusion can also be performed by systems operators or administra-
tors who are exceeding their rights.

Four major categories of means to attain the various attributes of depend-
ability and security are given ([2])

– Fault Prevention means to prevent the occurrence or introduction of
faults.

– Fault tolerance means to avoid service failures in the presence of faults
– Fault removal means to reduce the number and severity of faults
– Fault forecasting means to estimate the present number, the future inci-

dence, and the likely consequences of faults.

For historical reasons, most computer security solutions have been developed
in, and still belong to, the family of fault prevention techniques. Clearly, encryp-
tion algorithms, access control systems and firewalls, to name a few, all aim at
preventing malicious actors from committing their crimes. The, once prevalent,
dream of an impregnable fortress applied to the cyberworld has vanished over
the years and it is now commonly agreed that a second line or, even better, mul-
tiple lines of defense are required. This notion of defense in depth borrows ideas,
concepts and techniques typically found in the fault tolerance family. Fault

Tolerance, which is aimed at failure avoidance, is carried out via error de-

tection and system recovery. System Recovery involves two distinct sets of
techniques, namely error handling and fault handling. Error Handling aims
at eliminating errors from the system state and can be carried out either by
rollback, rollforward or compensation. Fault Handling aims at preventing faults
from being activated again. This implies that some diagnosis has been done
to identify and record the cause(s) of error(s). It can then be followed by some
isolation, reconfiguration or reinitialization phase(s).

Every system design has to rely on some working assumptions. These assump-
tions are key to derive the optimal choices of techniques to build a dependable
system. Until very recently, most security practitioners were mostly concerned
by security breaches that would always start from a given vulnerability being
exploited either i) to disrupt or halt service, ii) to access confidential informa-
tion, or iii) to improperly modify the system. Until very recently, the notion of
insider misusing his privileges, though well known and studied in some circles,
had received little operational attention. The Hydraq and Stuxnet incidents have
been a real eye-opener for many, revealing the existence of a new kind of threat

coined the Advanced Persistent Threats (apts). Before discussing whether
they truly are novel or not, the coming Section presents what these incidents are
and what new light they have shed on the security threats landscape.

3 Advanced Persistent Threats (APTs)

In [12], the authors note that “the term Advanced Persistent Threat (apt) per-

meated our lexicon some time ago and is now used as standard terminology for

threats that cannot be stopped”. They express their concerns about the fact that
“a whole cottage industry has grown up around apt with marketing material

being created specifically for it” and they eventually conclude their paper by
explicitly asking if the apts are real or if they have been manufactured.

Before 2010, little evidence was available at hand to decide how to answer
this question. The existence of a wikipedia page1 on the topic highlights the
visibility apts are getting but the references present on the page — the oldest
one dating from November 2009 ([4]) — do not constitute sound scientific proofs
of their existence. Before the arrival of Hydraq and, later, Stuxnet, all we had
were anecdotal cases in military environments such as, for instance according
to [11], the Moonlight Maze, a Moscow-originated attack on American military
services systems, and Titan Rain, a China-sponsored hit that aimed at U.S.
military computers and those of its partners, such as Lockheed MartinTM. But
in January 2010, information about the Hydraq attack came out. A few months
later, another attack, Stuxnet, made it clear that apts were a real new threat
that had to be taken seriously into account, a threat whose modus operandi did
not obey to the working assumptions made by most to protect their systems. In
the two following subsections (3.2 and 3.1), we present these two incidents and
we discuss their novel characteristics in subsection 3.3

3.1 The Hydraq Use Case

Hydraq2 is a targeted attack that is also currently referred to as Aurora, Google
Attacks, and the Microsoft IE Vulnerability (advisory number 979352) [7] . The
attack apparently began mid 2009 and continued through December 2009. It
was first publicly disclosed by Google on January 12, 2010. The main goal of
the attackers was to gain access to intellectual property of specific companies.
Google described the attack as highly sophisticated and well coordinated. At
least 30 companies were targeted.

The attack itself3 was not very sophisticated: an unpatched Internet Explorer
vulnerability was used as one of the propagation vectors. As a result of visiting
a malicious page, a Trojan was installed on the computer as a very standard
backdoor Trojan. As a matter of fact, that very same Trojan had been observed
1

http://en.wikipedia.org/wiki/Advanced Persistent Threat

2
http://www.symantec.com/business/security response/writeup.jsp?docid=

2010-011114-1830-99

3
http://www.symantec.com/connect/blogs/trojanhydraq-incident

http://www.symantec.com/business/security_response/writeup.jsp?docid=2010-011114-1830-99
http://www.symantec.com/business/security_response/writeup.jsp?docid=2010-011114-1830-99
http://www.symantec.com/connect/blogs/trojanhydraq-incident

in another attack in July 2009. It does not use any anti debugging or anti analysis
tricks. It uses some basic obfuscation in the form of spaghetti code on some of
its components.

The sophistication of the attack lies in the fact that very few companies
and very few individuals within each company have been targeted. Also, the
modus operandi of the attackers was to, manually but remotely, take advantage
of the credentials saved within compromised machines still connected to the
company’s network. Indeed, one of the components of this Trojan is based on
vnc4 code and has the ability to allow an attacker to control and stream a live
video feed of the desktop of a compromised computer to a remote computer in
real-time. As a result, the attackers were able to determine when the innocent
user had left his machine unattended (e.g. by seeing that the screen saver has
been activated for a certain amount of time). They were then able to remotely
take control of the machine, as if they were sitting in front of it, in the middle
of the company’s intranet. As many users do store temporary credentials in
their machines as well as sensitive information (e.g. the browser history and the
associated session cookies), the malicious external user had a unique viewpoint
to gather proprietary information without having to run any attack, without
raising any alert since he was simply misusing the privileges of the legitimate
user.

3.2 The Stuxnet Use Case

The Stuxnet incident is very different from the Hydraq one. Stuxnet was dis-
covered in July 2010, but is confirmed to have existed at least one year prior to
that and likely even earlier. The majority of infections were found in Iran. We
refer the interested reader to [6] for a very thorough presentation of that threat,
including detailed analysis of the propagation method and infection statistics as
well as a detailed outline of the Stuxnet code architecture. Explaining the way
Stuxnet operated lies outside the scope of the paper and we will only highlight
here a very few elements that make this accident unique and relevant for our
discussion.

According to [6], Stuxnet is a threat targeting a specific industrial control
system likely in Iran. The ultimate goal of Stuxnet is to sabotage that facility
by infecting specific types of Simatic programmable logic controllers (plcs) de-
vices to operate as the attackers intend them to, most likely out of their specified
boundaries. Industrial control systems (ics) are operated by a specialized assem-
bly like code on the plcs. The plc devices are loaded with blocks of code and
data written using a variety of languages, such as stl or scl. The compiled code
is an assembly called mc7. These blocks are then run by the plcs in order to ex-
ecute, control and monitor an industrial process. To access a plc, some specific
software needs to be installed. Stuxnet specifically targets the WinCC/Step7
software. With this software installed, the programmer can connect to the plc
with a data cable and access the memory contents, reconfigure it, download a
4

http://www.symantec.com/connect/blogs/hydraq-vnc-connection

http://www.symantec.com/connect/blogs/hydraq-vnc-connection

program onto it or debug a previously loaded code. In a typical ics, like the one
targeted by Stuxnet, the machines running the Step7 software were located in a
so-called air-gapped network, that is a network that has no physical connection
of any sort neither with the company intranet nor with the Internet.

To carry out their attack, the hackers had a number of technical challenges
to overcome, namely ([6]):

– They needed to obtain the ics’s schematics since each plc is configured in
a unique manner

– To test their codes, they most likely had to set up a mirrored environment
including the necessary software and hardware.

– Some of their malicious code needed to be signed by a trusted entity to run
on the targeted ics. They, quite likely, obtained the required certificates by
physically entering the premises of two trustworthy companies to steal them.

– To carry out the sabotage successfully, they had to find a way to fool the
operators to prevent them from shutting down the plcs before the intended
destruction. They manage to do this by compromising the Step7 software
in such a way that they could intercept requests sent between the Step7
management console and the plcs. Thanks to this, Stuxnet was able to
modify the data sent to or returned from the plcs without the operator of
the plcs realizing it.

– To reach the targeted air-gapped network, Stuxnet copies itself to inserted
removable drives (e.g. usb keys). It is quite possible that the initial infection
occurred thanks to an unknowing third party, such as an external contractor,
who had to access the facility for maintenance or corrective tasks. Once in
the network, Stuxnet used a total of four unpatched Microsoft vulnerabilities
to propagate and a peer to peer mechanism to update itself within the LAN.

What is important to understand is that Stuxnet is an extremely complicated
and sophisticated malware. As opposed to Hydraq, it was extremely innovative
in its infection and propagation techniques. With the first plc rootkit ever seen,
its unprecedented number of zero-day vulnerabilities, its anti virus evasion tech-
niques, its peer to peer updates system, its usb key-based infection vector and,
last but not least, its ultimate goal, Stuxnet was a true eye-opener for many.

3.3 Discussion

In the preceding subsections, we have seen how different the Hydraq and the
Stuxnet malware were. At this stage, one could wonder why they have been pre-
sented together as examples of a new threat dubbed apt! It is true that Hydraq
exhibits a very low sophistication in terms of technical complexity. Stuxnet on
the other hand is an incredibly large and innovative malware. However, they do
have in common a number of underlying characteristics that explain why they
both are good examples of apts, Advanced Persistent Threats:

– Reconnaissance: In both cases, the malicious actors had to carry out some
significant reconnaissance activities before launching their attacks. In the

Hydraq case, companies have not been targeted blindly and employees within
these companies have also been carefully selected, based on the possible
return on investment that they represent. It is even clearer in the Stuxnet
case. Before launching the attack, a number of steps had to be carried out
such as:
• stealing digital certificates
• obtaining the ics’s schematics
• setting up a mirror environment
• identifying external personnel likely to introduce the usb key for the

initial infection
• providing the key to that initial infection vector
• etc.

– Entry Point: In both cases, the weak link misused to defeat the protec-
tive mechanisms put in place was less technical than socio-technical. In the
Hydraq case, a number of specific users were lured to visit a web page host-
ing a zero-day attack that compromised their browser. In the Stuxnet case,
quite likely, an unknowingly user plugged into his computer a usb key he
has found or he had been given.

– Unknowing insider: In both cases, the malware took advantage of the
privileges granted to an unknowing insider to carry out their tasks. In the
Hydraq case, a large number of human beings were actively monitoring and
using the compromised machines, misusing the privileges of their legitimate
owners, thanks to the vnc5 backdoor installed. In the Stuxnet case, the code
injected into the Step7 software misused its granted privileges i) to rightfully
modify the code on the plc devices, ii) to intercept the information sent to
and received from these devices, iii) to fool the operators by providing them
with an erroneous representation of the real operational status of the isc
under attack.

– Goal: In both cases, the ultimate goal of the attack was very precisely
articulated. The attackers knew what they were looking for and that goal
was quite different from what constitutes the bulk of today’s Internet attacks.
In the Hydraq case, intellectual proprietary information such as source code
or specific email accounts was what they were looking for. In the Stuxnet
case, the likely goal was the physical and permanent destruction of a specific
isc, not an every day temporary ddos attack against a web server!

– Time: In both cases, the duration of the attack and the persistence of the
malicious actors was remarkable. In the Hydraq case, it is believed that the
attack went undetected for most of the second half of 2009. In the Stuxnet
case, its earliest sample variant has been seen in June 2009 [6] and Siemens
reported that they were investigating reports of malware infecting Siemens
WinCC SCADA systems on July 19, 2010. Furthermore, it is believed that it
must have taken as much as 6 months to the attackers to set up their mirror
site and test their code before being able to launch it.

5
http://www.symantec.com/connect/blogs/hydraq-vnc-connection

http://www.symantec.com/connect/blogs/hydraq-vnc-connection

– Resources: In both cases, the resources required to be able to prepare and
launch the attacks were extraordinary. In the Hydraq case, most of the costs
were induced by the fact that the attack was carried out manually by a,
quite likely large, team of remote malicious human beings monitoring and
taking control of the victims’ machines to look for information within the
targeted company’s intranets. In the Stuxnet case, Symantec has estimated
that five to ten core developers had to work during 6 months just to build the
malware itself, not counting all other people needed to succeed in deploying
it [6]

– High profile target: In both cases, the targets were security-aware and had
implemented proper security defenses. In the Hydraq case, some of the com-
panies attacked were among the ones who were very cautious about security
and had all classical, apparently proper, measures in place. In Stuxnet, an
air-gapped network was, among many other things, a protection technique
that most people would have considered to be perfectly secure.

To make a long story short, one could argue that the success of these attacks
lies in the fact that they have defeated their opponents by changing the rules of
the game. By adopting a new modus operandi, by inventing a new strategy, they
have, so to speak, invented a new game. To reach their goals, they have cheated
and no one caught them. Indeed, their careful reconnaissance enabled them to
circumvent the protection mechanisms in place and to identify the best entry

points to carry out their attacks successfully. Once inside the targeted system,
they took advantage of the privileges granted to unknowing insiders to reach a
very well articulated goal defined in advance. By being able to spend as much
time and resources as needed, they have managed to breach high profile targets

and remain under the cover for several months before being discovered.

These threats really are game-changers. The true novelty is not so much
that someone has invented them. It is that someone has actually implemented
and carried out them for real. Not for cyber espionage or cyber war. Targeting
civilian environments.

The reality of their existence emphasizes the requirement for security tech-
niques that are not purely preventive. Fault prevention techniques can not stop
these threats and we need to detect when an attacker has managed to get a
foothold into a targeted environment. In the classical dependability context, one
would think that fault tolerance techniques should be up to the task: by de-
tecting error states likely to lead to failure and by taking corrective measures.
Security practitioners would think of intrusion detection and countermeasures
to do this. In the following Section, we take a closer look at these notions to see
how effective they can be in dealing with these new apts. If known intrusion
detection techniques are up to the task, why should we bother?

4 Attacks, Vulnerabilities, Intrusions and Intrusion

Detection

As we have seen in the previous Sections, apts are well planned attacks, carried
out persistently and in a stealthy mode. The possibility of preventing them from
succeeding, even partially, is very low. It is therefore of prime importance to
be able to detect when one is subject to such an attack. In this Section we
try to specifically look at intrusion detection techniques, under the light of the
dependability taxonomy. By doing so, we will see if that framework is resilient
to the intrusion of these new threats. In other words, we are aiming to see if the
concepts we have at our disposal enable us to characterize the problems at stake
and, also, to provide suitable means to protect against them. Having done this
exercise, we will identify a couple of possible research avenues that are worth
exploring to be ready for the next wave of such attacks.

4.1 The MAFTIA Contributions

maftia was a European funded project (ist-1999-11583) looking at Malicious-
and Accidental-Fault Tolerance for Internet Applications. It produced, among
other things, a deliverable proposing a design of an Intrusion-Tolerant Intrusion
Detection System [3] which offered a precise definition of the terms attacks,
vulnerability, intrusion and intrusion detection. These concepts have been refined
into a final deliverable called “Conceptual Model and Architecture of maftia”

[10]. We offer in the following an abbreviated version of these definitions, focusing
on the ones of interest to us here, and we will revisit them in the next Subsection
under the light of the upcoming apts.

An intrusion is defined in [10] as a deliberately-malicious software-domain
operational fault that originates externally to the (technical) system boundaries.
There are two underlying causes of any intrusion:

1. A malicious act or attack that attempts to exploit a weakness in the system
2. At least one weakness, flaw or vulnerability

From this definition, it is clear that, for an intrusion to occur, two distinct
conditions must be met: i) a vulnerability must exist and ii) an attacker must
have successfully taken advantage of it. This is the only case where an intrusion
can exist and, therefore, be detected. Conversely, there will be no intrusion to
detect in the following cases:

1. There is no vulnerability and no attack occurs. This is the ideal trivial case:
the system is secure.

2. There is no vulnerability but an attack occurs. This is the most frequent
case. In today’s world, millions of attacks are launched against systems that
are well protected. This is sometimes referred to as the background attack
radiation noise.

3. There is a vulnerability but there is no attack trying to take advantage of it.

4. There is a vulnerability and there is an attack trying to take advantage
of it but unsuccessfully. This can happen because of the incompetence of
the attacker or because of intrinsic characteristics of the attack (e.g. race
conditions).

We note that it can be interesting to know that an attack has been launched,
even if it has not succeeded, i.e. even if no intrusion has occurred. In fact, this
is what most intrusion detection systems do today. For instance, let us consider
network-based intrusion detection systems. Almost all of them are capable of
detecting port scans6 and will raise alerts whenever they identify them. In such
cases, are the intrusion detection systems actually detecting intrusions? It de-
pends. If the port scan is detected in a supposedly highly secure environment,
such as an air-gapped isc, where no such thing should ever occur, then, yes,
this alert highlights the fact that the system is in an error state that is likely
to lead to failure. Furthermore, that state is an intrusion as defined here above:
someone has already successfully used a vulnerability of the system to get access
to it in order to launch this abnormal port scan. More than the port scan itself,
the alert in such case warns the security officer about the compromised state of
the system. However, if a similar port scan has been detected on the Internet
against public machines, without knowing if the probed machines did contain a
vulnerability or not, without knowing if the sent packets were really part of an
attack or simply of a reconnaissance phase, one cannot determine whether an
intrusion really occurred. Therefore, amusingly enough, in most cases, today’s
intrusion detection systems do not detect intrusions, as they have been defined
in [10]. They deliver interesting information though. They detect error states

but not intrusion states. They can inform the security officer, for instance, that
there are attackers out there knocking on the door. Depending on the security

policy in place, it should then be decided to initiate some system recovery ac-
tions to transform the system state into a new one that does not contain the
detected error. In the case of the port scan detected on the Internet machines, it
is quite likely that nothing will ever be initiated. In the isc case, to the contrary,
some error handling and, more importantly, fault handling techniques need to
be applied.

Thus, stricto sensu, today’s intrusion detections are, in most cases, not de-
tecting intrusions but ongoing attacks or reconnaissance phases of an attack.

4.2 APTs and Intrusion Detection

If we take for granted that apts, as described before, will be elaborate enough to
find a way to get into the targeted system without being discovered and, then,
will misuse granted privileges of an unknowing insider to carry out their malicious
activities, what error detection mechanism could identify their presence? What
6 A port scan occurs when a remote machine is probing the availability of a service on

several other machines or of several services on a given machine. This is, typically,
detectable by seeing a number of incoming requests that failed to get a valid response
because of the non availability of the scanned services

do the notions of vulnerability, attack and intrusions, as defined here above, map
to?

If we look at the problem from a microscopic and purely technical view-
point, when the worm is in the apple, when the targeted attack has passed the
defensive perimeters, in the worst case, there will not be any vulnerability to
take advantage of or attack to be seen. In the Stuxnet case, it is the role of the
Step7 software to communicate with and even reprogram the plcs. There is no
vulnerability or attack to be found when Stuxnet uses the very same method
to reprogram the very same devices with a malicious intent. Similarly, in the
Hydraq case, the remote malicious users are not running any attack to take ad-
vantage of any vulnerability when misusing credentials hosted by the machine
they remotely connect to.

Nevertheless, the system, in both cases, has clearly been intruded and one
would expect intrusion detection systems to play a role here.

It is worth pointing here to a typical example of intrusion given in [10]:
“[. . .]An insider abusing his privilege (i.e. a misfeasance): the vulnerability lies

in the specification or the design of the (socio-technical) system (violation of the

principle of least privilege, inadequate vetting of key personnel)”. In his seminal
work on intrusion detection [1], Anderson proposes “changes to computer audit

mechanisms to provide information for use by computer security personnel when

tracking problems”. In particular, he introduces the notion of audit reduction
and the use of some sort of statistical analysis of user behavior [. . . that . . .]

might represent a way of detecting masqueraders. This was later formalized as
the so-called behavior-based intrusion detection techniques in the taxonomy by
Debar et al. [5]. These techniques that detect deviations with respect to the
normal behavior of a system under scrutiny have been extremely fashionable
in the 90’s but have rarely been transitioned7 into the commercial solutions
that have started flourish after the DDoS attacks of February 2000. Instead,
the products preferred to adopt another paradigm, named the knowledge-based

approach [5] (a.k.a. misuse detection techniques). These solutions rely on the
knowledge of the attacks and of their symptoms to build detectors specifically
tuned to recognize them. As a result, the domain evolved from a state-driven
detection approach to an event-driven one, resulting in the paradox mentioned
before when intrusion detection systems do not detect intrusions anymore but
attacks, i.e. intrusion attempts. It seems that the rise of apts is forcing us to
reconsider the original approaches. If the attackers become clever and stealthy
enough to hide all their attempts, all we have left to look at is the system state,
hoping that it will deviate substantially enough from the normal one to let a
detector catch the difference. In other words, behavior-based approaches seem
to have a bright future before them.

The problem, of course, is that these approaches are able to detect that the
system is in a state that someone considered to be suspicious enough to be re-

7 However, we have to acknowledge the fact that very interesting results have been
obtained by a number of, mostly academic, researchers. These approaches are also
often referred to as anomaly detection techniques

ported. They do not necessarily know how we ended up in that state. They have
no notion of causes of the errors, no notion of attack or vulnerability. They are
pure error detection mechanisms and, as explained in Section 2, to avoid failure,
error detection techniques must be accompanied by system recovery ones. This
includes error handling and fault handling mechanisms. Unfortunately, these are
areas where little effort has been invested so far, in the security space, but which
apts seem to force us to address. It is not clear though what kind of rollback
or rollforward mechanisms could be implemented when an intrusion detection
system detects that proprietary information has leaked out. These are certainly
interesting challenges for the future. Similarly, the fault handling domain, as
defined within the dependability concepts, encompasses different kinds of tech-
niques (diagnosis, isolation, reconfiguration, reinitialization) that have barely
received any attention within the security community. It would be very interest-
ing to see how the body of knowledge accumulated in these areas could, or could
not, be applied to the security realm and help in coping with these new threats.

5 Conclusions

In this paper, we have looked at some of the classical dependability concepts
under the light of very recent incidents that have been called advanced persistent
threats or apts. We have outlined the key novel characteristics of these threats
and have emphasized to what extent they are a game-changer for the security
community.

We have shown that these new threats are forcing us to reconsider the sem-
inal ideas that had led to the creation of the intrusion detection domain. By
mapping intrusion detection to error detection, in the dependability taxonomy,
we have highlighted a number of families of techniques that have not received
enough attention to enable the implementation of effective fault tolerant tech-
niques against apts, i.e to avoid failures due to these new threats.

To conclude, we acknowledge the novelty of these threats and the influence
they are likely to play on the security research in the coming years. The de-
pendability concepts prove to be resilient to this abrupt change in the security
threats landscape. They are adequate to reason about them and, more impor-
tantly, they help in identifying research directions where novel contributions are
sorely needed.

Acknowledgements. The ideas and notions reported here are the results of
numerous fruitful interactions with many colleagues, in particular Dominique
Alessandri, Tom Anderson, Jean Arlat, Algirdas Avizienis, Christian Cachin,
Eric Chien, Michel Cukier, Hervé Debar, Yves Deswarte, Klaus Julisch, Mo-
hamed Kaâniche, Karama Kanoun, Carl Landwehr, Corrado Leita, David Pow-
ell, James Riordan, Bill Sanders, Robert Stroud, Olivier Thonnard, Michael
Waidner, Andreas Wespi. Special thanks go, of course, to Brian Randell and the
greatly missed Jean-Claude Laprie.

References

1. Anderson, J. P.: Computer Security Threat Monitoring and Surveillance. Technical
report, 1980.

2. Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C.: Basic Concepts and
Taxonomy of Dependable and Secure Computing. ieee Transactions on Depend-
able and Secure Computing, Vol. 1, No. 1, January-March 2004.

3. Dacier, M. (ed.): Design of an Intrusion-Tolerant Intrusion Detection System. De-
liverable D21 of the European funded project maftia (ist-1999-11583), January
31, 2003, 111 pages

4. Daly, M. K.: Advanced Persistent Threat (or Informationized Force Operations).
23rd Large Installation System Administration Conference (lisa), Usenix, Novem-
ber 4, 2009, Baltimore, md, usa.

5. Debar, H., Dacier, M. and Wespi, A.: A revised taxonomy for intrusion-detection
systems. Annals of Telecommunications, Vol. 55, No. 7-8, pp.361-378, DOI:
10.1007/BF02994844, Springer-Verlag, 2000.

6. Falliere, N., O Murchu, L. and Chien, E.: W32.Stuxnet Dossier. Symantec White
paper, V.1.4, February 2011, 68 pages, available online at http://www.symantec.
com/connect/blogs/w32stuxnet-dossier

7. Ferrer, Z. and Ferrer, M. C.: In-depth Analysis of Hydraq, The face of cyberwar
enemies unfolds. ca isbu-isi white paper, March 12, 2010, 37 pages

8. Laprie, J.-C. (ed.): Dependability: Basic Concepts and Terminology. Springer Ver-
lag, 1992.

9. Laprie, J.-C.: From Dependability to Resilience. The 38th Annual ieee/ifip In-
ternational Conference on Dependable Systems and Networks, dsn 2008, Fast Ab-
stract session, June 24-27, 2008, Anchorage, Alaska, usa,

10. Powell, D. and Stroud, R. (eds.): Conceptual Model and Architecture of maftia.
Deliverable D21 of the European funded project maftia (ist-1999-11583), January
31, 2003, 111 pages

11. Somaini, J.: How to Combat the Cyber Espionage Threat. Industry Perspec-
tives News article, Symantec, available online at http://eval.symantec.com/

mktginfo/enterprise/articles/b-article how to combat espionage threat.

en-us.pdf

12. Treadstone: The mythical Beast That Hides in Your Closet. White pa-
per available online at http://www.treadstone71.com/whitepapers/

TheMythicalBeastThatHidesinYourCloset.pdf

http://www.symantec.com/connect/blogs/w32stuxnet-dossier
http://www.symantec.com/connect/blogs/w32stuxnet-dossier
http://eval.symantec.com/mktginfo/enterprise/articles/b-article_how_to_combat_espionage_threat.en-us.pdf%20
http://eval.symantec.com/mktginfo/enterprise/articles/b-article_how_to_combat_espionage_threat.en-us.pdf%20
http://eval.symantec.com/mktginfo/enterprise/articles/b-article_how_to_combat_espionage_threat.en-us.pdf%20
http://www.treadstone71.com/whitepapers/TheMythicalBeastThatHidesinYourCloset.pdf
http://www.treadstone71.com/whitepapers/TheMythicalBeastThatHidesinYourCloset.pdf

	On the Resilience of the Dependability Framework to the Intrusion of New Security Threats

