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Abstract—We deal with multiple access channels whose chan-
nel coefficients follow a quasi-static Markov process on a finite
set of states. We address the issue of allocating transmission rates
to users in each time interval, such that optimality and fairness
of an allocation are preserved throughout a communication, and
moreover all the users are consistently satisfied with it. First we
show how to allocate the rates in a global optimal fashion. We give
a sufficient condition for the optimal rates to fulfil some fairness
criteria in a time consistent way. Then we utilize the game-
theoretical concepts of time consistent Core and Cooperation
Maintenance. We show that in our model the sets of rates fulfilling
these properties coincide and they also coincide with the set of
global optimal rate allocations. The relevance of our dynamic
rate allocation to LTE systems is also shown.

I. INTRODUCTION

In the last few years, the concepts of user fairness and
satisfaction have received significant attention. These notions
will play an increasingly crucial role in future networks,
due to the paradigm shift that we are witnessing, from fully
centralized networks with dumb terminals to distributed
networks with rational users able to pool resources with each
other.
In the literature, the notion of fair and satisfactory rate
allocation has been dealt with under manifold perspectives
in static Gaussian or ergodically fading Multiple Access
Channels (MAC). In [1], the fairness of a rate allocation
in a Gaussian MAC is related to the economical concept
of Lorenz order, used for measuring disparity in income
distributions. Such fair allocation always exists, it is Pareto
optimal and solution of a Nash bargaining problem with zero
disagreement payoff allocation. In [2], the authors show the
existence of a unique rate allocation which is max-min and
proportional fair. The results in [1] and [2] are extended to the
general framework of α-fairness [3] in [4]. For MAC’s with
polymatroid regions, all α-fair rate allocations collapse into
a single point, which is max-min and proportional fair, too.
An analysis of rate allocations in the context of constrained
games points out that the normal Nash equilibrium [5] also
coincides with the α-fair and Pareto optimal allocations.
In [7], the capacity of the Gaussian MAC is studied with
a cooperative game-theoretical approach. In [8], the authors
expressed the rate allocation problem in static Gaussian
MAC with jamming in a cooperative game-theoretical setting.
They found a satisfactory rate allocation fulfilling the newly
introduced concept of envy-free. The envy-free allocation
exists, is unique and Pareto optimal, but in general it does not
coincide with the α-fair solution. In [9] a static game on an
interference channel is considered via CGT with NTU.

Most of the work has been carried out while the third author was Ph.D.
student at EURECOM.

In this contribution we study and extend for the first time the
concepts of optimal, fair, and satisfactory rate allocations to a
dynamic scenario, described by a Gaussian MAC where the
channel evolves quasi-statically, according to a Homogeneous
Markov Chain (HMC) on a finite state space.
We stress that the proposed scenario is relevant to modern
LTE systems. In fact, in LTE, the average channel state
information is estimated by the receiver and fed back to
each transmitter at regular intervals. Hence, in each of these
intervals, a different rate for each user needs to be allocated
and it is desirable that fairness and users’ satisfaction is
guaranteed along the course of a communication.

The paper is structured into two main sections. In the
former, Sect. III, we discuss the design of optimal and fair
allocations in a dynamic process. In the latter, Sect. IV, we
characterize the optimal rate allocations as the allocations
which are also satisfactory throughout a communication, ac-
cording to a Dynamic Cooperative Game Theory (DCGT)
formulation. We study a bottom-up (Sect. III-A) and a top-
down procedure (Sect. III-B) to allocate a global optimal rate in
each state of the HMC. The former prescribes to allocate first
static allocations and derive next the long-run ones; conversely,
the latter suggests to select first the long-run rate allocations.
Though the top-down procedure would be more useful since
the user have a long-run perspective, it is not always feasible
since it is described by a non bijective mapping. Then we
suggest a procedure to overcome this problem. In Sect. IV
we provide a sufficient condition under which there exists
a rate allocation which is fair, i.e. max-min, proportional,
and α-fair, both state-wisely and in the long-run process.
Most importantly, the fairness property of such allocation is
time consistent, i.e. it is fair throughout the process, from
any intermediate step onwards. Conversely, a fair allocation
always exists in the static case [4], [10]. We remark that all
our results in Sect. III apply to any communication system
characterized by a polymatroid capacity structure (see [4] for
some examples).
In Sect. IV we introduce a game formulation with jamming
users similar to the one in [8], but in a dynamic scenario.
Then we characterize the set of global optimal allocations as
satisfactory too, since it coincides with the set of rates for
which two crucial DCGT properties hold. These properties are
the (time consistent) Core, introduced in [11], and the Coop-
eration Maintenance property [12]. Such properties formulate
the concept of acceptable allocations throughout a dynamic
process for all users in two different, but equally appealing,
manners.
We refer the reader to [13] for the proofs of all our results,
omitted here to comply with the space constraint.



II. SYSTEM MODEL

We consider a wireless system in which K terminals
attempt to send information to a single receiver or base station.
Let K = {1, . . . ,K} be the set of all users. Each user k has a
power constraint Pk. We assume a quasi-static channel, i.e. the
channel coefficients can be considered constant for the whole
duration of a codeword. Thus, the t-th signal block received
by the unique receiver, for t ∈ N0, can be written as

y[t] =

K∑

k=1

h(k)[t]x(k)[t] +w[t],

where x(k)[t] is the codeword of user k, h(k)[t] is the complex
channel coefficient for user k at time step t, and w[t] is zero
mean white Gaussian noise with variance N0. We assume that
the set of channel coefficients {h(1), h(2), . . . , h(K)} is finite
and it follows a discrete time HMC, which can change state
at every new codeword. In other words, if St is the channel
state at time step t, where

St :=
[
h(1)[t], . . . , h(K)[t]

]
,

then the random process {St, t ≥ 0} is a HMC. We define S
as the set of all the N possible states of the HMC. Let P be
its N -by-N transition probability matrix, such that Pi,j is the
probability of transition from state si to state sj .

We point out that the codeword length is supposed to
be very long, such that the conditions of applicability of
the Shannon Capacity (i.e. infinite codeword) are practically
satisfied. This assumption is widely applied in quasi-static
channels (see e.g. [14]).

A. Markovian feasibility region

In each channel state, we consider a Gaussian MAC
scenario, in which K users communicate with a single re-
ceiver. By relying on the classic quasi-static approximation
assumption (see e.g. [14]), we can compute the capacity rate
region for all users in state s as the polymatroid R(K, s) with
rank function g(K) [15]:

R(K, s) =

{
r ∈ R

K :
∑

k∈T

rk ≤ g(K)(T , s), ∀ T ⊆ K

}

g(K)(T , s) := C

(∑

k∈T

|h(k)(s)|2Pk, N0

)
, ∀ T ⊆ K, (1)

where C(a, b) = log2(1+a/b). When considering the channel
dynamics, an HMC evolves on a finite set of channel states
S = {s1, . . . , sN}. Since we consider the channel to be
constant during a codeword, the transition among states occurs
at the end of each coherence period of the channel.
We allocate a rate to each user in each of the state of the
Markov chain. We assume that the rate assigned in state St ∈ S
at time t depends only on the value of St, and not on the past
history of state/allocations up to time t. In this sense, we say
that the dynamic allocation is stationary, and we call rk(s)
the rate assigned to user k in state s. In our model the users
prefer the current rate allocation over the future ones, which
are discounted by a factor β ∈ [0; 1). This assumption has been
widely adopted in the literature on game theory for networks
(see e.g. [16]). In this case, the utility for user k over the whole
stream of state-wise rate allocations equals

rk(Γs) = E

(
∞∑

t=0

βt rk(St)

)
, (2)

where Γs is the Markov process starting at time 0 in state
s. An alternative interpretation of (2) is the actual expected
long-run rate when the length of the communication is finite,
but of unknown duration; 1− β is the probability that, at any
time step, the communication terminates. In the literature on
dynamic games it is common to multiply expression (2) by
the normalization factor (1 − β). We anticipate that both the
normalization factor and the choice of β are irrelevant to all our
results. By recalling the relation

∑
t≥0 β

tPt = (I − βP)−1,
we can write (2) in the following matricial form:



r(Γs1)

...
r(ΓsN )


 = (I− βP)−1



r(s1)

...
r(sN )


 , (3)

where r(s) := [r1(s), r2(s), . . . , rK(s)] and r(Γs) is defined
similarly. By defining Φ := (I−βP)−1 and utilizing a compact
matrix notation, we rewrite (3) as

[r(Γs)]s∈S = Φ [r(s)]s∈S (4)

Remark 1: Expression (4) defines an application from the
set of stationary state-wise rate allocations to the set of feasible
long-run rates. In Sect. III-B we will show that, in general, the
application is not invertible, since multiplying a set of long-run
allocations by Φ−1 does not always produce feasible state-wise
allocations. �

It is natural to define the long-run rate region R(K,Γs) as
the set of all rates r(Γs) that can be written as the long-run
expected sum of stationary state-wise rate allocations, as in
(3). We now give a convenient expression for R(K,Γs),
which follows from [17], p. 241, Theorem 12.1.5, claiming
that the sum of polymatroids is still a polymatroid whose rank
function is the sum of the rank functions of the summands.

Lemma 2.1: For any sj ∈ S, the long-run rate feasibility
region R(K,Γsj ) is a polymatroid with rank function:

g(K)(T ,Γsj ) =

N∑

n=1

νn(sj) g(K)(T , sn), ∀ T ⊆ K,

where ν(sj) is the j-th row of the matrix Φ. �

B. Relevance to LTE systems

In LTE systems, the statistics of the channel are estimated
at regular intervals and used for resource allocation. Under
the common assumption of fast fading Gaussian channel in
additive Gaussian noise, in each period t the state of the HMC
is given by the channel distribution, completely characterized
by its second-order statistics. The rate region in absence of
instantaneous knowledge of the channel at the transmitter
is still a polymatroid, with rank function Eh[g(K)(T , s)], as
shown in [18]. Since the results presented in the following
strongly rely on the polymatroid structure of the rate region in
each state of the HMC, then they also hold for LTE systems.
Hence, our general results in particular address the issue of
allocating the rate to users in a MAC LTE system at each
feed-back time interval, so that optimality, fairness, and the
users’ satisfaction is preserved throughout the communication.

III. OPTIMAL AND FAIR RATE ALLOCATION DESIGN

In this section we address the issue of allocating rates
to all users during the transmission process, in each state
of a channel Markov chain. We stress that all the results in
this section apply to any communication system in which the



capacity region in the single channel state has a polymatroid
structure (see [4] for a list of such systems).
From a classic result on polymatroids (see e.g. [17]), we know
that the dominant facet, or simply facet, M(R(K, s)) of the
rate region R(K, s) is maximum sum-rate, i.e.

M(K, s) := M(R(K, s)) = argmax
r∈R(K,s)

∑

k∈K

rk. (5)

Similarly, the facet M(K,Γs) is maximum sum-rate in the
long-run process Γs. Hence, a global optimum rate design
would require that both the state-wise and the long-run rate
allocations belong to the facets M(K, s) and M(K,Γs), for
all s ∈ S. Hence, we will restrict our focus on the allocations
inside M, defined in the following.

Definition 1 (M): M is the set of stationary state-wise
allocations belonging to the dominant facets of both state-wise
and long-run feasibility regions, i.e.

M :=
{
{r(s)}s∈S : r(s) ∈ M(K, s),

r(Γs) ∈ M(K,Γs), ∀ s ∈ S
}
,

where [r(Γs)]s∈S = Φ [r(s)]s∈S . �

Now, we will investigate two different approaches to select
an allocation in M. The first, called bottom-up procedure
(Sect. III-A), is the most natural one, and it prescribes to
select a set of state-wise allocations in M(K, s), for all s ∈ S,
and then to derive the set of associated long-run allocations
via multiplication by Φ. Conversely, the second approach,
dubbed top-down (Sect. III-B), would be more useful, but
unfortunately it is not always feasible. It suggests to select
first the long-run allocations, in M(K,Γs), for all s ∈ S, and
then to multiply by Φ−1 to obtain the state-wise allocations.
Clearly, the choice over the adopted procedure depends on
the priority that the designer gives to the state-wise/long-run
allocation. By adopting the top-down procedure, one embraces
a long-run perspective of the process, by preferring to adhere
to a specific fairness selection criterion in the long-run
process, rather than in the state-wise one. We anticipate from
Sect. III-C that one can select the unique allocation point
in the long-run process, that is α-fair, proportional fair, and
max-min fair, simultaneously. Clearly, the best scenario would
consist in being fair in each state, in the long-run process, and
from each intermediate step onwards. A sufficient condition
to attain this will be provided in Sect. III-C.

A. BOTTOM-UP DESIGN: From single-stage to long-run
allocations

In this section we investigate the feasibility of our first
procedure to select an allocation in M. It is called bottom-up
rate allocation approach, and it consists in selecting a set
of stage-wise allocations belonging to the dominant facet of
each state-wise feasibility region. Then, we need to compute
the respective long-run allocations and check whether they
belong to the dominant facets of the feasibility region of
the respective long-run processes. By a linearity argument,
it is easy to see that the facet M(K,Γs) is obtained as the

Minkowski sum
∑N

n=1 νn(s)M(K, sn). Therefore, if the
state-wise allocations all belong to the dominant facet in
the respective states, then their expected long-run sum also
lies in the dominant facet of the long-run process. Then, the
bottom-up procedure always produces stationary allocations

belonging to M.

Proposition 3.1 (Bottom-up allocation procedure): Select
a set of state-wise rate allocations {r(s) ∈ M(K, s)}s∈S .
Then, their associated long-run allocations [r(Γs)]s∈S =
Φ[r(s)]s∈S belong to the respective long-run dominant facets,
i.e. r(Γs) ∈ M(K,Γs), for all s ∈ S. �

Then, the first positive result of Proposition 3.1 is that
there exist allocations belonging to the dominant facet of both
state-wise and long-run processes, jointly, i.e. M is non-empty.
Secondly, it is easy to find them, since it suffices to select a
rate allocation on the dominant facet of R(K, s), for all s ∈ S.
Finally, as a by-product of Proposition 3.1, we are allowed to
simplify the definition of M as:

M ≡
{
{r(s)}s∈S s.t. r(s) ∈ M(K, s), ∀ s ∈ S

}
.

B. TOP-DOWN DESIGN: From long-run to single-stage allo-
cations

The bottom-up procedure always produces feasible
allocations, but it is not what really concerns us. Indeed,
the users are endowed with a long-term perspective of the
communication process, hence one may wish to select first a
set of long-run allocations in {M(K,Γs)}s∈S which adhere
to a certain criterion in the respective long-run processes (e.g.
a fairness criterion, as in Sect. III-C). Then, the state-wise
rate allocations {r(s)}s∈S are obtained via multiplication by
Φ−1. Unfortunately this method, dubbed top-down, does not
always produces feasible stationary state-wise allocations. We
interpret this fact by saying that the linear application defined
by Φ in (4) is not always invertible in the space of feasible
stationary allocations. In Example 3.1 we show an instance
of the described scenario.

Example 3.1: Set β = 0.8, N0 = 0.1W . Consider two
users, with power constraints P1 = P2 = 2W . Consider
two states. In s1, |h(1)(s1)|2 = 0.1, |h(2)(s1)|2 = 0.2. In
s2, |h(1)(s2)|2 = 0.15, |h(2)(s2)|2 = 0.15. The transition
probability matrix is P = [0.8 0.2; 0.3 0.7]. Choose the
optimal allocations in the long-run process

r(Γs1) = [0.5843; 1.1109] ∈ M(K,Γs1) bits/s/Hz

r(Γs2) = [0.8270; 0.8682] ∈ M(K,Γs2) bits/s/Hz.

The corresponding state-wise allocations, through Φ−1, are
both not feasible, because

r(s1) ∼= [0.0780; 0.2610] /∈ R(K, s1)

r(s2) ∼= [0.2236; 0.1154] /∈ R(K, s2). �

Remark 2: One may argue that there is no need to select
the whole set of long-run allocations {r(Γs)}s∈S , but only the
one corresponding to the actual initial state. Indeed, since the
channel state S0 at time 0 is known, one could select r(ΓS0

)
according to the desired criterion and then compute the state-
wise allocations by choosing one solutions among the infinite
possible of the equation

r(ΓS0
) =

N∑

n=1

νn(S0) r(sn).

Finally, the remaining long-run allocations are automatically
computed by re-inverting the relation, as Φ[r(s)]s∈S . Of
course, in this way there is no control over the long-run



allocations r(Γs), with s 6= S0.
On the other hand, thanks to the stationarity of the payoff
allocation, the long-run sub-process starting at time T > 0 is
precisely the βT -scaled version of ΓST

, i.e.

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
= βT r(ΓST

),

where h(T ) is the history of state/allocations from time 0 up
to time T . Therefore, jointly choosing the long-run allocations
r(Γs) for all states s ∈ S is equivalent to assign the long-run
allocations that each user obtains in each sub-process from any
intermediate time step T ≥ 0 onwards. �
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Fig. 1. Example 3.1. r(Γs) ∈ M(K,Γs), for s = s1, s2, but r(s) /∈
R(K, s), for s = s1, s2, where [r(s)]s∈S = Φ−1[r(Γs)]s∈S .

Example 3.1 seems to discourage a top-down allocation
procedure. Indeed in general, if one chooses a set of long-
run allocations, there is no guarantee that the allocation is
actually feasible, since the associated stationary state-wise
allocation might be not feasible. Of course, this does not rule
out the possibility to carry out a top-down allocation procedure
successfully. Indeed, in Theorem 3.3 we will present a top-
down procedure guaranteeing the feasibility of the associated
state-wise rate allocations. Before, let us introduce a classic
result on polymatroids (see [19]). Let R be a polymatroid on
the ground set {1, . . . ,K}, with rank function g. Let Π(K) be
the set of permutations of {1, . . . ,K}. The facet M(R) has
at most K! extreme points, and each of them has an explicit
characterization as a function of the rank function g. Indeed, w
is a vertex of M(R) if and only if there exists a permutation
π of {1, . . . ,K} such that, for all k = 1, . . . ,K ,

wk = g({π1, . . . , πk−1, πk})−g({π1, . . . , πk−1}) := wk(π).

Proposition 3.2: Let an ≥ 0, for n = 1, . . . , N . Let
R1, . . . ,RN be N polymatroids on the ground set {1, . . . ,K}.

Let R =
∑N

n=1 anRn. Let w(π)(n) be the vertex of the facet
M(Rn) associated to the permutation π ∈ Π(K). Let w(π)
be a vertex of M(R). Then,

w(π) =

N∑

n=1

an w(π)(n), ∀π ∈ Π(N). �

Proposition 3.2 claims that the vertex of the facet M(R)
associated to the permutation π can be decomposed into the
sum of the vertices associated to the same π of each facet
M(Rn), n = 1, . . . , N . Then, our idea is to choose one set
of convex coefficients, valid for any s ∈ S, and to define the
set of long-run allocations {r(Γs) ∈ M(K,Γs)}s∈S as the
same convex combination of the vertices of the respective
dominant facets. The associated state-wise allocations are
then obtained as the same convex combination of the vertices
of the respective state-wise dominant facets, hence they are
feasible and optimal.

Theorem 3.3 (Top-down allocation procedure): Choose a
set of convex coefficients {c(π)}π∈Π(K), such that c(π) ≥ 0
and

∑
π∈Π(K) c(π) = 1. Let w(π)(Γs) be the vertex of

M(K,Γs) associated to the permutation π. Compute the set
of long-run allocations as

r(Γs) =
∑

π∈Π(K)

c(π)w(π)(Γs), ∀ s ∈ S.

Then,

[r(s)]s∈S = Φ−1 [r(Γs)]s∈S

is a set of feasible state-wise rate allocations, and moreover
r(s) ∈ M(K, s), for all s ∈ S. �

The top-down allocation procedure provided in Theorem
3.3 is not the only possible of course, but it leads to an
intuitive remark. Each vertex w(π)(s) can be achieved by
letting the receiver decode sequentially, in the reverse order
of π, the signals coming from each user in channel state
s ∈ S, and by considering the signals not decoded yet as
Gaussian noise (e.g. see [15]). Therefore, any rate allocation
on M(K, s) can be achieved by time sharing such decoding
configurations, and the time-sharing procedure is independent
of the state s.
We suggest an interesting future research, which may study
how to optimize the convex coefficients c(π) to make the
resulting long-run allocations globally close to the set of
long-run allocations fulfilling a certain criterion, e.g. the
fairness criterion that we will present in the next section.

C. FAIR ALLOCATION DESIGN: being fair throughout the
process

In this section we deal with a fairness criterion to select
an allocation rate inside M. In the static channel case, it is
possible to find rate allocations which are fair, under plenty of
different criteria (see [4]). In the dynamic case, the definition
of fairness is much more demanding, and not always there
exist allocations fulfilling it. Firstly, we demand an allocation
to be fair in the long-run process, since users are endowed
with a long-term perspective of the transmission process.
Then, the top-down procedure would be best, because it
would guarantee the rate allocations to be fair in the long-run.
However, in Sect. III-B we showed that this approach not
always produces feasible stationary rate allocations. Secondly,
we demand that an allocation respects the fairness criterion
not only from the beginning of the transmission onwards,
but throughout it, i.e. it should be time consistent. Thirdly,
we wish that the rate allocation is also fair in each state of
the HMC. We will see that these three conditions are not
generally satisfied, however we provide a sufficient condition
for them to hold.



1) Fairness criteria: A review: Let us first introduce the
fairness criteria that we will utilize in the next section. In the
literature, three fair allocations have been extensively studied:
α-fair, max-min fair, and proportional fair allocations. We
now provide their general definition, by considering a general
rate feasibility region R.

Definition 2 (max-min fairness): An allocation r(MM) is

max-min fair whenever no user j with rate r
(MM)
j can yield

resources to a user i with r
(MM)
i < r

(MM)
j without violating

feasibility in R. �

Definition 3 (α-fairness): Let u(α)(rk) = r1−α
k /[1−α] be

the utility function for user k. The α-fair allocation r(αF), with
α ≥ 0, is defined as

r(αF) = argmax
r∈R

K∑

k=1

u(α)(rk). �

Definition 4 (proportional fairness): The proportional fair
allocation r(PF) coincides with the α-fair allocation when α →
1, i.e.

r(PF) = argmax
r∈R

K∏

k=1

rk. �

We point out that, in general, the α-fair allocation is also
max-min fair for α ↑ ∞ and proportional fair for α → 1.
If we consider the long-run process Γs, then in Definitions 2,
3, and 4 we should interpret R ≡ R(K,Γs), while in channel
state s, R ≡ R(K, s).
In the special case in which the feasibility region is a
polymatroid, as for R(K, s) and R(K,Γs), for all s ∈ S,
then the three fair allocations coincide.

Theorem 3.4 ([4]): If the feasibility region is a polyma-
troid R, then max-min, proportional, and α-fair allocations
coincide for all α ≥ 0, and moreover belong to the facet
M(R) i.e.

r(MM) = r(PF) = r(αF) := r(F) ∈ M(R). �

For Theorem 3.4, the three mentioned fair solutions
coincide both in the long-run process Γs and in state s, for
all s ∈ S. Therefore, we can generally refer to them as fair
allocations, and we call r(F)(Γs) the fair allocation in the
long-run process Γs, and r(F)(s) the fair allocation in state s.
Moreover, a fair allocation belongs to the dominant facet of
the associated feasibility region, hence it is a proper criterion
to select a set of allocations in M.

2) Fair allocation design: Finally, we are ready to deal
with the design of fair rate allocations on quasi-static channels.
We will show under which conditions it is possible to allocate
a rate which is fair (i.e. max-min, proportional, and α-fair at
the same time) both in each state and in the long-run process,
and which is fair throughout the game, from each intermediate
step, i.e. it is time consistent. More formally, we look for a
sufficient condition for which the following holds:

{
Φ−1 [r(F)(Γs)]s∈S = [r(F)(s)]s∈S

Φ [r(F)(s)]s∈S = [r(F)(Γs)]s∈S .
(6)

We stress that property (6) is crucial, mainly for three
reasons, that we list below.

• The top-down procedure may fail, hence if we choose
{r(F)(Γs)}s∈S , not necessarily it is feasible among
the stationary allocations, i.e. in general it may happen
that

∃ s ∈ S : r(s) /∈ R(K, s),

with [r(s)]s∈S = Φ−1 [r(F)(Γs)]s∈S .

• Though the bottom-up procedure always produces
feasible allocations, if the allocation is fair in each
state, then not necessarily it is also fair in the long-
run processes. Indeed, it may happen that

∃ s ∈ S : r(Γs) 6= r(F)(Γs),

with [r(Γs)]s∈S = Φ [r(F)(s)]s∈S (7)

As an example, in Figure 2 we show an instance in
which (7) is verified.

• Most importantly, if relation (6) holds, then the fair-
ness property of the rate allocation is time consistent
(see Theorem 3.5).

The time consistency of fair allocations claims that the
fairness criteria that determines or induces a certain rate
allocation at time 0 should be consistent in time, at steps
T > 0 as well. More formally, at each time step T , the
β-discounted sum of allocations that each user obtains from
time T onwards should be fair in the long-run process ΓST

.

Theorem 3.5: If condition (6) holds, then the fairness of
the stationary rate allocation {r(F)(s)}s∈S is time consistent,
i.e. for all T ∈ N0,

E

(
∞∑

t=T

βtr(F)(St)
∣∣∣ h(T )

)
= βT r(F)(ΓST

),

where h(T ) is the history of states/rate allocations up to time
T . �
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Fig. 2. Example of situation in (7) with two users and two states, in which the
state-wise allocations are fair in the respective channel states but the relative
long-run allocations are not fair in the respective long-run processes. The
allocations indicated with the asterisk are fair, while the circle describes the
actual computed allocations.



After presenting the appealing properties of condition (6),
we wish to find a sufficient condition for (6) to hold. For
this purpose, it is useful to present first an algorithm, first
studied in [10], that produces the fair allocation in a general
polymatroid R with rank function g. Of course, it can be
utilized to compute the fair allocation in any state-wise and
long-run process.

Algorithm 3.6 ([2]): Set q := 1. Set K′ := K, g′ := g.

1) Compute

T ∗
(q) = argmin

T ⊆K′

g′(T )

|T |
, r

(F)
k =

g′(T ∗
(q))

|T ∗
(q)|

, ∀ k ∈ T ∗
(q).

2) If T ∗
(q) = K′, then stop. The rate allocation rF is fair

for R. Otherwise, set q := q + 1, K′ := K′\T ∗
(q),

g′(T ) := g′(T ∪ T ∗
(q))− g′(T ∗

(q)), ∀ T ⊆ K′,

and return to step 1) . �

Finally, we are ready to provide a condition that ensures
the existence of a rate allocation design which is fair both
in each state and in every long-run process, as described in
(6), and for which the fairness criterion is time consistent, as
shown in Theorem 3.5.

Theorem 3.7 (SC existence fair allocations): Let T (s) =
[T ∗

(1)(s), . . . , T
∗
(q(s))(s)] be the sequence computed in the it-

erations of step 1, Algorithm 3.6, applied to channel state s.
Suppose that

∃ T = T (s), ∀ s ∈ S,

i.e. T (s) does not depend on s. Then, condition (6) holds. �

IV. OPTIMAL AND SATISFACTORY ALLOCATIONS:
A GAME-THEORETICAL APPROACH

Sect. III dealt with the design of the rate allocation in each
channel state for each user. We restricted our focus solely on
the set of global optimum rate region M (5), i.e. the set of
stationary state-wise which are optimal both in each state and
in the long-run process.
We now start the second part of the paper by turning our
attention towards the characterization of the set of rates M
in game theoretical terms. We will show indeed that M,
besides being global optimum, also “satisfies” all the users
throughout the game, according to two important properties
specific for dynamic CGT, namely the time consistent Core
and the Cooperation Maintenance property.

A. CORE characterization of M

Generally speaking, Static Cooperative Game Theory
(SCGT) with non-transferable utility (NTU) studies one-shot
interactions among different players who can collaborate with
each other by coordinating the respective strategies. It is
assumed that grand coalition K, composed by all the players,
is formed, and the main challenge consists in devising a payoff
allocation for each player, according to some pre-defined
criteria. To this aim, the typical procedure in SCGT consists
in investigating the potential scenario in which a sub-coalition
(or simply, coalition) A ⊂ K of players withdraws from the
grand coalition and no longer coordinates its actions with the
excluded players; then, the set of feasible payoffs that A can
earn on its own is computed (see [6] for a thorough survey).

The payoff allocation is finally a function of such feasible sets.
Let us then translate these preliminary few concepts into our
scenario. We first consider the static process in state s, that
we call static game. For the static game case we adopt the
same model as in [8]. In our situation, the players are the
users, and the grand coalition is the set of transmitting users
K. We say that a coalition of users AJ := K\J ⊂ K forms
when its members share the respective codes with the receiver,
which can then decode the signals transmitted by AJ . For us,
the payoff for a player is the assigned transmission rate. The
SCGT literature provides several ways to compute the set of
rate allocations achievable by each subset of users AJ . One of
the most utilized is the max-min method, originally introduced
by von Neumann and Morgenstern in [20], suggesting that
the set of feasible allocations R(AJ , s) should be defined as
the set of rate allocations that AJ can achieve whatever is
the transmission strategy employed by the remaining user J .
Then, we need to take into account the worst possible scenario
for AJ , i.e. when the users in J do not allow joint decoding
and jam the network, and investigate the set of rates R(AJ , s)
that the users in AJ can achieve in this hypothetical worst-
case scenario. When the users in J jam, they sum coherently
the respective signals and transmit with an overall power:

Λ(J , s) =

(
∑

k∈J

|h(k)(s)|
√

Pk

)2

.

In this worst-case scenario, in [8] it is shown that, among

AJ , only the users ÂJ whose associated received power
level is high enough to overwhelm the jamming signal can
communicate, i.e.

ÂJ (s) :=
{
k ∈ AJ : |h(k)(s)|2Pk > Λ(J , s)

}
.

Then, R(AJ , s) is a polymatroid with rank function [8]:

g(AJ )(T , s) := C

(∑

k∈T

|h(k)(s)|2P̃k,Λ(J , s) +N0

)
, (8)

where P̃k = Pk for k ∈ ÂJ (s) and P̃k = 0 for all k ∈
AJ \ÂJ (s). Please note that, when J = ∅, (8) boils down to
expression (1).
Now, let us consider the feasibility region R(AJ ,Γs) for a
coalition AJ in the long-run process (or game) Γs. Similarly
to the static case, it is still defined in the max-min fashion,
as the set of long-run rate allocations that the users AJ can
guarantee, whatever is the transmission strategy adopted by
J , throughout the process. Therefore, we have to consider the
worst-case scenario in which J jams during the whole process
Γs and, analogously to Lemma 2.1, we claim that R(AJ ,Γs)
is a polymatroid with rank function:

g(AJ )(T ,Γsj ) =

N∑

n=1

νn(sj) g(AJ )(T , sn), ∀ T ⊆ AJ .

Our goal is now to further characterize M, and we achieve
this via the definition of the Core set for NTU cooperative
games. The Core is the set of rate allocations that no coalition
AJ ⊂ K can improve upon when the remaining users J
jam. Let us define formally the Core of the static game in
state s. We say that a rate allocation for the grand coalition
r ∈ R(K, s) is blocked by the coalition AJ ⊆ K whenever
there exists r′ ∈ R(AJ , s) such that r′k > rk for all k ∈ AJ .
In other words, the rate allocation r is unacceptable by the
set of users in AJ .



Definition 5: The Core Co(s) is the set of unblocked rate
allocations in R(K, s).

Remark 3: We can intuitively define the Core as the set of
all “acceptable” rates for all users. Indeed, if an allocation
does not belong to the Core, at least a subset of users is
dissatisfied with it, because they can all attain a better rate
allocation even when the remaining users do not participate to
the transmission and jam. �

Additionally, an allocation in Co(s) is also not blocked
by the grand coalition K. Since R(K, s) is a polymatroid, it
follows that it is a region with maximum sum-rate, i.e. Co(s) ⊆
M(K, s), for all s ∈ S.

The Core Co(Γs) in the long-run game Γs is defined
analogously to the static case. We remark that it coincides
with the set of long-run allocations that are acceptable for
each subset of users at the beginning of the long-run game.
This definition of Co(Γs) relates to static CGT, in which
the coalition structure holds steady throughout the game
and players do not change their preference over the rate
allocations over time. This is a naı̈ve perspective though,
since the channel is dynamic. Hence, we demand that a
stationary rate allocations is not only “acceptable” for each
coalition at the beginning of the game, but also throughout
the game. In a dynamic CGT jargon, we say that the Core
cooperative solution is time consistent [11]. The philosophy
behind this definition is analogous to the time consistency of
fair allocations, in Theorem 3.5. Hence, if an allocation in the
Core is time consistent, then at each time step, any coalition
facing the dilemma “do we withdraw now or we cooperate
forever?” always prefers the second option. Therefore, we
will focus our attention on the allocations in Co, defined as
follows, and we will prove that Co = M.

Definition 6 (Co): Co is the set of stationary state-wise
allocations belonging both to the Core of each static game
and to the Core of long-run games in a time consistent fashion
throughout the game, i.e.

Co :=

{
{r(s)}s∈S : r(s) ∈ Co(s),

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
∈ βTCo(ΓST

), ∀T ∈ N0

}
,

where h(T ) be the history of states/rate allocations up to time
T . �

Hence, Co is the set of stationary allocations that are
maximum sum-rate, hence optimum for the global network,
and that are “acceptable” for each subset of users, in both
static and long-run games, throughout the game. Hence, we
can already claim that Co ⊆ M. Let us show that Co = M.

In [8], La and Anatharam computed the Core of the static
game by relying on SCGT with transferable utilities (TU).
Their approach is not completely rigorous, since the rate
cannot be shared in any manner among the users, but only
within the capacity region. Nevertheless, NTU cooperative
game theory yields the same result as [8], as we show next.

Theorem 4.1: The Core Co(s) coincides with the facet
M(K, s) of the feasibility region R(K, s) for the grand
coalition. �

In the light of Theorem 4.1 and Lemma 2.1, we can easily
provide an expression for Co(Γs) as well.

Corollary 4.2: The Core Co(Γs) of the long-run game Γs

coincides with the facet M(K,Γs). �

Now, we are ready to claim that M = Co.

Theorem 4.3: The set of stationary state-wise rate alloca-
tions M coincides with Co, i.e. M = Co. �

Thanks to Theorem 4.3, the set of stationary state-wise
rate allocations M gains further significance. Not only M is
the maximal sum-rate region, but it also coincides with the
set of rates which are “acceptable” both in the long-run and
in the static games, under the definition of Core. Moreover,
the Core criterion is time consistent, hence such rates are
acceptable throughout the game.
In the next section we provide a second characterization of
M, based on a Cooperation Maintenance property.

B. COOPERATION MAINTENANCE characterization of M

In this section we show that, by exploiting a crucial
concept in DCGT, called Cooperation Maintenance property,
we are able to provide a further characterization to the set M
of the maximum sum-rate stationary state-wise allocations.
The property that we are going to define is an adaptation to
our NTU scenario of the Cooperation Maintenance property
defined in [12], [21]. It claims that, at each time step, the
maximum sum-rate that coalition AJ expects to obtain if
it withdraws (without any chance of joining back) from the
grand coalition in one step should be not smaller than what
AJ obtains if it withdraws (still, without a second thought)
at the current step.

Remark 4: When we say, in a game-theoretical jargon, that
a coalition AJ is enticed to withdraw from the grand coalition,
we actually mean that it is dissatisfied with its assigned rate,
because, even in the worst-case scenario in which J jams,
AJ could achieve a better allocation. Hence, like in Sect.
IV-A, we will utilize Game Theory as a tool to measure users’
satisfaction with the assigned rate. �

The set of allocations for which the Cooperation
Maintenance property holds is called CM.

Definition 7 (CM): The set of (first step) Cooperation
Maintaining allocations CM is the set of stationary state-
wise rate allocations {r(s) ∈ M(K, s)}s∈S such that, for all
coalitions AJ ⊆ K and at each time step T ∈ N0,

∑

k∈AJ

rk(ST )+β
∑

s′∈S

p(s′|ST )
[

max
r(Γs′)∈R(AJ ,Γs′)

∑

k∈AJ

rk(Γs′)
]
≥

max
r(ΓST

)∈R(AJ ,ΓST
)

∑

k∈AJ

rk(ΓST
). (9)

�

The intuition behind the definition of CM is that, if a
coalition faces the dilemma “do we withdraw now or in one
step?”, it should prefer the second option, at any instant. In
this way, by induction, no coalition is ever enticed to withdraw
and the grand coalition is cohesive throughout the game.



It follows from Definition 7 that CM ⊆ Co. Also, it
is not difficult to show that, if the (first step) Cooperation
Maintenance property holds, then the n-tuple step Cooperation
Maintenance property also holds (see [21] for a more general
case), i.e. if a coalition faces the dilemma “do we withdraw
now or in n steps?”, it prefers the second option. For n ↑ ∞,
such property suggests that whenever a coalition faces the
dilemma “do we withdraw now or cooperate forever?”,
then it prefers to stick with the grand coalition forever. Not
surprisingly, this notion coincides with the time consistency
property of the Core that any allocation in M possesses, as
illustrated in Theorem 4.3.
We remark that, in more general settings, CM is smaller
than the set of the stationary distributions belonging to the
Core of long-run games (see [21]). Hence, the definition of
CM requires a “higher level of satisfaction” for the players
than the Core. We now state that actually, in our scenario,
M = CM. Through this result, we provide a second dynamic
characterization of the set M.

Theorem 4.4: The maximum sum-rate set of stationary
state-wise allocations M coincides with the Cooperation
Maintaining set CM, i.e. M = CM. �

Therefore, in this section we have provided two game-
theoretical characterizations for the global optimal set of
allocations M, i.e.

M = Co = CM.

Hence, M coincides with the set of rates Co which are
acceptable for all coalitions throughout the game, and with
the set of rates CM that make the grand coalition cohesive at
every step of the game.

V. CONCLUSIONS

In this paper we considered a quasi-static Markovian mul-
tiple access channel. We studied how to allocate the rate for
each user in each channel state. Our work is motivated by the
fact that, in the LTE technology, the statistics of the channel
are estimated by the receiver and used at regular intervals to
perform rate allocation. Hence, in each possible channel state,
a different rate for each user needs to be allocated. We focused
on the set M of allocations which are maximum sum-rate,
both in each state and in the long run process. In Sect. III we
investigated two rate allocation procedures, namely bottom-
up and top-down. Though the latter is more useful under
a long-run perspective, it does not always produce feasible
allocations. Theorem 3.3 offers a remedy for this. In Sect.
III-C we demanded the existence of an allocation which is fair
both in each state and in the long-run process. Moreover, we
demanded the fairness property to be time consistent. Theorem
3.7 provides a sufficient condition for this.
While in Sect. III we dealt with the issue of selecting a rate
allocation inside the optimal set M, in Sect. IV we turned our
attention towards a characterization of the set M in dynamic
game-theoretical terms. Firstly, in Theorem 4.3 we claim that
M coincides with the Core set Co of allocations which are,
in a sense, “acceptable” for all the users, both in the static
and in the long run game, in a time consistency fashion.
Secondly, in Theorem 4.4 we state that M also coincides
with the set of Cooperation Maintaining allocations CM that
makes the coalition of all players cohesive throughout the
game. Therefore, all allocations in CM are both global optimal
and satisfy the users throughout the process, according to the
criteria defined by Co and CM.
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