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1. Introduction
Due to the lack of explicit closed form expressions of the
mutual information for binary inputs, which were provided
only for the BPSK and QPSK for the single input single output
(SISO) case, [1], [2], [3], it is of particular importance toad-
dress connections between information theory and estimation
theory for the multiuser case.

Connections between information theory and estimation
theory dates back to the work of Duncan, in [4] who showed
that for the continuous-time additive white Gaussian noise
(AWGN) channel, the filtering minimum mean squared error
(causal estimation) is twice the input-output mutual informa-
tion for any underlying signal distribution. Recently, Guo,
Shamai, and Verdu have illuminated intimate connections
between information theory and estimation theory in a seminal
paper, [1]. In particular, Guo et al. have shown that in the
classical problem of information transmission through the
conventional AWGN channel, the derivative of the mutual
information with respect to the SNR is equal to the smooth-
ing minimum mean squared error (noncausal estimation); a
relationship that holds for scalar, vector, discrete-timeand
continuous-time channels regardless of the input statistics.
There have been extensions of these results to the case of
mismatched input distributions in the scalar Gaussian channel
in [5] and [6].
However, the fundamental relation between the derivative of
the mutual information and the MMSE, known as I-MMSE
identity, and defined for point to point channels with any
noise or input distributions in [1] is not anymore suitable
for the multiuser case. Therefore, in this paper, we revisitthe
connections between the mutual information and the MMSE
for the multiuser setup. We generalize the I-MMSE relation to
the multiuser case. In particular, we prove that the derivative
of the mutual information with respect to the signal to noise
ratio (SNR) is equal to the minimum mean squared error
(MMSE) plus a covariance induced due to the interference,
quantified by a term with respect to the cross correlation of
the users inputs’ estimates, their channels, and their precoding
matrices. Further, we capitalize on this unveiled multiuser I-
MMSE relation to derive the components of the multiuser
mutual information. In particular, we derive the derivative of
the conditinal and non-conditional mutual information with
respect to the SNR.
Further extensions of this result allows a generalization of the
relations of linear vector Gaussian channels in [7] to multiuser
channels. In particular, [8], [9] generalize the I-MMSE relation
to the per-user gradient of the conditional, non-conditional and

joint mutual information with respect to the MMSE, channels
and precoders (power allocation) matrices of the user and the
interferer.
Such new unveiled relation allows, the derivation of new
closed form expressions of the mutual information for single
user and multiuser channels driven by BPSK/QPSK inputs,
and to provide asymptotic expansions of the mutual informa-
tion and the MMSE for multiuser setups, [10].
Throughout the paper, the following notation is employed,
boldface uppercase letters denote matrices, lowercase letters
denote scalars. The superscript,(.)−1, (.)T , (.)∗, and(.)† de-
note the inverse, transpose, conjugate, and conjugate transpose
operations. The(∇) denotes the gradient of a scalar function
with respect to a variable. TheE[.] denotes the expectation
operator. The||.|| andTr {.} denote the Euclidean norm, and
the trace of a matrix, respectively.
The rest of the paper is organized as follows; section
2 introduces the system model. Section 3 introduces
the new fundamental relation between the multiuser mutual
information and the MMSE. Section 4 provides the conditional
and non-conditional components of the I-MMSE identity.

2. System Model
Consider the deterministic complex-valued vector channel,

y =
√
snr H1P1x1 +

√
snr H2P2x2 + n, (1)

where thenr × 1 dimensional vectory and thent × 1
dimensional vectorsx1, x2 represent, respectively, the
received vector and the independent zero-mean unit-variance
transmitted information vectors from each user input to
the multiuser channel1. The distributions of both inputs
are not fixed, not necessarily Gaussian nor identical. The
nr × nt complex-valued matricesH1, H2 correspond to the
deterministic channel gains for both input channels (known
to both encoder and decoder) andn ∼ CN (0, I) is the
nr ×1 dimensional complex Gaussian noise with independent
zero-mean unit-variance components. Thent × nt P1, P2

are precoding matrices that do not increase the transmitted
power.

3. New Fundamental Relation between the Mutual Infor-
mation and the MMSE
The first contribution is given in the following theorem, which
provides a generalization of the I-MMSE identity to the
multiuser case.

1We consider the two-user case for ease of exploitation. However, the
relations apply to thek-user case.



Theorem 1: The relation between the derivative of the mu-
tual information with respect to the SNR and the non-linear
MMSE for a multiuser Gaussian channel satisfies:

dI(snr)

dsnr
= mmse(snr) + ψ(snr) (2)

Where,

mmse(snr) = Tr
{
H1P1E1(H1P1)

†}

+ Tr
{
H2P2E2(H2P2)

†} , (3)

ψ(snr) =

− Tr
{
H1P1Ey[Ex1|y[x1|y]Ex2|y[x2|y]†](H2P2)

†}

− Tr
{
H2P2Ey[Ex2|y[x2|y]Ex1|y[x1|y]†](H1P1)

†} ,

Proof: See Appendix A

The per-user MMSE is given respectively as follows:

E1 = Ey[(x1 − x̂1)(x1 − x̂1)
†] (4)

E2 = Ey[(x2 − x̂2)(x2 − x̂2)
†]. (5)

The non-linear input estimates of each user input is given
respectively as follows:

x̂1 = Ex1|y[x1|y] =
∑

x1,x2

x1py|x1,x2
(y|x1,x2)px1

(x1)px2
(x2)

py(y)

(6)

x̂2 = Ex2|y[x2|y] =
∑

x1,x2

x2py|x1,x2
(y|x1,x2)px1

(x1)px2
(x2)

py(y)
.

(7)
The conditional probability distribution of the Gaussian noise
is defined as:

py|x1,x2
(y|x1,x2) =

1

πnr

e−‖y−
√
snrH1P1x1−

√
snrH2P2x2‖2

(8)
The probability density function for the received vectory is
defined as:

py(y) =
∑

x1,x2

py|x1,x2
(y|x1,x2)px1

(x1)px2
(x2). (9)

Henceforth, the system MMSE with respect to the SNR is
given by:

mmse(snr) = Ey

[∥∥H1P1(x1 − Ex1|y[x1|y])
∥∥2

]

+ Ey

[∥∥H2P2(x2 − Ex2|y[x2|y])
∥∥2

]
, (10)

= Tr
{
H1P1E1(H1P1)

†
}
+ Tr

{
H2P2E2(H2P2)

†
}

(11)
Note that the termmmse(snr) is due to the users MMSEs,
particularly,mmse(snr) = mmse1(snr)+mmse2(snr) and
ψ(snr) are covariance terms that appear due to the covariance
of the interferers. Those terms are with respect to the channels,
precoders, and non-linear estimates of the user inputs.
When the covariance terms vanish to zero, the mutual informa-
tion with respect to the SNR will be equal to the MMSE with
respect to the SNR, this applies to the relation for the single
user and point to point communications. Therefore, the result

of Theorem 1 is a generalization of such connection between
the two canonical operational measures in information theory
and estimation theory - the mutual information and the MMSE
- and boils down to the result of Guo et. al, [1] under certain
conditions which are: (i) when the cross correlation between
the inputs estimates equals zero (ii) when interference canbe
neglected, and (iii) under the single user setup.
Such generalized fundamental relation between the change in
the multiuser mutual information and the SNR is of particular
relevance. Firstly, such result allows us to understand the
behavior of per-user rates with respect to the interferencedue
to the mutual interference and the interference of other users in
terms of their power levels and channel strengths. In addition,
the result allows us to be able to quantify the losses incurred
due to the interference in terms of bits.
Therefore, when the termψ(snr) equals zero. The derivative
of the mutual information with respect to the SNR equals the
total mmse(snr):

dI(snr)

dsnr
= mmse(snr), (12)

which matches the result by Guo et. al in [1].

4. The Conditional and Non-Conditional I-MMSE
In this section, we capitalize on the new fundamental relation
to extend the derivative with respect to the SNR to the
conditional and non-conditional mutual information. To make
this more clear, we capitalize on the chain rule of the mutual
information which states the following:

I(x1,x2;y) = I(x1;y) + I(x2;y|x1) (13)

Therefore, through this observation we can conclude the
following theorem.

Theorem 2: The relation between the derivative of the
conditional and the non-conditional mutual information and
their corresponding minimum mean squared error satisfies,
respectively:

dI(x2;y|x1)

dsnr
= mmse2(snr) + ψ(snr) (14)

dI(x1;y)

dsnr
= mmse1(γsnr) (15)

Proof: Taking the derivative of both sides of (13), and
subtracting the derivative ofI(x1;y) which is equal to
mmse1(γsnr), γ is a scaling factor, due to the fact thatx1
is decoded first considering the other users’ inputx2 as noise.
Therefore, Theorem 2 has been proved.

Of particular relevance is the implication of the derived
relations on understanding the achievable rates of interference
channels. In particular, such relation allows for better
understanding of the changes in the rates due the interferer
which is either decoded first or considered as noise.
Additionally, further details on the generalized relationthat
expresses the gradient with respect to arbitrary parameters for
the joint, conditional, and non-conditional mutual information
can be found in [8], [9].



5. Conclusions
We generalize the fundamental relation between the derivative
of the mutual information and the MMSE to multiuser setups.
We prove that the derivative of the mutual information with
respect to the SNR is equal to the MMSE plus a covariance
induced due to the interference, quantified by a term with
respect to the cross correlation of the multiuser inputs’
estimates, their channels, and their precoding matrices. We
provide such relations for conditional and non-conditional
components of the multiuser mutual information.

Appendix A: Proof of Theorem 1
The conditional probability density for the two-user multiple

access Gaussian channel can be written as follows:

py|x1,x2
(y|x1,x2) =

1

πnr

e−‖y−
√
snrH1P1x1−

√
snrH2P2x2‖2

(16)
Thus, the corresponding mutual information is:

I(x1,x2;y) = E

[
log

(
py|x1,x2

(y|x1,x2)

py(y)

)]
(17)

I(x1,x2;y) = −nrlog(πe)− E [log (py(y))] (18)

I(x1,x2;y) = −nrlog(πe)−
∫
py(y)log (py(y)) dy (19)

Then, the derivative of the mutual information with respectto
the SNR is as follows:

dI(x1,x2;y)

dsnr
= − ∂

∂snr

∫
py(y)log (py(y)) dy (20)

= −
∫ (

py(y)
1

py(y)
+ log (py(y))

)
∂py(y)

∂snr
dy (21)

= −
∫

(1 + log (py(y)))
∂py(y)

∂snr
dy (22)

Where the probability density function of the received vector
y is given by:

py(y) =
∑

x1,x2

py|x1,x2
(y|x1,x2)px1,x2

(x1,x2) (23)

= Ex1,x2

[
py|x1,x2

(y|x1,x2)
]

(24)

The derivative of the conditional output with respect to the
SNR can be written as:

∂py|x1,x2
(y|x1,x2)

∂snr
=

− py|x1,x2
(y|x1,x2)×

∂

∂snr

(
y −√

snrH1P1x1 −√
snrH2P2x2

)† ×
(
y −√

snrH1P1x1 −√
snrH2P2x2

)
(25)

= − 1√
snr

(
(H1P1x1)

† + (H2P2x2)
†)×

(
y −√

snrH1P1x1 −√
snrH2P2x2

)
×

py|x1,x2
(y|x1,x2) (26)

= − 1√
snr

(
(H1P1x1)

† + (H2P2x2)
†)∇ypy|x1,x2

(y|x1,x2)

(27)

Therefore, we have:

Ex1,x2

[
∇snrpy|x1,x2

(y|x1,x2)
]
=

Ex1,x2
[− 1√

snr

(
(H1P1x1)

† − (H2P2x2)
†)×

∇ypy|x1,x2
(y|x1,x2)] (28)

Substitute (28) into (22), we get:
dI(x1,x2;y)

dsnr
=

1√
snr

∫
(1 + log (py(y)))×

Ex1,x2
[
(
(H1P1x1)

† + (H2P2x2)
†)×

∇ypy|x1,x2
(y|x1,x2)]dy (29)

=
1√
snr

Ex1,x2
[(

∫
(1 + log (py(y)))×

(
(H1P1x1)

† + (H2P2x2)
†)×

∇ypy|x1,x2
(y|x1,x2)dy)] (30)

Using integration by parts applied to the real and imaginary
parts ofy we have:∫

(1 + log (py(y)))
∂py|x1,x2

(y|x1,x2)

∂t
dt =

∫
(1 + log (py(y))) py|x1,x2

(y|x1,x2)|∞−∞

−
∫ ∞

−∞

1

py(y)

∂py(y)

∂t
py|x1,x2

(y|x1,x2)dt (31)

The first term in (31) goes to zero as‖y‖ → ∞. Therefore,
dI(x1,x2;y)

dsnr
=

1√
snr

Ex1,x2
[−

∫
(((H1P1x1)

† + (H2P2x2)
†)×

py|x1,x2
(y|x1,x2)

py(y)
×

∇ypy(y)dy)] (32)
dI(x1,x2;y)

dsnr
=

− 1√
snr

∫
∇ypy(y)×

Ex1,x2
[((H1P1x1)

† + (H2P2x2)
†)×

py|x1,x2
(y|x1,x2)

py(y)
]dy (33)

dI(x1,x2;y)

dsnr
= − 1√

snr

∫
∇ypy(y)×

Ex1,x2
[(H1P1)

†
Ex1|y [x1|y]†

− (H2P2)
†
Ex2|y [x2|y]†]dy (34)

However,

∇ypy(y) = ∇yEx1,x2

[
py|x1,x2

(y|x1,x2)
]

= Ex1,x2

[
∇ypy|x1,x2

(y|x1,x2)
]

= −Ex1,x2
[py|x1,x2

(y|x1,x2)×(
y −√

snrH1P1x1 −√
snrH2P2x2

)

= −Ex1,x2

[
py(y)

(
y −√

snrH1P1x1 −√
snrH2P2x2

)
|y
]

= −py(y)× (y

−√
snrH1P1Ex1|y[x1|y]−

√
snrH2P2Ex2|y[x2|y])

(35)



Substitute (35) into (34) we get:

dI(x1,x2;y)

dsnr
=

1√
snr

∫
py(y)(y −√

snrH1P1Ex1|y[x1|y]

+
√
snrH2P2Ex2|y[x2|y])×

Ex1,x2

(
(H1P1)

†
Ex1|y [x1|y]† + (H2P2)

†
Ex2|y [x2|y]†

)
dy

dI(x1,x2;y)

dsnr
=

1√
snr

Ey[yx
†
1](H1P1)

† +
1√
snr

Ey[yx
†
2](H2P2)

†

− Ey[H1P1Ex1|y[x1|y]Ex1|y[x1|y]†](H1P1)
†

− Ey[H1P1Ex1|y[x1|y]Ex2|y[x2|y]†](H2P2)
†

− Ey[H2P2Ex2|y[x2|y]Ex2|y[x2|y]†](H2P2)
†

− Ey[H2P2Ex2|y[x2|y]Ex1|y[x1|y]†](H1P1)
† (36)

Therefore,

dI(x1,x2;y)

dsnr
= H1P1Ex1

[x1x
†
1](H1P1)

†

−H1P1Ey[Ex1|y[x1|y]Ex1|y[x1|y]†(H1P1)
†

−H1P1Ey[Ex1|y[x1|y]Ex2|y[x2|y]†](H2P2)
†

+H2P2Ex2
[x2x

†
2](H2P2)

†

−H2P2Ey[Ex2|y[x2|y]Ex2|y[x2|y]†(H2P2)
†

−H2P2Ey[Ex1|y[x1|y]Ex2|y[x2|y]†](H1P1)
† (37)

According to (4) and (5), (37) simplifies to:

dI(x1,x2;y)

dsnr
= H1P1E1(H1P1)

† +H2P2E2(H2P2)
†

−H1P1Ey[Ex1|y[x1|y]Ex2|y[x2|y]†](H2P2)
†

−H2P2Ey[Ex2|y[x2|y]Ex1|y[x1|y]†](H1P1)
† (38)

Therefore, the derivative of the mutual information with re-
spect to the SNR and the per users mmse and input estimates
(or covariances) is as follows:

dI(x1,x2;y)

dsnr
= mmse1(snr) +mmse2(snr)

− Tr
{
H1P1Ey[x̂1x̂

†
2](H2P2)

†
}

− Tr
{
H2P2Ey[x̂2x̂

†
1](H1P1)

†
}

(39)

Therefore, we can write the derivative of the derivative of the
mutual information with respect to the SNR as follows:

dI(snr)

dsnr
= mmse(snr) + ψ(snr) (40)

Therefore, Theorem 1 has been proved as a generalization of
the I-MMSE identity to the multiuser case.
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