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ABSTRACT the nonparametric part of the model [11] and the design of

This paper adresses the voice activity detection problen"%n appropriate speech/non-speech test. The second gategor

o . . . . . e.g.[12, 13, 14, 15], involves the combination or fusion of
within a semiparametric hypothesis testing framework. iSem ; L . e
) . A L 4 multiple statistical tests in speech/non-speech claasific.
parametric detection consists in combining the statistipa

L ) . . The individual tests are generally both parametric and non-
timality of a parametric test with the robustness regartlireg . ) : . )

) . arametric. The resulting test is called the fusion testis Th
learning data of a nonparametric test. The proposed semi-

parametric approach splits the frame vector into two partg aper is concerned with the second category.

such that the first part has a known statistical distribution The contnbgtmns n this paper are three-fold. F'rSt.’ we
. . ropose an optimal fusion rule combining one parametric de-
The second part is processed by a non-parametric detecar‘%r

producing a binary decision. A likelihood ratio test, base éctor and one nonparametric detector. Due to this combi-

. S - -hation, the proposed approach is referred to as semiparamet
on the first part and the nonparametric binary decision, is. : : SO o

) . . ric detection. This combination is nevertheless paramétri
then applied to classify the frame as either speech or norEe_ssence since it is based on the well-known Likelihood Ra-
speech. The statistical performance of the resulting fusio

. ) . : . tio Test (LRT). Second, the theoretical statistical perfance
L?;;snalytmally established and validated using reeh of the proposed detector is theoretically establishedalfyin

the theory is validated with practical experiments withl rea
Index Terms— Voice activity detection, Semiparametric speech signals.

test, Nonparametric test, Likelihood ratio test, Fusiat.te The remainder of this paper is organized as follows. Sec-
tion 2 describes the VAD semiparametric decision problem.
1. INTRODUCTION Section 3 derives the optimal semiparametric test. It atso e

tablishes likely performance according to various statt

\oice Activity Detection (VAD) refers to the classical prob a@pproximations. Section 4 reports an evaluation of the pro-
lem of distinguishing active speech from nonspeech. ReP0sed test with real speech signals. Our conclusion are pre-
cently, numerous approaches have been developed for ifénted in Section 5.
proving the performance of VAD schemes in noisy environ-
ments. They can be divided into two categories: parametric 2. PROBLEM STATEMENT
(derived from a model) and nonparametric (learned from
data) approaches. In the parametric approaches, oftetcallThe VAD problem can be modeled as a binary hypothesis test
statistical model-based VAD algorithms, the distribui@f  between the two hypothesés, : {noise along and H; :
both noisy speech and noise spectra are assumed to follopeech plus noige In this section we show how a frame of
a particular parametric model such as a Gaussian or Laplgpeeche; can be split into two statistically independent sub-
cian distribution. Based on the assumed distributions, theectorsz? andz?. The subvector? is processed indepen-
likelihood ratio is calculated and thresholded to form aidec dently with a nonparametric detector which produces a deci-
sion rule [1, 2, 3, 4]. Nonparametric approaches incor@oratsion value) or 1 consequently t{, and?, respectively. The
machine learning techniques such as minimum classificatiosubvectorz? is used in combination with the decision value
error methods [5, 6] and Support Vector Machine (SVM)of the nonparametric test to form a couple whose distriloutio
schemes [7, 8] to exploit prior knowledge. is known under each hypothesis.

Recently, there is a considerable interest in semiparamet-
ric tests, which cpmbine th_e advantages of gach a_pproacg_.l_ Noisy Speech Measurement Model
There are two main categories of approaches in the litexatur
The first, e.g. [9, 10], involve parametric models which in-The speech signal is first segmented into contiguous frames.
corporate an unknown non-parametric (often infinite dimenThei-th analyzed frame is denotad € R™ wheren is frame
sional) part. The main difficulty involves the estimatatmin length andi € {1,..., F} with F' the number of frames.



A complete parametric model of the frame is out of reachreason, a nonparametric model is generally used or, equiva-
due to the high variability of speech signals but parametridently, a learning-based detector. According to the spjtof
models based on a linear transformation of the frame samplélse frame (2) into two independent subvectefsandx, the

are possible. This paper is based on the statistical Peiaept nonparametric approach is based on the learning data set
Ephraim-Malah (PEM) model discussed in [1]. ket be the

vector of PEM coefficients, which are obtained framas S = {(ﬂﬁ(fl), 0), @y, L), s (@], KN)}

z! =MDz; = Pz; (1) composed ofV independent and identically distributed cou-
ples of valueia:?i),&). The intege¥; € {0, 1} is the label of
the subvectom?i), i.e.,t; = 0if the subvectom?i) contains
goise only and; = 1 otherwise.

A binary statistical test, also called a detector, appl@ed t
x! is a Borel measurable functiari : R? — {0, 1} mapping
the spac®? to class labels. In standard classification, the per-
formance of§* is measured by the probability of two errors,
namely the probability of false alarmas” and the probability
of correct detectiong* given by

P
R= ( Q > o =Pro(6*(xz!) =1) and g* = Pr (0" (z) = 1). (4)

where theg x n matrix Q is chosen such th& is aregular  Here, the notatioPry,(A) represents the probability of the
matrix of sizen (thus,q = n—p). Without loss of generality, eyent4 when hypothesié{;, is true. LetC be a class of de-
it is supposed that the rows @f form an orthonormal set of actors and lef? be the set of all possible learning s&t A
vectors. It is sufficient to take an orthonormal basis of thelearning detector is a mappirg : Q¢ — C. In other words,
orthogonal complement of the space spanned by the rows gfe |earning detectay, is a rule for selecting a detector based
Pin R". Hence; is statistically equivalent t®z; given by o a training. The clasé of detectors used in this paper is the
P P, class of Support Vector Machines (SVM) detectors. Other
Rx; = < a > = ( le, > . (2)  class of detection may also be used. It is for example passibl
! ! to use a nonparametric regression as a detector (like tHe wel
It is straightforward to verify thaPz; andQa; are uncorre- known logistic regression). In this case, the theoretitalys

lated. It is therefore assumed that they are also indepéndenshould be more difficult because a nonparametric regression
takes more than two output values (the probability of each

output must be known to use the approach proposed in this
paper). Lety,(x]) be the binary decisiorh(or 1) provided

Itis numerically shown in [1] that the statistical distrtmn of by the SVM detector. Details on SVM detectdigz) are
PEM coefficients is well approximated by a zero-mean Gausgiven in [16].

wherep x n matrixM andn x n matrix D represent the Mel
frequency filter bank and discrete cosine transform (DGS), r
spectively. The PEM model accommodates the critical-ban
phenomenon where the matrix prodikt= MD represents
a perceptual transform, and thu$ represents the perceptual
spectrum of framez;. It is assumed thatl is a full-row rank
matrix such thatrank (P) = p. LetR be then x n matrix
defined by

xr

2.2. Parametric Model

sian distribution with a known covariance matBl, depend- The false alarm probability of,(z!) is a,, and the prob-
ing on the hypothesis, i.e., ability of correct detection ig,. These two probabilities are
» assumed to be known or well estimated. Consequently, under
i ~ N(0, %) undertiy (3) %4, the random variablé, (z?) follows the Bernoulli distri-
where, = diag(o?,.....07.,) is a positive definite, di- butionB(«,): it takes the valué with probability«, and the

. . ~ value0 with probability 1 — a,. Under#, d,(x]) follows
agonalp x p matrix under hypothesi#;, and A/ (0, ;) de the Bernoulli distributior(5, ).

notes the zero-mean normal distribution with covariance ma
trix . Itis assumed that%_j > 0(2)]- foralll <j <mn.In ) ) )
other words, speech has a higher variance than none. This #s4- Semiparametric Detection Problem

sumption is generally satisfied with real data. In prac®g,  The proposed semiparametric approach consist of solving th
is replaced by an estimate which is rarely diagonal, but thgecisjon problem

diagonal elements are generally dominant and non-diagonal

elements could be neglected. 21 {m” ~ N(0,30), 6,(x%) ~ B(a )}
. 7 ? g 1 q ’

2.3. Nonparametric Model . ,

P e {:cf ~ N(0,31), 8y(xf) NB(ﬁq)}. (5)
Contrary toz?, the random vectat! does not admit a known
statistical model. Hence, it is not possible to know or have a The notatior{; instead oft, (and also#; instead of#{;)

accurate approximation of its statistical distributioror Ehis  underlines the fact th&{{ is not strictly equivalent t64,. It



is a new formulation of the statistical decision probléfy  3.2. Statistical Performance
againstH; which is based on the frame statistical models de-

rived from the decomposition (2). It must be noted that eac
hypothesis (5) is simple [17], which means that the statiti
distribution of the observation vectors under each hypithe
is perfectly known.

he calculation of the statistical performance, namely the
alse alarm probabilityr;, and the probability of correct de-
tection g, of the testd,(x;) is not straightforward due to
the complexity ofA’(x;). For this reasonq, and S5, are
approximated.

From (10), it is straightforward to obtain
3. OPTIMAL SEMIPARAMETRIC DETECTION

. . , as = Pro(AI=XY)
The likelihood ratio test is calculated from the couple af-ra .
dom variables identified in the previous section. This yseld = Fo(\)(1-ag)+Fo (A\{=279)aq,  (11)
the semiparametric test. Bs def. Pri(AZ>\5)

Fl@:)(l*ﬂqpr?l (As—27¢)Bq (12)

whereF}(-) is the Cumulative Distribution Function (cdf) of
Yhe random variable

3.1. Semiparametric Test

The decision problem (5) can be solved by the well-know
log-likelihood ratio test [17] given by

5o(@:) = 0s(a?, a?) = { 01f As(@i) < Ao (g T(wf)"g‘z;c]- (a?,)° (13)
=

1 else,
with the decision function(z) under hypothesi#{;, andFy(z) = 1 — Fj(z) for k = 0, 1.
The theoretical calculation of the threshalgis also complex
but a numerical computation is manageable. For this, it is
necessary to calculaté, (). Since its exact calculation is
d fficult, another approximation is used. Let us note that

b
fl( ) 5q( ;) @)
fo( 7) bay, ()
The threshold\* is chosen to satisfy a prescribed false alarm
probability «, i.e. as = as(\%) = « where the notation

As($z) = As(il?f, 5(1(33;1)) = 1

as(A*) underlines the fact that the false alarm probability of P
ds(x;) depends on\’. In (7), b, (x) denotes the probability T(x) = Z di, uiyj for k=0,1,
density function (pdf) of the Bernouilli distributioBi(a), j=1
ba(z) = a” (1 —a)' ™", z € {0,1}, (8)  whered,,; = - 0% anduy; = a¥; fop; forj = 1,...,p.
and f;,(z) is the pdf of the normal distribution with mean  Under#y, =7, ~ N(0,07 ;), henceuy ; ~ N(0,1). Con-
and covariance matriXy, sequently,T( ) is a weighted sum of chi-square variables
1 L res whatever the hypothe5|s One of the common approximations
fr(®) = ———===¢"2" ", 2z cR", (9) of F,(z) is a gamma distribution having the same first two
2m det(3y) moments as that 6f (x7) (see details in [18]). Lef, ;) ()
wheredet(Xy) is the determinant of matrixy. be the pdf of the gamma distribution with parameterd):

A straightforward calculation shows that the test (6) is

equivalent to tr:e compa*rison _of the deci.sion functigita; ) (@) = i N} (14)
to a threshold\! whereA*(x;) is given by: I'(b)
Ai(z;) = (mf)T(Egl—Efl):c’; + 274 0q(x)) UnderH,, this approximation is obtained for the parameters:
p
1 2
= ch (xﬁj)2+27q6q($g)- (10) o — 1201 dr and b = 125 diyg)
= Ryt d2 2 Y &2
P _ (P p -2
wherez; = (v7,,...,2],), ¢; = 03] — 0y > 0 and Let G, (z) be the cumulative distribution function of the
B Bqe(1—ay) gamma distribution with parametefs, b) andG, ! ( ), its
" & a,(1—5y) )" inverse. Then,

From (10), the semiparametric test is shown to be a sum of; () ~ Glaz vy (@) and Fi(z) & 1 — Gaz p)(2). (15)

two terms. The first corresponds to an energy detector; this

is the parametric part. The second corresponds to the noimcorporating (15) into (11) and (12) yields approximaton
parametric decisiod,(z!). The parametet, is a tradeoff of a, andg;. These approximations can be easily evaluated
between the two terms. It measures the global performanceimerically. Hence, the computation of the threshdidat-

of the nonparametric tegf (x). isfying a5 (A\%) = «is straightforward by using a root-finding



algorithm and formula (11). Then, knowing immediately
gives the powep; from (12).

Fig. 1 shows the relevance of the theoretical approxima-
tions given in (15) for typical values of matric% and3,
a, = 0.1 andB, = 0.8. The theoretical Receiver Operating
Characteristics (ROC) curve, of the semiparametric test is
very close to the ROC curvfé; estimated by using Monte-
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Fig. 1. Theoretical ROC curvg, for §,(x;) and its estima-
tion 5, based on Monte-Carlo simulations. Fig. 2. ROC curves fob,(x;), §,(x;) andé, (x;) with white
noise (up) and babble noise (down) at SNRdB.

4, EXPERIMENTAL RESULTS o . . . .
criminating information betweef, and#; is contained in

The performance of the proposed approach is evaluated die subvector!. It is also clear that the SVM detector has
the TIMIT database. The test material consistasffs long poor_performances for a small false alarm rate. The semipara
speech data which are split randomly into two groups fofmetric test (6) outperforms the two other detectors, esfigci
training and evaluation. The training data is dedicatedeo t fOr @ small false alarm rate.
nonparametric test which is represented in this work by the
SVM classifier with a Gaussian kernel. 5 CONCLUSION

To make a noisy signal, white and babble noises from

NOISEX-92 database are added to short-time framiés1¢) 15 paper proposed a novel VAD algorithm based on semi-

of clean speech, with0% overlap at Signal-to-Noise Ratio parametric test derived from the likelihood ratio test be-
(SNR)5 dB. From each frame, we extratPEM coefficients  yyeen a nonparametric binary decision value and a parametri

which are used in the parametric test. The covariance Mgpqge|. Numerical simulations by means of ROC curves show
tricesX, and X are initially estimated from a small set of that this new approach outperforms both a pure parametric

frames. In order to evaluate the performance of the algoggt and a pure nonparametric test, especially for a snisd fa
rithms, we investigate the speech detection and false alarg);rm probability.

probabilities for each VAD approach. Hence, the evaluation

is based on the ROC curve. Fig. 2 shows the results. The

parametric curve corresponds to the t$tc;) based only on 6. REFERENCES
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