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Abstract—Recent work in [1]–[3] quantified, in the form of a
complexity exponent, the computational resources required for
ML and lattice sphere decoding to achieve a certain diversity-
multiplexing performance. For a specific family of layered lattice
designs, and a specific set of decoding orderings, this complexity
was shown to be an exponential function in the number of
codeword bits, and was shown to meet a universal upper bound
on complexity exponents. The same results raised the question
of whether complexity reductions away from the universal upper
bound are feasible, for example, with a proper choice of decoder
(ML vs lattice), or with a proper choice of lattice codes and
decoding ordering policies.

The current work addresses this question by first showing that
for almost any full-rate DMT optimal lattice code, there exists no
decoding ordering policy that can reduce the complexity exponent
of ML or lattice based sphere decoding away from the universal
upper bound, i.e., that a randomly picked lattice code (randomly
and uniformly drawn from an ensemble of DMT optimal lattice
designs) will almost surely be such that no decoding ordering
policy can provide exponential complexity reductions away from
the universal upper bound. As a byproduct of this, the current
work proves the fact that ML and (MMSE-preprocessed) lattice
decoding share the same complexity exponent for a very broad
setting, which now includes almost any DMT optimal code (again
randomly drawn) and all decoding order policies. Under a basic
richness of codes assumption, this is in fact further extended
to hold, with probability one, over all full-rate codes. Under
the same assumption, the result allows for a meaningful rate-
reliability-complexity tradeoff that holds, almost surely in the
random choice of the full-rate lattice design, and which holds
irrespective of the decoding ordering policy. This tradeoff can be
used to, for example, describe the optimal achievable diversity
gain of ML or lattice sphere decoding in the presence of limited
computational resources.

I. INTRODUCTION

In MIMO systems, the prohibitively large computational
costs of maximum likelihood (ML) decoding serve as motiva-
tion to consider different branch-and-bound algorithms [4]–[6]
which can provide computational savings at the expense of a
relatively small error-performance degradation. In the setting
of quasi-static MIMO channels, the computational complexity
of such decoding algorithms such as the sphere decoder (SD),
has random fluctuations which are induced by the randomness
in the fading, the noise and the transmitted codeword. In the
presence of computational constraints, this fluctuating com-
putational requirements cause error performance degradation
due to additional ‘outage’ events where the instantaneous com-
putational requirements exceed the computational constraints.
These constraints, henceforth denoted as Nmax, describe the
amount of computational reserves, in floating point operations
(flops) per duration of one codeword, that the transceiver
is endowed with, in the sense that after Nmax flops, the
transceiver must simply terminate, potentially prematurely and
before completion of its task. Consequently any attempt to

significantly reduce the computational constraints may be at
the expense of a substantial degradation in error-performance.
This brings to the fore a certain rate-reliability-complexity
tradeoff, which we explore.

Recently the work in [1] provided rigorous and simple
answers to the broad question of how large computational
reserves are required by ML sphere decoders to achieve,
for specific codes and decoding ordering policies, a certain
diversity-multiplexing performance (DMT, [7]). As in [1], [2],
these reserves are quantified in the high signal-to-noise ratio
regime, to take the form of a complexity exponent

c = lim
SNR→∞

logNmax

log SNR
. (1)

The same work in [1] also provided a universal upper bound on
the computational resources required to achieve, for increasing
SNR, a vanishing gap to the brute force ML error performance.
This analysis showed that specific families of lattice codes, and
specific decoding ordering policies, in fact meet this universal
complexity upper bound. The same conclusions were drawn
later on for MMSE-preprocessed lattice decoding, with the
work in [2] proving the somewhat surprising fact that, for
the above mentioned specific codes and decoding ordering
policies, the ML and lattice sphere decoders meet the same
universal upper bound, and thus share the same complexity
exponent.

The natural question is of course whether there exist codes
and decoding ordering policies that do not meet the universal
upper bound and thus provide substantial (polynomial in SNR
and exponential in the number of codeword bits) reductions in
the computational complexity. A step towards answering this
was found in [3] which considered a general setting of MIMO
scenarios, of fading statistics and lattice codes, to show that
there exist code-channel dependent decoding ordering policies
for which the complexity meets the universal upper bound.

The current work comes closer to establishing the minimum
computational resources required by ML and lattice based
SD to achieve the optimal diversity-multiplexing performance
(and a vanishing gap to ML), by shedding light on whether
all codes and all decoding ordering policies share the same
need for resources that match the above mentioned universal
upper bound that was shown in [1], [2] to be necessary for
specific policies and lattice designs. Towards this our work
here proves that this universal upper bound is in fact tight, for
both ML and lattice SD, for almost any full-rate DMT optimal
lattice code, and then for any decoding ordering policy. To
clarify, this means that, if we were to randomly pick a code
from the ensemble of DMT optimal lattice designs, then with
probability one, this code would be such that there would exist



no decoding ordering policy that could result in complexity
that is less than that described by the universal upper bound.

As a consequence to this, the work also shows that ML and
(MMSE-preprocessed) lattice SD have matching complexities
with probability one (in the choice of DMT optimal codes)
and irrespective of the decoding ordering policy. Under a basic
richness of codes assumption defined in Section III, this is in
fact further extended to hold, with probability one, over all
full-rate codes.

Under the same assumption, the above breakthroughs allow
for a more meaningful rate-reliability-complexity tradeoff that
holds for both ML and lattice SD, almost surely in the random
choice of the full-rate code, and which holds irrespective of the
decoding ordering policy. Whereas in the past, such tradeoff
could be derived under the strict restrictions on the decoding
ordering, now this tradeoff is more meaningful and can provide
insights that hold, with probability one in the choice of full-
rate code, irrespective of the channel-dependent or channel-
independent decoding ordering policy. One could use this
tradeoff to, for example, provide insights on the achievable
DMT performance of powerful encoders and decoders that are
limited to use computational resources corresponding to less
computational expensive but also less powerful transceivers.

A. System model

The general nT ×nR (nT ≤ nR) point-to-point quasi-static
MIMO channel is given by

YC =
√
ρHCXC + WC , (2)

where XC ∈ CnT×T , YC ∈ CnR×T and WC ∈ CnR×T
represent the transmitted, received and noise signals over a
period of T time slots, where the fading matrix HC ∈ CnR×nT
is assumed to be random, with elements drawn from an i.i.d.
Rayleigh fading statistics, and where ρ denotes the signal to
noise ratio. After vectorization the real valued representation
of (2) takes the form

y =
√
ρHx + w, (3)

where H = IT ⊗HR with HR =

[
Re{HC} −Im{HC}
ImHC} Re{HC}

]
,

x = (xT
1 , · · · ,xT

T )T with xt = [Re{Xt,C}T, Im{Xt,C}T]T

for t = 1, · · · , T , where Xt,C is t-th column of XC , y and
where w are defined similar to x. For a rate R that scales with
SNR as a function of the multiplexing gain r = R/ log ρ ≥ 0,
we consider a (sequence of) full-rate linear (lattice) code(s) Xr
given by Xr = Λr∩R

′
to consist of the elements of the lattice

Λr that lie inside the shaping region R′ which is a compact
convex subset of Rκ that is independent of ρ. Specifically
Λr , ρ

−rT
κ Λ and Λ,{Gs | s ∈ Zκ}, where Zκ denotes the

κ dimensional integer lattice, and where the lattice generator
matrix G ∈ Rκ×κ is full rank and independent of ρ. We clarify
that the code is drawn randomly from the ensemble of DMT
optimal lattice designs, in the sense that the coefficients in
G are independently and randomly chosen from a continuous
distribution over the real numbers, and are then held fixed.
We also clarify that in our setting, the use of DMT optimal
full-rate codes means that κ = 2nTT . After vectorization the
codewords take the form

x = ρ
−rT
κ Gs, s ∈ Sκr ,Zκ ∩ ρ rTκ R, (4)

where R ⊂ Rκ is a natural bijection of the shaping region R′

that preserves the code, and contains the all zero vector 0. For
simplicity we consider R,[−1, 1]κ to be a hypercube in Rκ
although this can be partially relaxed. Combining (3) and (4)
yields the equivalent system model

y =Ms + w, (5a)

where M,ρ
1
2−

rT
κ HG ∈ R2nRT×κ. (5b)

B. Sphere Decoder
Let QR = M be the thin QR factorization of the code-

channel matrix M and r,QHy, then (5a) yields r = Rs +
QHw and the ML decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr
‖r−Rŝ‖2 . (6)

We use SD to implement the decoder in (6), which recursively
enumerates all candidate vectors ŝ ∈ Sκr within a given sphere
of radius ξ > 0. The algorithm specifically uses the upper-
triangular nature of R to recursively identify partial symbol
vectors ŝk, k = 1, · · · , κ, for which

‖rk −Rkŝk‖2 ≤ ξ2, (7)

where ŝk and rk respectively denote the last k components of
ŝ and r, and where Rk denotes the k×k lower-right submatrix
of R.

We note that the error performance and the total number of
visited nodes is a function of the search radius ξ. As in [1],
we use a fixed search radius ξ =

√
z log ρ for some z > d(r)

such that

P
(
‖QHw‖2 > ξ2

)
<̇ ρ−d(r), (8)

which implies a vanishing probability of excluding the
transmitted information vector from the search. We use .

= to
denote the exponential equality, i.e., we write f(ρ)

.
= ρB to

denote lim
ρ→∞

log f(ρ)

log ρ
= B, and

.
≤, <̇, and

.
≥, >̇ are defined

similarly.
a) Decoding order policies:: We note that permuting

the columns of generator matrix G by replacing it with GΠ
for some permutation matrix Π ∈ Rκ×κ, changes the order
in which the symbols in s are enumerated by the sphere
decoder, without changing the codebook. Such permutations
have been known to play a role in reducing complexity by
reducing the number of nodes visited by the sphere decoding
algorithm. Such policies can correspond to a fixed decoding
order where Π does not change with the channel realization,
or to a dynamic decoding order where Π can vary with the
channel realization. We will here consider the most general
case where Π may vary with the channel.

C. Rate-reliability-complexity tradeoff in outage-limited
MIMO communications

In the high SNR regime, a given encoder Xr and decoder
Dr are said to achieve a multiplexing gain r and diversity gain
dD(r) if (cf. [7])

lim
ρ→∞

R(ρ)

log ρ
= r, and − lim

ρ→∞

logPe
log ρ

= dD(r) (9)

where Pe denotes the probability of codeword error with a
ML-based sphere decoder Dr employing time-out policies.



As noted, for Nmax describing the computational reserves
in flops, the complexity exponent takes the form

c(r) := lim
ρ→∞

logNmax

log ρ
. (10)

In terms of error-performance gaps, we first consider the
gap of Dr to ML, i.e, the gap between the error performance
Pe of Dr to the optimal error performance P (̂sML 6= s) of
the brute force ML decoder. Given a certain computational
constraint Nmax

.
= ρc for Dr, this gap is quantified in the

high SNR regime to be

g(c), lim
ρ→∞

Pe
P (̂sML 6= s)

. (11)

A vanishing gap g(c) = 1 means that with Nmax
.
= ρc flops,

Dr can asymptotically have near identical error performance
as the optimal ML decoder.

Similarly, when considering the MMSE-preprocessed lattice
sphere decoder, we are interested in the performance gap to
the exact implementation of the MMSE-preprocessed lattice
decoder. As before, in the presence of Nmax

.
= ρcL flops for

the lattice sphere decoder, we have a vanishing gap when

g(cL), lim
ρ→∞

PL
P (̂sL 6= s)

= 1 (12)

where PL describes the error probability of the preprocessed
lattice sphere decoder, and where P (̂sL 6= s) describes the
error probability of the exact solution of MMSE-preprocessed
lattice decoder.

II. COMPLEXITY OF ML-BASED SPHERE DECODING

The total number of visited nodes is commonly taken as a
measure of the sphere decoder complexity1 and is given by

NSD =

κ∑
k=1

Nk, (13)

where Nk denotes the number of visited nodes at layer k
that corresponds to the kth component of the transmitted
symbol vector s and is given by Nk , |Nk| where Nk ,{ŝk ∈
Sκr | ‖rk −Rkŝk‖2 ≤ ξ2}.

We are interested in the ML-based SD complexity required
to achieve a vanishing performance gap to brute force ML2.
We recall that a ML-based SD with run-time constraints, in
addition to making the ML errors (̂sML 6= s), also makes
errors when the run-time limit of ρx flops for x > c(r)
becomes active, as well as when the fixed search radius ξ
causes Nκ = ∅. Consequently the corresponding performance
gap to the brute force ML decoder, takes the form (cf. (11))

g(x) = lim
ρ→∞

P ({ŝML 6= s} ∪ {NSD ≥ ρx} ∪ {Nκ = ∅})
P (̂sML 6= s)

.

1It is easy to show that in the scale of interest the SD complexity exponent
c(r) would not change if instead of considering the total number of visited
nodes, we considered the total number of flops spent by the decoder.

2In this case only, this same complexity can be shown to match the
complexity required by ML-based sphere decoders to achieve an optimal DMT
performance.

To bound the above gap, we apply the union bound in conjunc-
tion with (8) and the fact that P (Nκ = ∅) ≤ P

(
‖QHw‖ > ξ

)
,

to get

g(x) ≤ lim
ρ→∞

(
P (̂sML 6= s) + P (NSD ≥ ρx)

P (̂sML 6= s)

)
. (14)

Thus a vanishing gap to brute force ML decoding requires that

lim
ρ→∞

P (NSD ≥ ρx)

P (̂sML 6= s)
= 0.

Now going back to (10), and having in mind appropriate
timeout policies that guarantee a vanishing gap, the complexity
exponent c(r) can be bounded as c(r) ≤ c(r) ≤ c(r), where

c(r), inf{x | − lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
> d(r)}, (15a)

c(r), sup{x | − lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
< d(r)}. (15b)

We note that c(r) and c(r) respectively denote sufficient and
necessary conditions that guarantee a vanishing gap to ML
performance.

We define µj ,− log σj(H
H
CHC)

log ρ , j = 1, · · · , nT , where
µ1 ≥ · · · ≥ µnT and where σj(H

H
CHC) denotes the j-th

singular value of HH
CHC . The upper bound on the complexity

exponent can be obtained following the footsteps of the proof
for [1, Theorem 2] and is given by c(r) ≤ c̃(r) where

c̃(r),max
µ

T

nT∑
j=1

min

(
r

nT
− (1− µj),

r

nT

)+

(16a)

s.t. I(µ) ≤ d(r), (16b)
µ1 ≥ · · · ≥ µnT ≥ 0, (16c)

where µ satisfies the large deviation principle with rate
function I(µ). Equivalently for µ∗ = (µ∗1, · · · , µ∗nT ) being
one of the maximizing vectors such that I(µ∗) = d(r),

we have that c̃(r) = T
∑nT
j=1 min

(
r
nT
− (1− µ∗j ), r

nT

)+

.
Furthermore given the monotonicity of the rate function I(µ),
and the fact that the objective function in (16) does not increase
in µj beyond µj = 1, we may also assume without loss of
generality that µ∗j ≤ 1 for j = 1, · · · , nT . It follows that

c(r) ≤ c̃(r) = T

nT∑
j=1

min

(
r

nT
− (1− µ∗j )

)+

. (17)

In order to establish a lower bound that matches the upper
bound in (17) irrespective of the decoding ordering policy, we
define the following lemma.

Lemma 1: Let Gp be the matrix consisting of any 2pT
columns of the (fixed but) randomly chosen generator ma-
trix G where entries of G are independently chosen from
a continuous distribution over the real numbers. Let Vp

be the matrix consisting of the 2p columns of the unitary
matrix V corresponding to the 2p largest singular values
of HR, where V is such that HR = UΣVH , where
Σ,diag{σ1(HR), · · · , σ2nT (HR)} and VVH = I. Then
almost surely, in the choice of G we have that

rank((IT ⊗VH
p )Gp) = 2pT. (18)



It then follows that for any fixed or dynamically changing
column permutation matrix Π, and for G|p denoting the first
2pT columns of the matrix GΠ, it holds that

P
(
{σ1

(
(IT ⊗VH

p )G|p
)
≥ u}

) .
= ρ0, u > 0. (19)

Proof: For vHi , i = 1, · · · , 2pT denoting the 2pT linearly
independent rows of the matrix IT⊗VH

p with rank 2pT and for
gi, i = 1, · · · , κ denoting the κ linearly independent columns
of the full rank matrix G, then

(IT ⊗VH
p )G =

 vH1 g1 . . . vH1 gκ
...

. . .
...

vH2pTg1 . . . vH2pTgκ

 .
Since vHi , i = 1, · · · , 2pT are fixed and linearly independent,
any 2pT columns of (IT ⊗ VH

p )G are linearly indepen-
dent (rank((IT ⊗ VH

p )Gp) = 2pT ), with probability one.
This in turn implies that, given such linear lattice codes
that are drawn with probability one, there exists a unitary
matrix Vp such that irrespective of the fixed or dynamically
changing column permutation matrix Π, it is the case that
rank

(
(IT ⊗ (Vp)

H)G|p
)

= 2pT . Consequently, it follows
that σ1

(
(IT ⊗ (Vp)

H)G|p
)
> 0.

Now, by the continuity of singular values [8],
it follows for sufficiently small u > 0 that
P
(
{σ1

(
(IT ⊗VH

p )G|p
)
≥ u}

)
> 0, which implies3 that

P
(
{σ1

(
(IT ⊗VH

p )G|p
)
≥ u}

) .
= ρ0 as (IT ⊗ (Vp)

H)G|p is
independent of ρ. This proves Lemma 1.

A. Lower Bound on Complexity
To tighten the lower bound and show that c(r) = c̃(r), we

will use Lemma 1 to show that, irrespective of the ordering
policy, the sphere decoder visits a total number of nodes that
approaches ρc̃(r), and does so with probability that is large
compared to the ML error probability. We consider the codes
that satisfy (18) and which appear almost surely as shown in
Lemma 1.

Towards this we let q ∈ {1, κ} be the largest integer for
which r

nT
− (1− µ∗q) > 0, in which case (17) takes the form

c̃(r) = T

q∑
j=1

(
r

nT
− (1− µ∗j )

)
. (20)

We quickly note that without loss of generality we can assume
that q ≥ 1 as otherwise c(r) = c(r) = 0. Consequently it is
the case that µ∗j > 0 for j = 1, · · · , q.

We proceed to define four events Ω1, Ω2, Ω3 and Ω4 which
we will prove to be jointly sufficient so that at layer k = 2qT ,
for some q ∈ {1, nT } the total number of nodes visited by
sphere decoder is close to ρc̃(r). These events are given by

Ω1 ,{µ∗j − 2δ < µj < µ∗j − δ, j = 1, · · · , q
0 < µj < δ, j = q + 1, · · · , nT },

(21)

for a given small δ > 0,

Ω2 ,{σ1

(
(IT ⊗VH

p )G|p
)
≥ u}, (22)

3In light of the fact that event Vp has zero measure, what the continuity of
eigenvalues guarantees is that we can construct a neighborhood of matrices
around Vp which are full rank, and which have a non zero measure. We also
note that the matrices Vp can be created recursively, starting from a single
matrix V2nT .

for some given u > 0 independent of ρ, where p,nT − q,

Ω3 ,
{
‖w‖2 < ξ2

}
, (23)

Ω4 ,

{
‖s‖ < 1

2
ρ
rT
κ

}
. (24)

Note also that by choosing δ to be sufficiently small, and
using the fact that µ∗j > 0 for j = 1, · · · , q, we may without
loss of generality assume that Ω1 implies that µj > 0 for all
j = 1, · · · , nT .

It is shown in [1] that in the presence of events Ω1, Ω2 and
Ω3 we can remove the boundary constraints of ML-based SD
in (6), which allows us to lower bound the number of nodes
visited at layer k as (cf. [1, Lemma 1])

Nk ≥
k∏
i=1

[
2ξ√

kσi(Rk)
−
√
k

]+

. (25)

Following the footsteps of [1, Lemma 2] it can be shown that
in the presence of events Ω1, Ω2, Ω3 and Ω4

σi(Rk)
.
≤ ρ−

r
2nT

+ 3
2 δ+

1
2 (1−µ∗ι2T (i)), i = 1, · · · , 2qT, (26)

where ι2T (i),
⌈
i

2T

⌉
. Consequently, going back to (25), we

have that for k = 2qT with q ∈ {1, nT − 1} we have that

N2qT

.
≥ ρ(

∑2qT
i=1 ( rTκ −

1
2 (1−µ∗ι2T (i)))−3qTδ) = ρ(c̃(r)−3qTδ),

where the last equality follows from (20). For the case of
q = nT , it can be shown that

N2qT

.
≥ ρ

∑κ
i=1( rTκ −δ−

1
2 (1−µ∗ι2T (i))) = ρ(c̃(r)−κδ).

Consequently for q ∈ {1, nT } we have that NSD
.
≥ ρc̃(r)−Kδ

for small δ > 0, where K ∈ {3qT, κ}. We note that (21)-(24)
jointly imply that NSD

.
≥ ρc̃(r)−Kδ . For some δ′ , Kδ+ δ1,

where δ > δ1 > 0, it follows that

P
(
NSD ≥ ρc̃(r)−δ

′
)
≥ P (Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4)

.
= P (Ω1)

(27)

where exponential equality follows from the independence
of the events Ω1, Ω2, Ω3 and Ω4 for i.i.d. Rayleigh fading
statistics (see [9] on the independence of eigenvalues and
eigenvectors) and from the fact that P (Ω2)

.
= ρ0 (cf. (19)),

P (Ω3)
.
= ρ0 (cf.(8)) and P (Ω4)

.
= ρ0.With Ω1 being an open

set, we have that

− lim
ρ→∞

P (Ω1)

log ρ
≤ inf

µ∈Ω1

I(µ) = I(µ̃) < I(µ∗) = d(r) (28)

where µ̃ = {µ∗1 − 2δ · · · , µ∗q − 2δ, 0, · · · , 0}, where the last
inequality follows from the monotonicity of the rate function
I(µ) and where last equality follows from the fact that, by
definition, I(µ∗) = d(r). Consequently (27),(28) along with
(15b) imply that c(r) = c̃(r), for arbitrarily small δ > 0. The
following directly holds.

Theorem 1: For nT × nR (nR ≥ nT ) quasi-static MIMO
channels with i.i.d. Rayleigh fading statistics and any DMT
optimal full-rate linear code (fixed but) randomly chosen from
a continuous distribution over the real numbers, irrespective
of the fixed or dynamically changing decoding order, the
complexity exponent of the ML-based sphere decoder almost
surely, in the choice of the DMT optimal lattice code, matches



the universal upper bound on the complexity exponent given
by (16).

We caution reader that Theorem 1 does not imply that dy-
namic decoding orders can not provide exponential reduction
in complexity for any code. Instead what it does imply is that,
if a code is picked at random then almost surely its complexity
exponent matches the upper bound given by (16). For any
given specific code finding dynamically changing decoding
orders that can guarantee reduction in the complexity exponent
as compared to (16), remains a challenging open problem.

III. COMPLEXITY OF MMSE-PREPROCESSED LATTICE
SPHERE DECODING

It follows from [2, Theorem 1] that the universal upper
bound on the complexity exponent of MMSE-preprocessed
lattice sphere decoding, which holds irrespective of any fad-
ing statistics, full-rate code and decoding ordering policies,
matches the upper bound on the complexity exponent for
ML-based sphere decoding and is given by (16). In order
to derive a lower bound on the complexity exponent of
MMSE-preprocessed lattice sphere decoding in the presence
of Lemma 1 and the codes specified therein, following the
footsteps of the [2, Proof of Theorem 1] and the considering
arguments presented in the previous section for the existence
of the lower bound for ML-based sphere decoder that also
hold for MMSE-preprocessed lattice sphere decoder, it can
be shown that for all decoding ordering policies, the lower
bound on the complexity exponent of MMSE-preprocessed
lattice sphere decoder almost surely matches the universal
upper bound. As a result, it implies that irrespective of the
decoding order policies, ML and MMSE-preprocessed lattice
sphere decoder share the same complexity for almost all DMT
optimal full-rate linear codes. The following holds.

Theorem 2: Irrespective of the fixed or dynamically chang-
ing decoding order, the complexity exponent for MMSE-
preprocessed lattice sphere decoding any (fixed but) randomly
and uniformly chosen code (from an ensemble of DMT opti-
mal full-rate linear codes) over the quasi-static MIMO channel
with i.i.d. Rayleigh fading statistics almost surely, in the choice
of DMT optimal lattice code, matches the complexity exponent
of ML-based SD with or without MMSE preprocessing.

Under a basic richness of codes assumption, results of
Theorem 1 and Theorem 2 are in fact further extended to
hold, with probability one, over all full-rate codes. The specific
assumption asks that the ensemble of full-rate lattice codes
that achieve any suboptimal DMT performance, is sufficiently
large so that the entries of the generator matrix corresponding
to a certain DMT performance d(r) accept a continuous
distribution across the real numbers. This in turn implies that,
almost surely in the random choice of a full-rate lattice design
with a certain d(r), a randomly picked generator matrix has
independent columns and that the rank criterion in (18) holds.

We note that the above does not exclude the existence of
full-rate lattice codes that reduce the complexity away from
the universal bound. Such designs may exist, but they will
belong to a set of measure zero.

The basic assumption of richness of codes allows for
a meaningful rate-reliability-complexity tradeoff that holds,
almost surely in the random choice of the full-rate code.

IV. RATE-RELIABILITY-COMPLEXITY TRADEOFF

Looking at (16) it can be seen how one can potentially trade-
off diversity gain with complexity by, for example, reducing

the diversity gain to get a reduction in the required complexity
exponent. This complexity and diversity gain relationship can
be succinctly described by a rate-reliability-complexity trade-
off, which identifies with a concise description of the optimal
diversity gain achievable in the presence of any computational
constraint. The following holds for the quasi-static Rayleigh
fading MIMO channel with nR ≥ nT .

Theorem 3: With probability one in the random choice of
a full-rate lattice design, the achievable diversity performance
dD(r) for ML-based SD with a run-time constraint ρcD(r)

flops, is uniquely described by

dD(r) = min{d(r), dD(r, x)} ∀ cD(r) ≥ 0, (29)

where d(r) is the optimal diversity gain (of uninter-
rupted brute force ML, for the given code), where
dD(r, x), limε→0+ dD(r, cD(r) + ε), where dD(r, cD(r) +

ε), inf I(µ), such that T
∑nT
j=1

(
r
nT
− (1− µj)

)+

≥
cD(r) + ε, where 1 ≥ µ1 ≥ · · · ≥ µnT ≥ 0, and where the
above holds irrespective of the fixed or dynamically changing
decoding order.

Proof: The proof for Theorem 3 is given in [10].
Following corollary holds directly from the Theorem 3.

Corollary 3a: For the n× n MIMO Rayleigh fading chan-
nel, and with probability one in the random choice of a
full-rate lattice design, the achievable diversity gain of the
ML and of the (MMSE-preprocessed) lattice SD with a run-
time constraint of ρcD(r) flops, is uniquely described for
any fixed or dynamic decoding ordering policy by dD(r) =
min{dML(r), dD(r, cD)}, where dD(r, cD) = K2 + (2K +

1)( cD(r)
T + 1− (K + 1) rn ), and where K =

⌊
ncD(r)
rT

⌋
.
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