
All your cluster-grids are belong to us:
Monitoring the (in)security of

infrastructure monitoring systems
Andrei Costin
EURECOM

Sophia Antipolis, France
andrei.costin@eurecom.fr

Abstract—Monitoring of the high-performance computing sys-
tems and their components, such as clusters, grids and federations
of clusters, is performed using monitoring systems for servers
and networks, or Network Monitoring Systems (NMS). These
monitoring tools assist system administrators in assessing and
improving the health of their infrastructure.

A successful attack on the infrastructure monitoring tools grants
the attacker elevated power over the monitoring tasks, and eventu-
ally over some management functionality of the interface or over
hosts running those interfaces. Additionally, detailed and accurate
fingerprinting and reconnaissance of a target infrastructure is
possible when such interfaces are publicly exposed. A successful
reconnaissance allows an attacker to craft an efficient second-
stage attacks, such as targeted, mimicry and blended attacks.

We provide in this paper a comprehensive security analysis
of some of the most popular infrastructure monitoring tools for
grids, clusters and High-Performance Computing (HPC) systems.
We also provide insights based on the infrastructure data openly
exposed over the Internet. The wide use of some of the most
popular infrastructure monitoring tools makes this data exposure
possible. For example, we found such monitoring interfaces to
expose infrastructure details of systems inside many high-profile
organizations, including two top national laboratories for nuclear
research and one top Internet non-profit foundation. We also
present our findings on a plethora of web vulnerabilities in the
entire version-span of such monitoring tools, and discuss at a
high-level the possible attacks. The results of our research allow
us to “monitor” an “alarming” mismanagement reality of grid
infrastructure. The aim of this work is to raise the awareness
about this novel risk to cloud infrastructure.

I. INTRODUCTION

Cloud computing is a hot topic at the moment and it is
unsurprising that significant research is done in the direction
of security [28], [37], [43]–[45], [47] and privacy [29], [40] of
cloud computing. However, as Idziorek points out [27]: “When
broken down, cloud computing is a specialized distributed
computing model. Building upon the desirable characteristics
of cluster, grid, utility, and service-oriented computing, cloud
computing introduces a unique complement of features to
create a new computing paradigm”. This fundamentally means
that both the security and the privacy of the Cloud Comput-
ing (CC) and High-Performance Computing (HPC) platforms
strongly depend on the security and the privacy of the grids,
clusters and nodes on which those CC and HPC platforms

build upon. As a consequence, it is vital to secure the clusters
and the grids as building blocks of these new computing
paradigms. This is especially true from the perspective of the
web applications used to administer grids, clusters and HPC
systems. It is also important to research and understand the
ways these interfaces may be compromised or abused, and
study how additional breaches can be prevented.

At the same time, it is long and well known that it is not
trivial to secure the web applications. Infamous vulnerabilities,
such as Cross Site Scripting (XSS) [50], represent an important
percentage of the vulnerabilities discovered each year [21], and
are used very often in real-world attacks [23]. Additionally, in-
formation leakage or fingerprinting vulnerabilities are prevalent
as well [52] and cannot be completely ignored.

a) Overview: We research web vulnerabilities and in-
formation leakage risks associated with Ganglia, Cacti and
Observium, some of the most popular and widely used mon-
itoring platforms for servers and networks. We show that
such monitoring web interfaces are highly vulnerable due to
numerous flaws we found in their code. We also show that
systems and networks managed using these tools (and similar
tools as well) are overly exposed to the public (e.g., on the
Internet) and leak important details about the infrastructure.
Both these threats combined result in a high risk of targeted
attacks. Such attacks can lead to successful intrusions that have
very high chances of evading the intrusion detection.

For example, as we demonstrate and discuss in Section III,
we found Ganglia being used by far many more high-profile
organizations, including two top national laboratories for nu-
clear research and one top Internet non-profit foundation (Sec-
tion III-B). As we will show, these tools have a wide usage
and can be found even inside very important environments.
However, the security and privacy risks posed by these tools
have not been systematically and well studied in the past.

b) Datasets: Our results and analysis are based on several
datasets. First, we collected data 1 regarding online presence of
around 364 Ganglia, 5K Cacti and 2K Observium infrastructure

1Data was sampled at multiple points in time between 01-Jan-2015 and
20-May-2015.

monitoring web interfaces. Second, we collected entire version-
spans of these tools and analyzed them for web interface
vulnerabilities. The tools we analyzed are: 25 Ganglia versions,
35 Cacti packages, 4 Job Monarch releases, and 1 Observium
version.

c) Contributions: Our contributions are as follows:

• We are the first to systematically analyze at large scale
the risks and vulnerabilities posed by the use of web
monitoring tools for grids, clusters and HPC systems.

• We collect and analyze the internal details of networks
and systems of a large number of grid and cluster envi-
ronments. We also present the risks of such data being
openly available to the large public in general, and to
potential attackers in particular.

• We reveal multiple vulnerabilities in Ganglia, Cacti and
Observium – some of the most popular and widely used
NMS tools for grids, clusters and HPC systems.

d) Paper Outline: This paper is organized as follows.
Section II presents an overview of grids, clusters and infras-
tructure monitoring tools. In Section III and Section IV we
discuss the information leakage problem, analyze systems ex-
posed online and present our findings on vulnerabilities, along
with the security impact of all these findings. In Section V
we discuss possible attacks and countermeasures. Section VI
presents ethical aspects of our work. We explore the related
work in Section VII and conclude with Section VIII.

II. OVERVIEW OF GRIDS, CLUSTERS AND
INFRASTRUCTURE MONITORING TOOLS

Grids, clusters and HPC systems are essentially large-scale
distributed infrastructures of servers and networks. Managing
and monitoring those servers and networks is not a trivial task.
For such tasks, specialized management and monitoring soft-
ware exists. There are many popular free and open-source tools
to monitor servers and networks, such as Monit [8], Munin [9],
Nagios [10], Zabbix [16], Zenoss [17], Collectd [4], Argus [2].
Finally, Ganglia [6], [36], Cacti [3] and Observium [11] are
some of the most popular and widely used NMS platforms.

A. Ganglia Summary

Ganglia is “a scalable distributed monitoring system for
high-performance computing systems such as clusters and
grids” [6]. It is being used in various ways in many different
large-scale clusters, including systems “for advanced applica-
tions in scientific computing, simulation, and modeling” [36]
(Millennium HPC Cluster [42]), as well as in “the acceler-
ation of cancer research, specifically investigation into the
human genome, bioinformatics, protein structure prediction,
and large-scale computer simulations” [36] (SUNY Buffalo
HPC Cluster [14]). Ganglia is officially used by more than
several dozens of high-profile enterprises and organizations 2.

2http://ganglia.info/#text-9, “Who uses Ganglia?” section

a) Ganglia Monitor Daemon (gmond): The Ganglia
Monitoring Daemon (gmond) is running on every cluster node
that is configured for Ganglia monitoring. Its main function is
to monitor the state changes in the monitored host and subse-
quently to announce the relevant changes. Finally, it listens to
all other Ganglia nodes for their states and responds the queries
with an XML-encoded information about the cluster state. By
default it listens on port 8649 and the wide accessibility of this
port exposes the nodes to new information leak risks.

b) Ganglia Meta Daemon (gmetad): The Ganglia Meta
Daemon (gmetad) gathers the monitoring information from
connected data sources, such as other gmond and gmetad
instances. It then saves this information to local databases and
exports the concatenation of all data sources as XML. The
Ganglia Meta Daemon works as a backend for the Ganglia
Web Frontend. It aggregates the historical information and can
export XML-encoded summaries. These summaries can then
be used by the web interface to display useful snapshots and
present evolutions for all the nodes that Ganglia monitors. By
default it listens on port 8652 and the wide accessibility of this
port exposes the entire cluster to new information leak risks.

c) Ganglia Web Frontend (ganglia-web): The Gan-
glia Web Frontend presents a real-time snapshot of the in-
formation collected by the gmetad daemon on which it
depends. It displays in a meaningful way the monitoring data
to the administrators of the infrastructure. For example, it can
graph and display the resource utilization (e.g., CPU, memory,
storage, network) over a past period of time (e.g., year, month,
week, day, hour).

d) Ganglia Remote Execution Daemon (gexecd): Gan-
glia’s gexecd is a scalable cluster remote execution system.
Its purpose is to provide remote execution of distributed jobs in
a fast and cryptographically-authenticated way. It is designed
to scale on infrastructures containing thousands of nodes, and
it does so in a highly robust manner. By default gexecd runs
on port 2875 and the wide accessibility of this port exposes the
entire cluster to new risks of intrusion (e.g., buffer overflows,
unauthorized remote command execution).

e) Job Monarch (jobmonarch): Job Monarch, which
stands for “Job Monitoring and Archiving”, provides batch job
monitoring and archiving, as well as a graphical overview of
the clusters and assorted batch systems. It is an add-on for
Ganglia and is usually accessible within Ganglia’s URL (e.g.,
http://host/ganglia/addons/job monarch).

B. Cacti Summary
Cacti is “a complete network graphing solution” [3]. It

is also widely used in clusters and HPC systems similar to
the ones managed by Ganglia. For example, Cacti is used in
seismic monitoring networks [35] and in traffic monitoring of
campus networks [26].

C. Observium Summary
Observium is “an autodiscovering network monitoring plat-

form supporting a wide range of hardware platforms and op-
erating systems including Cisco, Windows, Linux, HP, Juniper,

Dell, FreeBSD, Brocade, Netscaler, NetApp and many more.
Observium seeks to provide a powerful yet simple and intuitive
interface to the health and status of your network.” [11].

III. INFRASTRUCTURE INFORMATION LEAKS AND
EXPOSED ONLINE SYSTEMS

A. Ganglia Info Leaks

In this section we argue and show that information leakage
from Ganglia systems present a serious threat. Our hypothesis
is also indirectly confirmed by the fact that various vulnera-
bility scanners already integrate modules to detect and alert
on such information leaks 3. There are several advantages
for an attacker to (ab)use information leakage from infras-
tructure monitoring systems. First, collecting this information
is minimally intrusive compared to other approaches. For
example, crawling of the exposed monitoring interfaces can
be throttled and disguised as web search engine spiders.
Second, contrary to other side-channel techniques to fingerprint
the computing architecture and the OS/kernel version (e.g.,
NMAP’s stack-based probing), the information provided by
Ganglia and its gmond daemon is extremely accurate 4. This
makes the reconnaissance based on Ganglia’s reports to be very
precise and thus highly valuable from an attacker viewpoint. A
successful and very accurate reconnaissance allows an attacker
to craft efficient second-stage attacks (e.g., mimicry, blended,
targeted [39], [46], [55]), and can help a successful intrusion
to evade detection.

a) Overview of exposed online systems: Using Shodan
and Google Search, we were able to find at least 364 Ganglia
web interfaces which are openly accessible to the public. These
interfaces overall manage around 43K hosts, configured into
1370 clusters, which are in turn partitioned into 490 grids. In
Table I we summarized the geographical distribution of those
web interfaces and the clusters they manage.

b) Distribution of OS kernel versions: We analyzed OS
kernel details of the 43K hosts under the management of
the 364 Ganglia web interface we found. These hosts run
at least 411 kernel sub-version based on 120 main kernel
versions. The most popular main kernel version is 2.6.32,
containing at least 1600 vulnerabilities [5] and running on 38%
of the reported host. Further analysis of OS kernel versions
revealed that only 9 hosts are running grsecurity [7]
enhanced kernels and only 6 hosts have kernels built from
hardened-sources repository. Additionally, we found 45
hosts running kernels with amzn tag, which prompts us to
conclude that such hosts are part of some Amazon Web
Services (AWS) cloud computing setup. This is not a surprise,
since in some cases top IT&C companies deployed some of
theirs production Ganglia monitoring nodes onto AWS and
made them publicly available. On the same note, we discovered
that a top national nuclear research laboratory has its own

3Ganglia Cluster Report Information Disclosure Plugin ID 2492 – http:
//www.tenable.com/pvs-plugins/2492

4gmond is a trusted daemon running on the Ganglia monitored nodes.

kernel distribution which runs on at least 1696 hosts. Finally,
to our surprise, we found 16 hosts running on ARM platforms
and 4 hosts running on PowerPC processors.

c) Distribution of HTTP and HTTPS usage: We also
analyzed how the HTTP and HTTPS usage is distributed
among those 364 Ganglia web interfaces discovered online.
Unsurprisingly, 322 of those interfaces run over plain HTTP,
while the rest of 42 run over various HTTPS setups. However,
to our surprise around 26 interfaces (i.e., 62%) are running
untrusted HTTPS setups (e.g., self-signed, wrong domain, ex-
pired) and only 16 are running trusted HTTPS configurations 5.
Finally, it is surprising that while simple countermeasures to
these insecure configurations exist (Section V-C), they are
not implemented. This confirms that the monitoring of grids
and clusters is not considered to pose a serious threat to
organizations. It also confirms that infrastructure monitoring
systems suffer from very poor secure management oversight.

Below we discuss several other Ganglia’s components that
can expose the infrastructure to additional risks.

d) Ganglia Monitor Daemon (gmond): We ran a query
on Shodan [12] for the gmond nodes and present the summary
of results in Table I. In fact, we found around 40K public IP
addresses that expose this port and serve the XML descriptions
of their clusters. For an attacker, the advantage of using the
XML from the gmond is that it can be parsed and processed
easier and more reliably than the HTML pages crawled from
the Ganglia Web Frontend.

TABLE I
DISTRIBUTION AND COUNTS OF UNIQUE HOSTS, SPLIT BY GANGLIA’S

MODULE AND COUNTRY OF HOSTS’ IP.

Country (iso2 code) Ganglia Gmond Ganglia Web Frontend

US 51% 32%
CN 10% 4%
KR 8% 8%
ES 6% 3%
FR 4% 3%
TW 3% 7%
DE 3% 3%
IT ≈ 1% 3%
CH � 1% 5%
Others 14% 32%
Total (count) 39553 364

e) Job Monarch (jobmonarch): Job Monarch can re-
veal usernames and command lines of distributed programs
being run along with their parameters. While the former can
pose a privacy risk or expose particular accounts to targeted
attacks, the latter can reveal types of programs usually being
run and potentially sensitive details passed as arguments, such
as credentials, URLs, paths. Using Google Search we were
able to confirm there are around 50K search results 6 likely
providing data from jobmonarch interfaces.

5We did not check if those suffer from other SSL or TLS vulnerabilities.
6This is not a count of unique hosts. Triage and deduplication is required,

and is left as future work.

B. Ganglia Info Leak – Case Study

We found an openly accessible Ganglia web interface mon-
itoring the grid of a large non-profit Internet organization.
Many online projects and some software packages depend on
resources and APIs provided by this organization. Surprisingly,
Ganglia monitoring interface of this organization is largely
open to the public. We discovered that this organization’s
infrastructure consists of 54 different clusters having specific
function (e.g., application API, load balancers, multimedia
processing), totaling 1K hosts and summing up around 25K
CPUs. Additionally, the hosts within this particular grid run 51
different kernel sub-versions based on 5 different kernel main
versions 7. The kernel sub-version 3.13.0-24-generic is
deployed on nearly 50% hosts within this grid.

C. Cacti and Observium Info Leaks

Shodan and Google Search queries returned around 5K Cacti
and 2K Observium online web interfaces. Random sampling
showed that more than 80% of them are password protected.

IV. VULNERABILITY ANALYSIS

A. General Overview

a) Static Analysis: Static analysis is the process of testing
an application by examining its source code, byte code or
application binaries for conditions leading to a security vul-
nerability, without actually running it. This approach to testing
has many practical benefits since the tools are often automated
and do not require complex setups. Usually static analysis tools
require only the source code or the binaries to be provided, and
subsequently generate analysis reports. At the same time, static
analysis techniques have well known limitations. They cannot
find all the vulnerabilities, resulting in a number of missed
vulnerabilities, i.e., False Negatives (FN). They also tend to
alert on non-vulnerabilities, i.e., False Positives (FP).

Up to date PHP is still the most popular server-side pro-
gramming language for the web [13], [15]. Due to this fact
a number of state of the art static analysis tools for PHP
exist [22], [31]. Fortunately, from the code analysis point of
view, many of the infrastructure monitoring tools, such as
Ganglia, Cacti and Observium, are (partially) written in PHP.
We take advantage of this and perform a comprehensive static
analysis using RIPS [22], which is a state of the art and open
source static analysis tool for PHP.

b) Dynamic Analysis: Dynamic analysis is the process of
testing the application by running it, and it comes with many
benefits. Firstly, the dynamic analysis of the web applications
is in general independent from the server-side language of
the web application. Secondly, the dynamic analysis can be
applied to confirm (part of) the vulnerabilities detected during
the static analysis. Finally, dynamic analysis tools provide
more accurate analysis results and generally perform a more
qualitative validation of the reported vulnerabilities, as opposed
to many static analysis tools.

7Versions 2.6.32, 3.13.0, 3.16.0, 3.19.0, 3.2.0.

v2.0.0
v2.1.1

v2.1.2
v2.1.3

v2.1.5
v2.1.6

v2.1.7
v2.1.8

v2.2.0
v3.3.0

v3.3.1
v3.4.1

v3.4.2
v3.5.0

v3.5.1
v3.5.2

v3.5.3
v3.5.4

v3.5.7
v3.5.8

v3.5.10
v3.5.11

v3.5.12
V3.6.1

v3.6.2

0

20

40

60

80

100

120

140

160 Unserialize

File Manipulation

File Disclosure

Header Injection

HTTP Response Splitting

Possible Flow Control

Command Execution

Cross−Site Scripting

Fig. 1. Vulnerabilities in Ganglia Web Frontend found statically with RIPS.
Distribution by Ganglia’s version and vulnerability type.

v2.0.0
v2.1.1

v2.1.2
v2.1.3

v2.1.5
v2.1.6

v2.1.7
v2.1.8

v2.2.0
v3.3.0

v3.3.1
v3.4.1

v3.4.2
v3.5.0

v3.5.1
v3.5.2

v3.5.3
v3.5.4

v3.5.7
v3.5.8

v3.5.10
v3.5.11

v3.5.12
v3.6.1

v3.6.2

0

5

10

15

20

25

30

35
Cross−Site Request
Forgery

Cross−Site Scripting

Fig. 2. Vulnerabilities in Ganglia Web Frontend found dynamically with
Arachni. Distribution by Ganglia’s version and vulnerability type.

There are many dynamic analysis tools to test the secu-
rity of web applications [18]. For our experiments we used
Arachni [1], which is an open source framework written in
Ruby. It is designed for penetration testing of web applications
and in our experiments we found it to perform well and fast.

c) General Observations: Even though Cross-Site Script-
ing (XSS) and Cross-Site Request Forgery (CSRF) vulnerabil-
ities are usually not considered to be critical, they can have a
high impact. Johns [30] discussed in-depth the risks and impact
of XSS and CSRF attacks. XSS is an important attack vector in
many attack types, as it is an actively used “vehicle” which de-
livers and deploys the attack payload with no user intervention.
This fact is particularly relevant in blended attacks, because
those attacks require multiple steps to trigger the exploit and
deliver the payload.

B. Vulnerabilities in Ganglia Web Frontend

The Ganglia Web Frontend is written in PHP, therefore we
performed static analysis on it using RIPS. The results are
summarized in Figure 1. For a more detailed distribution of
vulnerabilities for each Ganglia Web Frontend version see
Table II.

We also deployed Ganglia on a local testing host and
performed dynamic analysis using Arachni. The results are
summarized in Figure 2.

a) General observations: An important observation is the
strong correlation of vulnerability graphs resulting from both
static (Figure 1) and dynamic analysis (Figure 2). This also
confirms the intuitive level of (in)security for each version.

The correlation clearly shows that versions between
v3.3.0 and 3.5.4 (both inclusive) have more potential
(static analysis) and actual (dynamic analysis) vulnerabilities
than other versions. A possible explanation could be that
version v3.3.0 was a rewrite of the previous baseline ver-
sion (i.e., v2.2.0) and potentially introduced new flaws. It
also clearly indicates that grids and clusters running versions
between v3.5.7 and v3.6.2 (both inclusive) are exposed
to less security vulnerabilities compared to those running any
other previous version. It is safe to assume that migrating to
one of these version makes it both a desirable and a reasonable
choice. At the same time, the graphs show that the latest
versions do not necessarily mean “the most secure”. We can
see that both latest versions, i.e., v3.6.1 and v3.6.2, have
more potential command executions (static analysis) and actual
CSRFs (dynamic analysis).

Finally, to date of this submission Ganglia has very few (only
four to this date) CVEs assigned 8. This is in very high contrast
to our static and dynamic analysis charts presented in Figure 1
and Figure 2 respectively. While many of the static analysis
findings have to go through additional scrutiny, we believe that
Ganglia’s application security is not enough evaluated, as we
have shown.

b) CVE-2012-3448: Ganglia’s web frontends prior to ver-
sion v3.5.1 contain an unspecified Remote Code Execution
(RCE) vulnerability. It allows remote attackers to execute ar-
bitrary PHP code via unknown attack vectors. No other details
were published about this vulnerability, except that ASAP
actions are urged, such as an upgrade to version v3.5.1 or a
password protection mitigation at least 9. This particular type of
“incomplete” security advisory is a sword with two edges. On
the one hand, it prevents script-kiddies from easily exploiting
this vulnerability on critical systems by not sharing too many
details on the vulnerability. On the other hand, it prevents the
system administrators to properly configure their IDS and IPS
systems to defend against this particular RCE vulnerability.

We performed a diff analysis between version v3.5.1
and v3.5.0 and isolated the root cause. It is a call to PHP’s
eval() function that could take potentially unsanitized input
from the user via the some HTTP GET parameters, e.g.,
graph. The exploitable vulnerability relates to the following
fragment of code 10:

...
$graph_arguments = NULL;
$pos = strpos($graph, ",");
if ($pos !== FALSE) {
$graph_report = substr($graph, 0, $pos);
$graph_arguments =

8http://cvedetails.com/product/22764/Ganglia-Ganglia-web.html?vendor
id=1473

9http://ganglia.info/?p=549
10Simplified and shortened for clarity.

substr($graph, $pos + 1);
$graph = $graph_report;

}
...
eval(’$graph_function($rrdtool_graph,’ .

$graph_arguments . ’);’);
...

This analysis allowed us to create a proof-of-concept exploit
for a simplified attack scenario. Surprisingly, our data shows
that there are around 193 unique hosts on the Internet (i.e.,
53% from those we crawled), that are running Ganglia Web
Frontend interface with a version number prior to v3.5.1
(i.e., may be vulnerable to CVE-2012-3448).

C. Vulnerabilities in Job Monarch

Job Monarch web interface is written in PHP and partially
uses PHP APIs exposed by the Ganglia core that hosts the
add-on. We used RIPS to statically analyze 4 versions of
Job Monarch web interface. Table II presents the detailed
distribution of vulnerabilities for each Job Monarch version.
As can be seen, there are not many vulnerabilities reported
for any of the Job Monarch version. The only issues that look
interesting are XSS and command execution. After a quick
manual check, it seems that the only exploitable vulnerabilities
are from XSS category. We leave dynamic analysis and the
confirmation of the issues’ exploitability as future work.

D. Vulnerabilities in Cacti

Cacti’s web interface is written in PHP and we used RIPS
to statically analyze 35 versions of it. Table II presents the
detailed distribution of vulnerabilities for each available version
of Cacti. In contrast with Ganglia, Cacti has a larger docu-
mented list of vulnerabilities (31 to this date) 11. It clearly
shows that XSS vulnerabilities are a problem for any Cacti
version. In fact, nearly more than 100 XSS vulnerabilities
are statically reported for each version. At the same time,
the total number of XSS static alerts for all Cacti versions
approaches an impressive count of 6K. Another interesting
observation is that starting from version cacti-0.8.7h the
number of statically reported code execution vulnerabilities
spiked. This might be due to new functionality being added,
such as one based on eval() function or similar. A version
diff between cacti-0.8.7g and cacti-0.8.7h could
help find the root cause of the alerts, and we leave this for
future work.

Finally, although each version’s total number of code exe-
cution and command execution on average is not very high, it
could be still beneficial to perform dynamic analysis of Cacti
instances. Even though we did not perform dynamic analysis of
Cacti web interfaces, we plan this as future work. In addition
to the simple dynamic analysis, it would be also interesting
to see how many of the Cacti’s known CVEs can be actually
found using automated tools such as Arachni.

11http://www.cvedetails.com/vendor/7458/Cacti.html

E. Vulnerabilities in Observium

Observium’s web interface is written in PHP and we used
RIPS to statically analyze it. We tested only the latest Commu-
nity Free version that was available for download. While we did
not find any CVE entries publicly reported for Observium, our
static analysis tests reported around 80 potential vulnerabilities.
Among these, XSS prevails with around 50 vulnerabilities,
while command injection scores only 2 vulnerabilities. Table II
presents the detailed distribution of static analysis vulnerabili-
ties for the latest available version of Observium. We plan to
address dynamic analysis of Observium in future work.

V. ATTACK SCENARIOS AND COUNTERMEASURES

Below we describe some attack scenarios which are possible
when details from the infrastructure monitoring tools are pub-
licly exposed. These scenarios can be used by highly motivated
attackers for the purpose of data theft and covert intelligence
gathering in public infrastructures (e.g., clouds, clusters, grids).

A. Mimicry and Blending Attacks

Mimicry [34], [51] and blending [24] attacks are well
established directions in offensive and defensive [25] security
research. Researchers have shown it is possible to use these
types of attack to evade Intrusion Detection Systems (IDS).
One way to achieve this is for an attack to blend with normal
network traffic [33]. Alternatively, the attacks can be crafted to
blend with normal program flows and instructions [32], [48].

Therefore, in order to increase their chances of mimicry or
blending attacks, the attackers can follow these steps to abuse
the information leaks from infrastructure monitoring systems:

1) The attackers start by silently monitoring and collect-
ing the data of resources activities. This provides the
attackers additional side-channel information about the
allocation and activity of computing resources, such
as network traffic, CPU usage, memory and storage
(Section III). For example, it was shown that a particular
pattern of resources usage (e.g., CPU, memory, storage,
network) can be associated with particular processes or
activities running on a computing platform [43], [56].

2) The attackers then use the data learned from the mon-
itoring tools to build that knowledge into advanced
automated mimicry attacks.

3) Subsequently, the attackers perform malicious activities
within the attacked infrastructure (e.g., penetrate further
systems and resources). They can also perform attacks
towards outside resources from within penetrated infras-
tructure (e.g., DDoS from penetrated infrastructure to a
DDoS victim).

4) Finally, by using blending and mimicry attacks, the ma-
licious activity “blends” into the general activity pattern.
This in turn provides the attack with higher chances
to escape Intrusion Detection Systems (IDS) based on
abnormal activity patterns.

B. Targeted Attacks

Similarly to mimicry and blending attacks (Section V-A),
an attacker can (ab)use the infrastructure details gathered
from openly accessible infrastructure monitoring systems (Sec-
tion III) in order to target particular systems. For example,
this can be done to increase the chances of a successful
infrastructure penetration 12, or to target the infrastructure of a
particular organization.

The attackers can perform any combination of the below
activities in order to increase their penetration success rate:

1) The attackers identify of kernel versions that are most
likely to be exploitable in a particular infrastructure. For
example, Ganglia’s Operating System Release
metric can be used for this purpose. Also, vulnerable-
looking kernel versions that have security hardening or
custom patches (e.g., grsecurity) can be filtered out.

2) The attackers then identify the reachable IP addresses 13

of the hosts running vulnerable kernel versions (above).
3) The attackers try to penetrate the targeted infrastructure.

For example, the attackers can send a phishing email to
the administrator linking to an XSS-vulnerable page of
the monitoring interface (Section IV). Alternatively, the
attackers can use other ways to deliver the exploits to
the hosts running exploitable kernels.

4) Finally, potential vulnerabilities in Internet facing dae-
mons (e.g., gmond, gmetad, gexecd) can be used
to penetrate the targeted infrastructure or to achieve
privilege escalation on those hosts.

C. Countermeasures

There are several methods to perform monitoring while
increasing the resilience of monitoring systems against in-
tegrity and confidentiality attacks. For example, monitoring
tasks can be performed by a separate network of distributed
non-dedicated nodes which use zero-knowledge protocols [38].

Complementary to such methods, there are also simple steps
that are easy to implement and that can immediately increase
the security and privacy of existing deployments. First, it
is important to enable password authentication on any part
of the monitoring interfaces. For the web frontend, a tool-
independent solution is to use HTTP based authentication,
e.g., Digest Access Authentication (DAA). An additional level
of protection can be achieved by implementing authentication
mechanisms based on HTML forms which can be additionally
enforced with CAPTCHA. Second, it is advised to reconfigure
the monitoring web interfaces from HTTP to HTTPS-only. Of
course, the use of untrusted or self-signed HTTPS certificates is
discouraged 14. Also, the use of proper CA-signed certificates
and non-vulnerable TLS/SSL implementations is necessary for
this countermeasure to be effective. Third, whenever possible,
it is a good practice to reduce the exposure to the Internet

12Target infrastructures having hosts that run exploitable old kernels.
13Public or private IP addresses, depends on the attack entry point.
14MITM HTTPS attack tools exist, e.g., https://mitmproxy.org/doc/

howmitmproxy.html

of these monitoring web interfaces and daemons. The expo-
sure of devices and web interfaces to the Internet is often
a misconfiguration, where exposing those interfaces only to
certain LAN segments is often sufficient. If exposure to the
Internet is necessary, an IP-based Access Control List (ACL)
could help increase the resistance of these interfaces to attack
tentatives. Finally, keeping the software up-to-date is of utmost
importance. This includes both the infrastructure monitoring
tools as well as kernel and operating systems distributions. In
addition, security hardening of software is advised whenever
possible, such as using grsecurity security enhancement
to the Linux kernel.

VI. ETHICAL CONSIDERATIONS

For this research we were careful to work within ethical and
legal boundaries. We follow the responsible disclosure policy
and do our best to notify the vendors for the vulnerabilities
we discovered and confirmed during our experiments. We
perform the static and dynamic analysis on private hosts within
our lab and no attempt was made to try the exploits on
live online systems. At the same time, we perform our data
gathering experiments under the assumption that a service
providing public access is an implicit authorization to do so. In
other words, we access the same amount of publicly available
infrastructure data that is accessible to services such as Shodan
and Google Search. In fact, most of the data we analyzed comes
from services like Shodan and Google Search. Finally, it is
important to emphasize that we made no attempt to hack or
disrupt the networks and systems within the infrastructures we
analyzed. Also, we made no attempt to acquire or exploit non-
public information within any of those exposed infrastructures.

VII. RELATED WORK

a) Security and Privacy for Grids, Clusters and HPC:
Pourzandi et al. [41] investigated and presented an overview of
the security challenges as they apply to clusters. The authors
proposed a systematic approach to address the security of
clustered systems and networks. Yurcik et al. [54] try to
address main challenges faced by system administrators of
large HPC deployments. The authors propose NVisionCC, a
visualization framework for the security of HPC systems.
Yurcik and Liu [53] seek to address the user masquerade
attacks in HPC clusters, where attacks are enabled by stolen
credentials. For this, the authors build SVM classifiers that
could classify various categories of users according to their
command behavior. Vieira et al. [49] argue that attacks on
grids, clusters and clouds can be accomplished stealthy. They
also argue that in grid and cloud environments, the classical
IDS systems are unable to detect abnormal activities in an
effective and efficient manner. The authors developed the Grid
and Cloud Computing Intrusion Detection System (GCCIDS).
The GCCIDS contains an audit system able to detect grid and
cloud environment attacks.

b) Security and Privacy for Clouds and CC: Somorovsky
et al. [47] performed a security analysis related to Amazon’s
EC2 public cloud platform and Eucalyptus private cloud frame-
work. In particular, they focused on the analysis of the control
interfaces of those frameworks. The authors revealed several
highly critical vulnerabilities which include gaining root access
to arbitrary virtual machines, as well as the possibility to
collect and exfiltrate arbitrary data and files from those cloud
platforms. Ristenpart et al. [43] used the Amazon EC2 service
as an example and showed it is possible to perform a mapping
of the internal cloud infrastructure. Once the mapping is ac-
complished, it is enough to perform side-channel attacks. Such
attacks could be further used to extract data from the targeted
virtual machine. Molnar and Schechter [37] demonstrate from a
security point of view the advantages and disadvantages of pro-
cessing data by public cloud providers. They show that cloud
usage can result in new types of threats (e.g., jurisdictional,
organizational, technological). The authors also present and
discuss a set of countermeasures. Idziorek and Tannian [28]
show that cloud services that are accessible over the Internet
expose various resources that are subject to fraudulent resource
consumption. The authors argue that transactions which are
specially-crafted, but only differ by the intent and not by
the content, are hard to recognize. Therefore, this type of
attacks may be difficult to detect or prevent. Pearson et al. [40]
assess how issues of privacy, security and trust occur in the
context of cloud and grid computing. The authors discuss
ways in which those issues could be effectively and efficiently
addressed. Bhadauria and Sanyal [19] performed a survey on
numerous privacy and security challenges threatening the cloud
environments. Finally, Janse and Grance [29] propose NIST SP
800-144, a NIST guideline on security and privacy in public
cloud computing.

c) Infrastructure Management Interfaces: Related to
large infrastructure monitoring and management systems,
Bruno et al. [20] studied the existing open-source code im-
plementing “looking-glass” web interfaces for BGP routing.
They also studied the Internet facing deployments of such web
interfaces. The authors argued that similar flaws inside the
networks operators can be exploited by attackers with limited
resources. For example, this way the attackers can get access
to the core Internet infrastructure.

VIII. CONCLUSION

In this paper we presented a comprehensive security analysis
of some of most popular infrastructure monitoring tools for
grids, clusters and HPC systems. We analyzed the infrastruc-
ture internal data that many of these interfaces provide online
to general public. This allowed to analyze various host details,
such as OS kernel version, internal IP addresses and network
structure of at least 43K hosts that are monitored using these
openly accessible interfaces. In addition, we used both static
and dynamic analysis on multiple versions of those tools and
discovered a plethora of vulnerabilities in their web interfaces.
On average, we estimate that around more than a half of

the currently deployed Ganglia systems may be vulnerable to
Remote Code Execution (RCE) under CVE-2012-3448. Finally,
we discussed the possible attack scenarios and recommended
countermeasures. We conclude that the privacy and security
state of monitoring the grids, clusters and HPC systems, as
cloud underlying paradigms, is not sufficient and must be
improved at the earliest.

ACKNOWLEDGMENTS

We thank John Matherly of Shodan search engine for
providing generous access to Shodan’s data and resources. We
also thank the anonymous reviewers and close friends for their
comments and suggestions that helped us improve the paper.

REFERENCES

[1] Arachni scanner. http://arachni-scanner.com.
[2] Argus. http://argus.tcp4me.com/.
[3] Cacti. http://www.cacti.net/.
[4] Collectd. http://collectd.org/.
[5] CVEs for Linux Kernel 2.6.32. http://cvedetails.com/version-search.php?

vendor=linux&product=&version=2.6.32.
[6] Ganglia. http://ganglia.info/.
[7] Grsecurity. https://grsecurity.net/.
[8] Monit. http://mmonit.com/monit/.
[9] Munin. http://munin-monitoring.org/.

[10] Nagios. http://www.nagios.org/.
[11] Observium. http://www.observium.org.
[12] Shodan search engine. http://shodan.io.
[13] Statistics for websites using framework technologies. http://trends.

builtwith.com/framework.
[14] SUNY Buffalo HPC. http://casc.org/meetings/10sep/Furlani.ppt.
[15] Usage of server-side programming languages for websites. http://

w3techs.com/technologies/overview/programming language/all.
[16] Zabbix. http://www.zabbix.com/.
[17] Zenoss. http://www.zenoss.com/.
[18] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the Art:

Automated Black-Box Web Application Vulnerability Testing. In IEEE
Symposium on Security and Privacy, 2010.

[19] R. Bhadauria and S. Sanyal. Survey on security issues in cloud computing
and associated mitigation techniques. arXiv:1204.0764, 2012.

[20] L. Bruno, M. Graziano, D. Balzarotti, and A. Francillon. Through the
looking-glass, and what eve found there. In USENIX Workshop on
Offensive Technologies (WOOT). USENIX Association, 2014.

[21] S. Christey and R. A. Martin. Vulnerability type distributions in CVE.
Mitre Report, 2007.

[22] J. Dahse and T. Holz. Simulation of Built-in PHP Features for Precise
Static Code Analysis. In ISOC Network and Distributed System Security
Symposium (NDSS), 2014.

[23] Firehost. The Superfecta Report Special Edition. 2013.
[24] P. Fogla, M. I. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee.

Polymorphic Blending Attacks. In USENIX Security Symposium, 2006.
[25] J. T. Giffin, S. Jha, and B. P. Miller. Automated discovery of mimicry

attacks. In International Symposium on Recent Advances in Intrusion
Detection (RAID). Springer, 2006.

[26] L. Y. L. J. Z. Haiyan. The application of cacti in the campus network
traffic monitoring [j]. Computer & Telecommunication, 2008.

[27] J. Idziorek. Exploiting cloud utility models for profit and ruin. 2012.
[28] J. Idziorek and M. Tannian. Exploiting cloud utility models for profit

and ruin. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on. IEEE, 2011.

[29] W. Jansen and T. Grance. Nist sp 800-144. guidelines on security and
privacy in public cloud computing. 2011.

[30] M. Johns. Code-injection Vulnerabilities in Web ApplicationsExempli-
fied at Cross-site Scripting. it-Information Technology Methoden und
innovative Anwendungen der Informatik und Informationstechnik, 2011.

[31] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Short Paper). In IEEE
Symposium on Security and Privacy, 2006.

[32] H. G. Kayacik and A. N. Zincir-Heywood. Mimicry attacks demystified:
What can attackers do to evade detection? In Privacy, Security and Trust,
2008. PST’08. Sixth Annual Conference on. IEEE, 2008.

[33] O. Kolesnikov and W. Lee. Advanced polymorphic worms: Evading IDS
by blending in with normal traffic. 2005.

[34] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating
mimicry attacks using static binary analysis. In USENIX Security
Symposium. USENIX Association, 2005.

[35] G. LI, L.-x. ZHOU, X.-l. WANG, S.-c. QI, H.-q. YAO, and J.-y. SUN.
Application of open source systems in the seismic monitoring network
[j]. Northwestern Seismological Journal, 2011.

[36] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel
Computing, 2004.

[37] D. Molnar and S. E. Schechter. Self Hosting vs. Cloud Hosting:
Accounting for the Security Impact of Hosting in the Cloud. In Workshop
on Economics of Information Security (WEIS), 2010.

[38] M. Montanari and R. H. Campbell. Attack-resilient compliance monitor-
ing for large distributed infrastructure systems. In Network and System
Security (NSS), 2011 5th International Conference on. IEEE, 2011.

[39] M. Moses. Network and service reconnaissance. 2013.
[40] S. Pearson and A. Benameur. Privacy, security and trust issues arising

from cloud computing. In Cloud Computing Technology and Science
(CloudCom), Second International Conference on. IEEE, 2010.

[41] M. Pourzandi, D. Gordon, W. Yurcik, and G. A. Koenig. Clusters
and security: distributed security for distributed systems. In Cluster
Computing and the Grid, 2005. CCGrid 2005. IEEE International
Symposium on. IEEE, 2005.

[42] U. B. M. Project. Millennium project web page. http://www.millennium.
berkeley.edu, 1999.

[43] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In ACM Conference on Computer and Communications Security
(CCS). ACM, 2009.

[44] S. Sengupta, V. Kaulgud, and V. S. Sharma. Cloud computing security–
trends and research directions. In Services (SERVICES), 2011 IEEE
World Congress on. IEEE, 2011.

[45] P. Sharma, S. K. Sood, and S. Kaur. Security issues in cloud computing.
In High Performance Architecture and Grid Computing. Springer, 2011.

[46] E. Skoudis and T. Liston. Counter hack reloaded: a step-by-step guide
to computer attacks and effective defenses. Prentice Hall Press, 2005.

[47] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and
L. Lo Iacono. All Your Clouds Are Belong to Us: Security Analysis of
Cloud Management Interfaces. In Proceedings of the 3rd ACM Workshop
on Cloud Computing Security Workshop, 2011.

[48] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the
abnormal to the normal and beyond. In Information Hiding. Springer,
2003.

[49] K. Vieira, A. Schulter, C. Westphall, and C. Westphall. Intrusion
detection for grid and cloud computing. It Professional, 2009.

[50] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis. In ISOC Network and Distributed System Security Symposium
(NDSS), 2007.

[51] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection
systems. In ACM Conference on Computer and Communications Security
(CCS). ACM, 2002.

[52] WhiteHat. Website Security Statistics Report. WhiteHat Report, 2013.
[53] W. Yurcik and C. Liu. A first step toward detecting SSH identity

theft in HPC cluster environments: discriminating masqueraders based on
command behavior. In Cluster Computing and the Grid, 2005. CCGrid
2005. IEEE International Symposium on. IEEE, 2005.

[54] W. Yurcik, X. Meng, and N. Kiyanclar. Nvisioncc: a visualization
framework for high performance cluster security. In Proceedings of the
2004 ACM workshop on Visualization and data mining for computer
security. ACM, 2004.

[55] M. Zalewski. Silence on the wire: a field guide to passive reconnaissance
and indirect attacks. No Starch Press, 2005.

[56] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. Homealone: Co-
residency detection in the cloud via side-channel analysis. In IEEE
Symposium on Security and Privacy. IEEE, 2011.

TABLE II
SUMMARY OF ALL VULNERABILITIES FOUND STATICALLY WITH RIPS. DISTRIBUTION BY VULNERABILITY TYPE. LEGEND:

CE=CODE EXECUTION; HTRS=HTTP RESPONSE SPLITTING; CI=COMMAND INJECTION; HI=HEADER INJECTION; PFC=POSSIBLE FLOW CONTROL;
UNS=UNSERIALIZE; SQLI=SQL INJECTION; LDAPI=LDAP INJECTION; FI=FILE INCLUSION; FM=FILE MANIPULATION; FD=FILE DISCLOSURE;

XSS=CROSS-SITE SCRIPTING.

Version / Vulnerability Type CE HTRS CI HI PFC UNS SQLI LDAPI FI FM FD XSS TOTAL/version

cacti-0.8 0 68 2 0 21 5 0 0 0 1 0 92 189
cacti-0.8.1 0 68 2 0 21 5 0 0 0 1 0 95 192
cacti-0.8.2 0 68 2 0 21 5 0 0 0 1 0 95 192
cacti-0.8.2a 0 68 2 0 21 5 0 0 0 1 0 95 192
cacti-0.8.3 0 70 2 0 21 5 0 0 0 1 0 102 201
cacti-0.8.3a 0 70 2 0 21 5 0 0 0 1 0 102 201
cacti-0.8.4 0 75 4 0 23 5 0 0 0 1 2 98 208
cacti-0.8.5 0 78 4 0 26 5 0 0 0 1 2 113 229
cacti-0.8.5a 0 78 4 0 23 5 0 0 0 1 2 116 229
cacti-0.8.6 2 78 5 1 25 7 0 0 1 7 5 160 291
cacti-0.8.6a 2 78 5 1 25 7 0 0 1 7 6 161 293
cacti-0.8.6b 2 78 5 1 25 7 0 0 1 7 4 161 291
cacti-0.8.6c 2 78 5 1 25 7 0 0 1 7 5 161 292
cacti-0.8.6d 2 78 5 1 25 7 0 0 1 7 5 160 291
cacti-0.8.6e 2 78 5 1 25 7 0 0 1 7 5 179 310
cacti-0.8.6f 2 78 6 1 25 7 0 0 1 7 5 180 312
cacti-0.8.6g 2 78 6 1 27 7 0 0 1 8 5 179 314
cacti-0.8.6h 2 78 6 1 29 7 0 0 1 8 5 190 327
cacti-0.8.6i 2 78 5 1 29 7 0 0 1 7 5 261 396
cacti-0.8.6j 2 78 5 1 29 7 0 0 1 7 5 265 400
cacti-0.8.6k 2 78 5 1 29 7 0 0 1 7 5 234 369
cacti-0.8.7 2 78 3 1 30 10 0 1 1 7 5 205 343
cacti-0.8.7a 2 78 3 1 30 10 0 1 1 7 5 205 343
cacti-0.8.7b 2 78 3 1 30 10 0 1 1 7 5 154 292
cacti-0.8.7c 2 78 3 1 31 11 0 1 1 10 3 202 343
cacti-0.8.7d 2 78 3 1 31 11 0 1 1 10 3 206 347
cacti-0.8.7e 2 78 3 1 31 11 0 1 1 10 3 208 349
cacti-0.8.7g 2 77 2 1 29 11 0 0 1 8 3 141 275
cacti-0.8.7h 33 75 2 1 1 11 0 0 1 8 3 159 294
cacti-0.8.7i 33 75 2 1 1 11 0 0 1 8 3 159 294
cacti-0.8.7i-PIA-3.1 38 76 2 1 1 11 0 0 2 8 3 169 311
cacti-0.8.8 36 76 2 1 1 11 0 0 2 8 3 169 309
cacti-0.8.8a 36 76 2 1 1 11 0 0 2 8 3 169 309
cacti-0.8.8b 36 76 2 1 1 11 0 0 2 8 3 169 309
cacti-0.8.8c 36 77 2 1 1 11 0 0 2 8 3 204 345

ganglia jobmonarch-1.0 0 0 1 0 3 2 0 0 0 0 0 1 7
ganglia jobmonarch-1.1 0 0 1 0 3 2 0 0 0 0 0 1 7
ganglia jobmonarch-1.1.1 0 0 1 0 3 2 0 0 0 0 0 1 7
ganglia jobmonarch-1.1.2 0 0 1 0 3 2 0 0 0 0 0 1 7

ganglia-web-3.4.1 0 3 1 1 2 14 0 0 0 16 14 89 140
ganglia-web-3.4.2 0 3 1 1 2 14 0 0 0 16 14 90 141
ganglia-web-3.5.0 0 3 1 1 2 14 0 0 0 16 15 87 139
ganglia-web-3.5.10 0 3 1 1 2 13 0 0 0 13 11 43 87
ganglia-web-3.5.1 0 3 1 1 2 15 0 0 0 16 16 89 143
ganglia-web-3.5.11 0 3 3 1 2 13 0 0 0 12 12 46 92
ganglia-web-3.5.12 0 3 3 1 2 13 0 0 0 12 12 46 92
ganglia-web-3.5.2 0 3 1 1 2 15 0 0 0 16 15 90 143
ganglia-web-3.5.3 0 3 1 1 2 15 0 0 0 16 15 92 145
ganglia-web-3.5.4 0 3 1 1 2 15 0 0 0 16 15 92 145
ganglia-web-3.5.7 0 3 1 1 2 15 0 0 0 16 12 60 110
ganglia-web-3.5.8 0 3 1 1 2 13 0 0 0 13 11 43 87
ganglia-web-3.6.2 0 2 2 1 2 17 0 0 0 12 11 47 94
gweb-2.0.0 0 3 1 1 2 5 0 0 0 7 8 69 96
gweb-2.1.1 0 3 3 1 2 5 0 0 0 9 10 74 107
gweb-2.1.2 0 3 3 1 2 5 0 0 0 10 10 74 108
gweb-2.1.3 0 3 3 1 2 5 0 0 0 10 10 74 108
gweb-2.1.5 0 3 1 1 2 5 0 0 0 8 8 72 100
gweb-2.1.6 0 3 3 1 2 5 0 0 0 9 10 76 109
gweb-2.1.7 0 3 3 1 2 5 0 0 0 9 10 76 109
gweb-2.1.8 0 3 1 1 2 6 0 0 0 13 10 75 111
gweb-2.2.0 0 3 1 1 2 12 0 0 0 20 12 92 143
gweb-3.3.0 0 3 1 1 2 13 0 0 0 18 15 92 145
gweb-3.3.1 0 3 1 1 2 13 0 0 0 18 14 92 144

observium 0 1 2 0 3 3 4 0 9 5 4 51 82

TOTAL/vulnerability 286 2727 166 50 798 556 4 6 40 536 408 7553 -

