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2229 Route des Crˆetes, B.P. 193, 06904 Sophia Antipolis Cedex, France
fghauri,slockg@eurecom.fr

ABSTRACT

We explore the channel estimation problem in the case of quasi-
synchronous users in a DS-CDMA system. Knowledge of the
transmit (TX) filter is assumed, and the anti-aliasing low-pass front
end receive (RX) filter is designed for critical sampling at the
Nyquist rate for the TX filter. It is shown that when the sampling
frequency is larger than the Nyquist frequency, the discrete-time
representation of the channel is not unique. However, all repre-
sentations can be treated in a similar fashion once the Nyquist rate
is satisfied. On the other hand, fractionally sampling the chan-
nel leads to a scenario in which the cut-off frequency can be ap-
proached arbitrarily close to the Nyquist rate. In the case of sparse
channels, sampling the channel at any rate leads to a small number
of non-zero coefficients in the finite-impulse response (FIR) repre-
sentation of the channel. The structured channel estimation algo-
rithm presented in this paper exploits the sparsenessof this model.
Results are compared with those of other recently proposed struc-
tured methods.

1. INTRODUCTION

The burst oriented nature of certain communication scenarios is
particularly suited for quasi-synchronous (QS) applications. Tim-
ing advance or delay can be integrated as an upper layer process
leading to a synchronous block structure of the received signal.
An example is that of the TDD version of the UMTS proposal [1],
based upon a hybrid TDMA/CDMA slotted structure very similar
to that of GSM [2]. Uplink users arrive at the base-station quasi-
synchronously due to the slotted structure of the TDD mode. The
small inter-user misalignment and the multipath nature of the prop-
agation channel, however, lead to spreading of the signal block
beyond the strict slot duration. The overlap in successive blocks
is avoided by introducing inter-slot guard periods. The TDD pro-
posal [1] suggests joint maximum likelihood (ML) channelestima-
tion basedupon training sequences (chips) included as mid-ambles
in the signal frame [3].

During the course of transmission of a block, the channel is
considered to be time invariant. If the fading rate is slow enough,
channel state information can be carried over from one block to the
next, improving the channel estimate which is now averaged over
training chip sequencesof successiveslots. Nevertheless, the num-
ber of training chips per block needs to be sufficient to estimate
jointly the channels of all QS users for independent block to block
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channel estimation and data detection [4]. The joint least-squares
channel estimation (which corresponds to ML in white noise) im-
poses a lower limit on the number of training chips, which is a
function of the delay spread (including the transmit and receive
filters) and the number of active users. This naturally imposes a
limit on the number of concurrent users. An estimator of this kind
has been referred to as anunstructured channel estimator in the
literature [5] since no information (structure) on the signal apart
from the training information is exploited in the estimation algo-
rithm. It is also shown in [5] and [6] that partial knowledge of the
channel in terms of the TX/RX filter can be exploited to build a
structured estimator which results in improved performance ow-
ing to the reduced number of parameters to be estimated. More
users can therefore be accommodated for a training sequence of a
given length.

If the overall channel vector is represented as the product of a
TX/RX filter convolution matrix and the actual propagation chan-
nel (usually a set of delayed echos), then depending upon the
discrete time representation of the latter, the former can be ill-
conditioned (fat instead of tall). A solution to this problem has
been proposed in [5] as the replacement of the TX/RX matrix by
its significant left singular vectors. Alternatively, for the case of a
sparse channel, if in addition to the TX/RX filters, the position of
the delays is also known (estimated separately), the number of pa-
rameters to be estimated is simply the number of significant paths,
resulting in an estimator which exploits a finer structure, and gives
a lower mean-square channel estimation error.

In this paper, we discuss the discrete time representation of the
channel impulse response as a function of the sampling rate and
present a structured channel estimator which exploits the sparse-
ness of the fractionally sampled channel impulse response instead
of the singular value decomposition (SVD) based algorithm of [5].
It is shown that the SVD destroys the locality property imposed by
the few non-zero samples of the channel responsewhile significant
gains can be obtained by exploiting this sparseness.

2. SIGNAL MODEL

We considerK users in a DS-CDMA system (see fig. 1). The
channel as seen from themth sensor is

hk;m(t) =

Z �Tc

0

p(t� �)ck;m(�)d� , (1)

where,p(t) is the combined TX/RX filter (assumed to be the same
for all K users), andck;m(t) is the continuous time propagation
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Figure 1: Baseband signal model for the RX signal atmth sensor.

channel impulse response between thekth user and themth sen-
sor.Tc denotes the chip period, and�Tc is the maximum duration
of ck;m(t), i.e., the delay spread of the propagation channel.� is
a positive integer. The TX filter,p(t) is a band-limited pulse shap-
ing filter (e.g., a root-raised cosine, with an excess bandwidth� as
shown in fig. 2), while the RX is an anti-aliasing, ideal low-pass
filter with a cut-off frequency corresponding to the sampling fre-
quency,W . Hence, to satisfy the anti-aliasing condition imposed
by the well-known sampling theorem, the bandwidthW , of the
low-pass RX filter can lie anywhere beyondfnq: = (1 + �)=Tc,
which is the Nyquist frequency, and corresponds to critically sam-
pling the received signal to avoid aliasing.

Let us consider sampling, at a rateW . The oversampled dis-
crete representation for the overall channel would be

hk;m(t) =
L�1X
l=0

p(t�
l

W
)ck;m(l). (2)

Theck;m(l) are the discrete representation ofck;m(t), correspond-
ing to a sampled version (at rateW ) of an ideally low-pass filtered
version ofck;m(t). It must be noted that in principle, ifW > fnq:
as shown in fig. 2, the discrete time representation,ck;m(l), of the
propagation channel is not unique. One can essentially add any
signal to it that lies within the shaded portion (betweenfnq: and
W ) to alter the coefficientsck;m(l), since the components corre-
sponding to those frequencies will be removed by the TX filter.
This reflects the redundancy introduced in the sampled channel
coefficients due to excessive oversampling. Alternatively, one can
adjust the sampling frequencyW to have the cut-off arbitrarily
close to the TX pulse bandwidth. This can be achieved

� either by oversampling by a factor� and then down-sampling
by a factor
, with � > 
, so that�



! 1+� (this results in

a uniformly sampled signal)

� or by non-uniform sampling, in the event of which one still
needs to satisfy the following extension to the sampling the-
orem (see e.g., [7])

Theorem 1 A signal with limited spectral support can be recon-
structed from its non-uniform samples as long as the average sam-
pling rate exceeds the Nyquist rate.

Furthermore, the representation of the overall channel in terms of
sampled versions of TX/RX filter and the actual channel is justified
by the following result.

Theorem 2 The sampled version of the convolution of two band-
limited signals can be represented by the convolution of sampled
versions of the two signals, once the sampling rate equals or ex-
ceeds the Nyquist rate for at least one of the two signals.
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It must be mentioned that in the instance of a sparse channel, as is
often the case in mobile communication scenarios, only a few of
theck;m(l) are non-zero. The overall channel in (2) can now be
sampled at any rateJ=Tc to obtain

hk;m(nTc + j
Tc

J
) =

L�1X
l=0

p(nTc + j
Tc

J
�

l

W
)ck;m(l),

(3)

where,j = 1; � � � ; J , andn = 0; 1; � � � ;	, where,	 = �+ �,
and�Tc, theeffective duration of the chip pulse shapingfilterp(t).
The above equation can be written as

hk;m(nTc + j
Tc

J
) = p

T
j (n)ck;m, (4)

and where,

pj(n) =

�
p(nTc + j

Tc

J
); : : : ; p(nTc + j

Tc

J
�

L� 1

W
)

�T
,

and,ck;m = [ck;m(0); : : : ; ck;m(L� 1)]T , where,L is the ef-
fective FIR length of the low-pass filtered and sampled channel
impulse response.

Now, the overall chip-rate channel for thekth user and themth
sensor can be written as

hk;m ,

h
hk;m(0); hk;m(TcJ ); : : : ; hk;m(

(J�1)Tc
J

);

hk;m(Tc); hk;m(Tc + Tc
J
); : : : hk;m(	Tc +

(J�1)Tc
J

)
iT
, (5)

and,hk ,
�
h
T
k;1;h

T
k;2; : : : ;h

T
k;M

�T
is theMJ	 � 1 overall

channel vector as seen by theM sensors.

P =
�
p0(0);p1(0); : : : ;pJ�1(0);p0(1); : : : ;pJ�1(	� 1)

�T
(6)

is theJ	�L pulse shaping matrix. We can now write the overall
channel as

hk = (IM 
P ) ck, (7)

where,ck =
�
c
T
k;1; � � � ; c

T
k;M

�T
.

Now, let us suppose that thekth user’s signal received at the
mth antenna at timenTc + jTc=J is xk;m(nTc + jTc=J). Stack-
ing together the oversampled signal in a vector we can write the
received signal over thenth chip period as

xk;m(n) =

�
xk;m(nTc); xk;m(nTc +

Tc

J
); : : : : : :

: : : : : : ; xk;m(nTc + (J � 1)
Tc

J
)

�T
=
�
b
T
k (n)
 IJ

�
Pck;m, (8)



where,

bk(n) = [bk(n); bk(n� 1); : : : ; bk(n�	 + 1)]T

is the chip sequence vector for thekth user at chip periodn.
Since	 � 1 is the overall delay spread including the effect of
the TX/RX filter and the actual propagation channelck;m(t), we
need to consider a total ofNts training chips per user, leading to
N = Nts � 	 + 1 chips of the known received signal. Stack-
ing the kth user’s training chips in aN � 	 Hankel matrix,
Bk = [bk(	); bk(	 + 1); : : : ; bk(Nts)]

T , and assuming that all
users have the same channel length,�, we can write theMNJ�1
discrete time received signal (sampled at rateJ=Tc) corresponding
to the training duration at theM sensors as

Y ts = fIM 
 (Bts 
 IJ)g eh+ V ts

=
n
IM 
 (Bts 
 IJ ) ePoec+ V ts, (9)

where,Bts = [B1; � � � ;BK ] is the N � K	 training chip
sequence matrix,eP = IK 
 P is the JK	 � KL matrix,ec =

�
c
T
1 ; � � � ;c

T
K

�T
is theKLM � 1 concatenation of channel

vectors of theK users, andeh =
n
IM 


ePoec is theJKM	�1

overall channel vector for allK users and across allM sensors.
Let us further denoteBts
 IJ byB in order to simplify notation.
V ts represents the vector of the additive white channel noise.

3. STRUCTURED CHANNEL ESTIMATION

LetNts � 2	 � 1 be the number of training chips per user. The
unstructured least-squares estimate of the multiuser channeleh can
be obtained as the solution to the problem

beh = arg min
~h

jY ts � (IM 
B) ehj2, (10)

resulting in

beh =
n
(IM 
B)H (IM 
B)

o
�1

(IM 
 B)H Y ts.
(11)

Alternatively, taking into account the structure of the problem in
terms of the knowledge of the pulse shaping matrixeP , we can
obtain an estimate of the propagation channel as

bec = arg min
~c
jY ts �

�
IM 
B

eP�ecj2, (12)

resulting in

bec =
n
IM 


�ePH
B
H
B eP�o�1 �IM 
B eP�H Y ts

=

�
IM


�ePH�
B
H
tsBts
IJ

� eP��1��IM 
B
eP�HY ts (13)

3.1. Rank Deficiency in the Pulse Shaping Matrix

As pointed out in [5], if the sampling rate for the channel, i.e.,W is
large, then, so isL, the FIR length of the channel impulse response
(fine temporal resolution). Under these conditions the pulse shap-

ing matrix, eP can be fat rather than tall, andePH
(BH

tsBts
IJ )eP
becomes rank deficient. The solution proposed in [5] comprises of
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Figure 3: Singular value distribution ofeP with W = 2=Tc.

computing the SVD ofP asP = U�V
H , where theJ	�q ma-

trix U consists of the left orthonormal singular vectors,� is the di-
agonal matrix ofq positive singular values, andV is theq�L ma-
trix of right orthonormal singular vectors (q is theeffective rank of
P ), and replacingeP by eU (where,eU = IK 
U ) in (13), when-
ever eP is numerically ill-conditioned. The column span ofU is
the same as that ofeP . Therefore, we can writeeh = (IM
 eP )ec =
(IM 
 eU)eg, where,eg =

�
IM 
 (IK 
�V

H)
	ec, resulting in

beg =

�
IM 


� eUH
�
B
H
tsBts
IJ

� eU��1��IM 
 B
eU�HY ts

(14)

Fig. 3 shows an example of the singular value spread of the matrixeP , with a channel sampling rate ofW = 2=Tc, as shown in fig. 2,
with J = 2 samples per chip, and a channel with� = 24, so that
L is quite large. It can be seen that there is a large concentration of
singular values at the two limits. However, there is no clear tran-
sition point in between (quite a few singular values are smeared
out in the transition region), with the result that there is no clear
selection criterion forq. We shall discuss this in more detail while
presenting other numerical examples.

One more drawback of the above approach is that in the case
of sparse channels, i.e., when very few of theck;m(l) are non-
zero, the SVD destroys the locality property in the matrixeP , i.e.,
while each column ofeP was associated with a particularck;m(l)
(of which very few are non-zero), the singular vectors inU are
not, with the consequence that a certain delay contributes in all
positions in addition to its own position. In other words,P andeP
are banded (so thathk is sparse ifck is), whileU is not. No gains
can therefore be obtained if the channel is known to have a sparse
rather than a full FIR impulse response.

3.2. Estimation of Fractionally Sampled Channel

Alternatively, W can be made to approach the Nyquist fre-
quency, fnq: as closely as possible (in one of the two ways
as discussed above), in the event of which theck;m(l) become
unique andL is smaller than the case of integer sampling, i.e.,
W = n=Tc, n = 2; 3; : : : . As mentioned before, sampling at
W = (1 + �)=Tc, � = 1=�, � = 1; 2; 3; : : : is realizable
by non-uniform sampling, e.g., with an initial sampling rate of
Wi = 2=Tc, by taking all odd samples and one out of� (pe-
riodically) of the even samples. As can be verified, the average
sampling rate still satisfies the Nyquist rate, even though some of
the temporal resolution is lost. Sparseness can now be integrated



0 5 10 15 20 25 30
−40

−30

−20

−10

0

10

20

SNR    (dB)

N
o

rm
a

liz
e

d
 M

S
E

  
  
(d

B
)

us
s1
s1 (svd)
s2 (svd)
s2

Figure 4: Normalized mean square estimation error (MSE) for
structured and unstructured channel estimation methods.

in the model as the deletion of the columns ofeP (corresponding to
fractional down-sampling), that multiply the insignificant (nearly
zero) elements inec.

4. NUMERICAL EXAMPLES

We considerK = 16 users in a quasi-synchronous system where
the users are block synchronous with a timing misalignment of
up to a quarter of a chip. This scenario corresponds to100%
loading (K = processing gain) on the uplink of the TDD ver-
sion of the UMTS proposal [1] for third generation cellular sys-
tems. The transmitted block is assumed to contain a mid-amble of
Nts: = 256 training chips. For the maximum channel lengths (ISI)
presumed in the third generation systems, this number of train-
ing chips is insufficient to accommodate more than8 uplink users.
However, we consider scenarios where this number suffices for
estimation of allK channels in the unstructured fashion. Fig. 4
shows the normalized mean-square error (NMSE) of the channel
estimation algorithms based upon SVD and the fractionally spaced
sampling.us refers to unstructured,s1 to the case where only the
channel delay spread� is assumed to be known, ands 2 to the
case where timing delays of the few physical multipath compo-
nents are known (estimated separately). As seen in this figure,
there is no difference between the performance of the twos2 meth-
ods, since the sparseness is taken into account by both SVD based
and fractionally spaced methods. However, there is a significant
performance gap between the two methods in thes1 case when the
channel is sampled at an integer rate (W = 2=Tc here) followed
by SVD, and the fractionally spaced sampling with sparseness ex-
ploited. Here, the TX pulse is a root-raised cosine with an excess
bandwidth of� = 0:22, and the sampling rate is1:25=Tc. For the
s1 SVD based method, the ratio of the maximum singular value to
theqth one is taken to be30dB. As stated above (fig. 3), there is
no clear selection criterion forq. Simulations show that there is a
marked performance difference in setting the threshold to102 as
opposed to e.g.,35dB, for which the NMSE essentially becomes
the same level as for the unstructured case. The same phenomenon
is observable if too few of the singular vectors constituteU .

There is a slight flooring effect in all cases (understandably,
more for the case of fractional sampling) due to numerical ap-
proximations, e.g., the fact that the pulse shaping matrix and the
RX filter are both time-limited (and are hence only approximately
band-limited).

The performance of the corresponding linear MMSE receiver,
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Figure 5: Output SINR performance of the MMSE receiver with
channel estimates obtained from various methods.

built from the estimated channel and the true received signal co-
variance matrix) is shown in fig. 5 for the case of unstructured and
the two structured methods. The same trend is observed in the
performance of the linear receiver.

5. CONCLUSIONS

We compared structured methods for the case of training se-
quences based channel estimation in multiuser quasi-synchronous
CDMA. It was shown that sampling the channel at integer mul-
tiples of the signal bandwidth leads to non-unique channel coef-
ficients. In addition, the pulse-shaping matrix is ill-conditioned
because of the redundancy introduced due to excessive sampling
rate. Furthermore if significant singular vectors of this matrix are
employed in the estimation algorithm instead of the matrix itself,
the sparseness property of the channel is lost.

Alternatively, if the anti-aliasing low-pass front end receive
(RX) filter is designed for critical (fractional) sampling at the
Nyquist rate for the TX filter, a fractionally subsampled version
of the pulse shaping matrix can be used to exploit/conserve sparse-
ness of the channel, leading to improved performance for the chan-
nel estimator.
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