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ABSTRACT

This paper adresses the voice activity detection problem
within a semiparametric hypothesis testing framework. Semi-
parametric detection consists in combining the statistical op-
timality of a parametric test with the robustness regardingthe
learning data of a nonparametric test. The proposed semi-
parametric approach splits the frame vector into two parts
such that the first part has a known statistical distribution.
The second part is processed by a non-parametric detector
producing a binary decision. A likelihood ratio test, based
on the first part and the nonparametric binary decision, is
then applied to classify the frame as either speech or non-
speech. The statistical performance of the resulting fusion
test is analytically established and validated using real speech
signals.

Index Terms— Voice activity detection, Semiparametric
test, Nonparametric test, Likelihood ratio test, Fusion test.

1. INTRODUCTION

Voice Activity Detection (VAD) refers to the classical prob-
lem of distinguishing active speech from nonspeech. Re-
cently, numerous approaches have been developed for im-
proving the performance of VAD schemes in noisy environ-
ments. They can be divided into two categories: parametric
(derived from a model) and nonparametric (learned from
data) approaches. In the parametric approaches, often called
statistical model-based VAD algorithms, the distributions of
both noisy speech and noise spectra are assumed to follow
a particular parametric model such as a Gaussian or Lapla-
cian distribution. Based on the assumed distributions, the
likelihood ratio is calculated and thresholded to form a deci-
sion rule [1, 2, 3, 4]. Nonparametric approaches incorporate
machine learning techniques such as minimum classification
error methods [5, 6] and Support Vector Machine (SVM)
schemes [7, 8] to exploit prior knowledge.

Recently, there is a considerable interest in semiparamet-
ric tests, which combine the advantages of each approach.
There are two main categories of approaches in the literature.
The first, e.g. [9, 10], involve parametric models which in-
corporate an unknown non-parametric (often infinite dimen-
sional) part. The main difficulty involves the estimatationof

the nonparametric part of the model [11] and the design of
an appropriate speech/non-speech test. The second category,
e.g.[12, 13, 14, 15], involves the combination or fusion of
multiple statistical tests in speech/non-speech classification.
The individual tests are generally both parametric and non-
parametric. The resulting test is called the fusion test. This
paper is concerned with the second category.

The contributions in this paper are three-fold. First, we
propose an optimal fusion rule combining one parametric de-
tector and one nonparametric detector. Due to this combi-
nation, the proposed approach is referred to as semiparamet-
ric detection. This combination is nevertheless parametric in
essence since it is based on the well-known Likelihood Ra-
tio Test (LRT). Second, the theoretical statistical performance
of the proposed detector is theoretically established. Finally,
the theory is validated with practical experiments with real
speech signals.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the VAD semiparametric decision problem.
Section 3 derives the optimal semiparametric test. It also es-
tablishes likely performance according to various statistical
approximations. Section 4 reports an evaluation of the pro-
posed test with real speech signals. Our conclusion are pre-
sented in Section 5.

2. PROBLEM STATEMENT

The VAD problem can be modeled as a binary hypothesis test
between the two hypothesesH0 : {noise alone} andH1 :
{speech plus noise}. In this section we show how a frame of
speechxi can be split into two statistically independent sub-
vectorsxp

i andxq
i . The subvectorxq

i is processed indepen-
dently with a nonparametric detector which produces a deci-
sion value0 or1 consequently toH0 andH1 respectively. The
subvectorxp

i is used in combination with the decision value
of the nonparametric test to form a couple whose distribution
is known under each hypothesis.

2.1. Noisy Speech Measurement Model

The speech signal is first segmented into contiguous frames.
Thei-th analyzed frame is denotedxi ∈ R

n wheren is frame
length andi ∈ {1, . . . , F} with F the number of frames.



A complete parametric model of the frame is out of reach
due to the high variability of speech signals but parametric
models based on a linear transformation of the frame samples
are possible. This paper is based on the statistical Perceptual
Ephraim-Malah (PEM) model discussed in [1]. Letx

p
i be the

vector of PEM coefficients, which are obtained fromxi as

x
p
i = MDxi = Pxi (1)

wherep× n matrix M andn× n matrix D represent the Mel
frequency filter bank and discrete cosine transform (DCT), re-
spectively. The PEM model accommodates the critical-band
phenomenon where the matrix productP = MD represents
a perceptual transform, and thusxp

i represents the perceptual
spectrum of framexi. It is assumed thatM is a full-row rank
matrix such thatrank (P) = p. Let R be then × n matrix
defined by

R =

(
P
Q

)

where theq × n matrix Q is chosen such thatR is a regular
matrix of sizen (thus,q = n−p). Without loss of generality,
it is supposed that the rows ofQ form an orthonormal set of
vectors. It is sufficient to take an orthonormal basis of the
orthogonal complement of the space spanned by the rows of
P in R

n. Hence,xi is statistically equivalent toRxi given by

Rxi =

(
x
p
i

x
q
i

)
=

(
Pxi

Qxi

)
. (2)

It is straightforward to verify thatPxi andQxi are uncorre-
lated. It is therefore assumed that they are also independent.

2.2. Parametric Model

It is numerically shown in [1] that the statistical distribution of
PEM coefficients is well approximated by a zero-mean Gaus-
sian distribution with a known covariance matrixΣk depend-
ing on the hypothesis, i.e.,

x
p
i ∼ N (0,Σk) underHk (3)

whereΣk = diag(σ2
k,1, . . . , σ

2
k,n) is a positive definite, di-

agonalp × p matrix under hypothesisHk andN (0,Σk) de-
notes the zero-mean normal distribution with covariance ma-
trix Σk. It is assumed thatσ2

1,j ≥ σ2
0,j for all 1 ≤ j ≤ n. In

other words, speech has a higher variance than none. This as-
sumption is generally satisfied with real data. In practice,Σk

is replaced by an estimate which is rarely diagonal, but the
diagonal elements are generally dominant and non-diagonal
elements could be neglected.

2.3. Nonparametric Model

Contrary toxp
i , the random vectorxq

i does not admit a known
statistical model. Hence, it is not possible to know or have an
accurate approximation of its statistical distribution. For this

reason, a nonparametric model is generally used or, equiva-
lently, a learning-based detector. According to the splitting of
the frame (2) into two independent subvectorsx

p
i andxq

i , the
nonparametric approach is based on the learning data set

Sq =
{
(xq

(1), ℓ1), (x
q

(2), ℓ2), . . . , (x
q

(N), ℓN)
}

composed ofN independent and identically distributed cou-
ples of values(xq

(i), ℓi). The integerℓi ∈ {0, 1} is the label of

the subvectorxq

(i), i.e.,ℓi = 0 if the subvectorxq

(i) contains
noise only andℓi = 1 otherwise.

A binary statistical test, also called a detector, applied to
x
q
i is a Borel measurable functionδ∗ : Rq → {0, 1} mapping

the spaceRq to class labels. In standard classification, the per-
formance ofδ∗ is measured by the probability of two errors,
namely the probability of false alarmsα∗ and the probability
of correct detectionsβ∗ given by

α∗ = Pr0
(
δ∗(xq

i ) = 1
)

and β∗ = Pr1
(
δ∗(xq

i ) = 1
)
. (4)

Here, the notationPrk(A) represents the probability of the
eventA when hypothesisHk is true. LetC be a class of de-
tectors and letΩq be the set of all possible learning setsSq. A
learning detector is a mappingδq : Ωq → C. In other words,
the learning detectorδq is a rule for selecting a detector based
on a training. The classC of detectors used in this paper is the
class of Support Vector Machines (SVM) detectors. Other
class of detection may also be used. It is for example possible
to use a nonparametric regression as a detector (like the well-
known logistic regression). In this case, the theoretical study
should be more difficult because a nonparametric regression
takes more than two output values (the probability of each
output must be known to use the approach proposed in this
paper). Letδq(x

q
i ) be the binary decision (0 or 1) provided

by the SVM detector. Details on SVM detectorsδq(x
q
i ) are

given in [16].
The false alarm probability ofδq(x

q
i ) is αq and the prob-

ability of correct detection isβq. These two probabilities are
assumed to be known or well estimated. Consequently, under
H0, the random variableδq(x

q
i ) follows the Bernoulli distri-

butionB(αq): it takes the value1 with probabilityαq and the
value0 with probability1 − αq. UnderH1, δq(x

q
i ) follows

the Bernoulli distributionB(βq).

2.4. Semiparametric Detection Problem

The proposed semiparametric approach consist of solving the
decision problem

Hs
0 :

{
x
p
i ∼ N (0,Σ0), δq(x

q
i ) ∼ B(αq)

}
,

Hs
1 :

{
x
p
i ∼ N (0,Σ1), δq(x

q
i ) ∼ B(βq)

}
. (5)

The notationHs
0 instead ofH0 (and alsoHs

1 instead ofH1)
underlines the fact thatHs

0 is not strictly equivalent toH0. It



is a new formulation of the statistical decision problemH0

againstH1 which is based on the frame statistical models de-
rived from the decomposition (2). It must be noted that each
hypothesis (5) is simple [17], which means that the statistical
distribution of the observation vectors under each hypothesis
is perfectly known.

3. OPTIMAL SEMIPARAMETRIC DETECTION

The likelihood ratio test is calculated from the couple of ran-
dom variables identified in the previous section. This yields
the semiparametric test.

3.1. Semiparametric Test

The decision problem (5) can be solved by the well-known
log-likelihood ratio test [17] given by

δs(xi) = δs(x
p
i ,x

q
i ) =

{
0 if Λs(xi) ≤ λs,
1 else,

(6)

with the decision functionΛs(xi) :

Λs(xi) = Λs(x
p
i , δq(x

q
i )) = log

f1(x
p
i ) bβq

(xq
i )

f0(x
p
i ) bαq

(xq
i )
. (7)

The thresholdλ∗

s is chosen to satisfy a prescribed false alarm
probabilityα, i.e. αs = αs(λ

∗

s) = α where the notation
αs(λ

∗
s) underlines the fact that the false alarm probability of

δs(xi) depends onλ∗

s . In (7), ba(x) denotes the probability
density function (pdf) of the Bernouilli distributionB(a),

ba(x) = ax (1− a)1−x, x ∈ {0, 1}, (8)

andfk(x) is the pdf of the normal distribution with mean0
and covariance matrixΣk,

fk(x) =
1√

2π det(Σk)
e−

1

2
x
⊤
Σ

−1

k
x, x ∈ R

p, (9)

wheredet(Σk) is the determinant of matrixΣk.
A straightforward calculation shows that the test (6) is

equivalent to the comparison of the decision functionΛ∗
s(xi)

to a thresholdλ∗

s whereΛ∗

s(xi) is given by:

Λ∗

s(xi) = (xp
i )

⊤
(Σ−1

0 −Σ
−1
1 )xp

i + 2 γq δq(x
q
i )

=

p∑

j=1

cj (x
p
i,j)

2
+ 2 γq δq(x

q
i ). (10)

wherexp
i = (xp

i,1, . . . , x
p
i,p), cj = σ−2

0,j − σ−2
1,j ≥ 0 and

γq = log

(
βq(1− αq)

αq(1− βq)

)
.

From (10), the semiparametric test is shown to be a sum of
two terms. The first corresponds to an energy detector; this
is the parametric part. The second corresponds to the non-
parametric decisionδq(x

q
i ). The parameterγq is a tradeoff

between the two terms. It measures the global performance
of the nonparametric testδq(x

q
i ).

3.2. Statistical Performance

The calculation of the statistical performance, namely the
false alarm probabilityαs and the probability of correct de-
tectionβs, of the testδs(xi) is not straightforward due to
the complexity ofΛ∗

s(xi). For this reason,αs andβs are
approximated.

From (10), it is straightforward to obtain

αs
def.
= Pr0(Λ

∗

s≥λ∗

s)

= F 0(λ
∗

s)(1−αq)+F 0 (λ
∗

s−2γq)αq, (11)

βs
def.
= Pr1(Λ

∗

s≥λ∗

s)

= F 1(λ
∗

s)(1−βq)+F 1 (λ
∗

s−2γq)βq (12)

whereFk(·) is the Cumulative Distribution Function (cdf) of
the random variable

T (xp
i )

def.
=

p∑

j=1

cj (x
p
i,j)

2 (13)

under hypothesisHk andF k(x) = 1 − Fk(x) for k = 0, 1.
The theoretical calculation of the thresholdλ∗

s is also complex
but a numerical computation is manageable. For this, it is
necessary to calculateF k(x). Since its exact calculation is
difficult, another approximation is used. Let us note that

T (xp
i ) =

p∑

j=1

dk,j u
2
k,j for k = 0, 1,

wheredk,j = cjσk,j anduk,j = xp
i,j/σk,j for j = 1, . . . , p.

UnderHk, xp
i,j ∼ N (0, σ2

k,j), henceuk,j ∼ N (0, 1). Con-
sequently,T (xp

i ) is a weighted sum of chi-square variables
whatever the hypothesis. One of the common approximations
of Fk(x) is a gamma distribution having the same first two
moments as that ofT (xp

i ) (see details in [18]). Letg(a,b)(x)
be the pdf of the gamma distribution with parameters(a, b):

g(a,b)(x) =
ab

Γ(b)
e−attb−1, x ≥ 0. (14)

UnderHk, this approximation is obtained for the parameters:

a∗k =
1

2

∑p
j=1 dk,j∑p
j=1 d

2
k,j

and b∗k =
1

2

(
∑p

j=1 dk,j)
2

∑p
j=1 d

2
k,j

.

Let G(a,b)(x) be the cumulative distribution function of the
gamma distribution with parameters(a, b) andG−1

(a,b)(x), its
inverse. Then,

Fk(x) ≈ G(a∗

k
,b∗

k
)(x) and F k(x) ≈ 1−G(a∗

k
,b∗

k
)(x). (15)

Incorporating (15) into (11) and (12) yields approximations
of αs andβs. These approximations can be easily evaluated
numerically. Hence, the computation of the thresholdλ∗

s sat-
isfyingαs(λ

∗

s) = α is straightforward by using a root-finding



algorithm and formula (11). Then, knowingλ∗

s immediately
gives the powerβs from (12).

Fig. 1 shows the relevance of the theoretical approxima-
tions given in (15) for typical values of matricesΣ0 andΣ1,
αq = 0.1 andβq = 0.8. The theoretical Receiver Operating
Characteristics (ROC) curveβs of the semiparametric test is
very close to the ROC curvêβs estimated by using Monte-
Carlo simulations.
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Fig. 1. Theoretical ROC curveβs for δs(xi) and its estima-
tion β̂s based on Monte-Carlo simulations.

4. EXPERIMENTAL RESULTS

The performance of the proposed approach is evaluated on
the TIMIT database. The test material consists of480s long
speech data which are split randomly into two groups for
training and evaluation. The training data is dedicated to the
nonparametric test which is represented in this work by the
SVM classifier with a Gaussian kernel.

To make a noisy signal, white and babble noises from
NOISEX-92 database are added to short-time frames (16ms)
of clean speech, with50% overlap at Signal-to-Noise Ratio
(SNR)5 dB. From each frame, we extract6 PEM coefficients
which are used in the parametric test. The covariance ma-
tricesΣ0 andΣ1 are initially estimated from a small set of
frames. In order to evaluate the performance of the algo-
rithms, we investigate the speech detection and false alarm
probabilities for each VAD approach. Hence, the evaluation
is based on the ROC curve. Fig. 2 shows the results. The
parametric curve corresponds to the testδp(xi) based only on
the decision function given in (13). The threshold ofδp(xi) is
computed such that this test satisfies a prescribed false alarm
probability. The semiparametric ROC curve is computed for
the SVM detector based on two features extracted fromx

q
i ,

namely its mean and its standard deviation. Regarding the
performance of the SVM detector, it is clear that some dis-
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Fig. 2. ROC curves forδs(xi), δq(xi) andδp(xi) with white
noise (up) and babble noise (down) at SNR =5dB.

criminating information betweenH0 andH1 is contained in
the subvectorxq

i . It is also clear that the SVM detector has
poor performances for a small false alarm rate. The semipara-
metric test (6) outperforms the two other detectors, especially
for a small false alarm rate.

5. CONCLUSION

This paper proposed a novel VAD algorithm based on semi-
parametric test derived from the likelihood ratio test be-
tween a nonparametric binary decision value and a parametric
model. Numerical simulations by means of ROC curves show
that this new approach outperforms both a pure parametric
test and a pure nonparametric test, especially for a small false
alarm probability.
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