
RAMBO: Run-time packer Analysis
with Multiple Branch Observation

Xabier Ugarte-Pedrero12, Davide Balzarotti3, Igor Santos1, and Pablo G.
Bringas1

1 University of Deusto, Bilbao, Spain
{xabier.ugarte,isantos,pablo.garcia.bringas}@deusto.es

2 Cisco Talos Security Intelligence and Research Group
xabipedr@cisco.com

3 Eurecom, Sophia Antipolis, France
davide.balzarotti@eurecom.fr

Abstract. Run-time packing is a technique employed by malware au-
thors in order to conceal (e.g., encrypt) malicious code and recover it
at run-time. In particular, some run-time packers only decrypt individ-
ual regions of code on demand, re-encrypting them again when they are
not running. This technique is known as shifting decode frames and it
can greatly complicate malware analysis. The first solution that comes
to mind to analyze these samples is to apply multi-path exploration to
trigger the unpacking of all the code regions. Unfortunately, multi-path
exploration is known to have several limitations, such as its limited scal-
ability for the analysis of real-world binaries. In this paper, we propose
a set of domain-specific optimizations and heuristics to guide multi-path
exploration and improve its efficiency and reliability for unpacking bina-
ries protected with shifting decode frames.

Keywords: Malware, unpacking, multi-path exploration

1 Introduction

Malware authors employ a large variety of techniques to conceal their code and
make reverse engineering and automatic detection more difficult. One of these
techniques is packing, which consists in encoding or encrypting the code and
data in the binary and revealing them only at run-time.

Packers have been widely studied by researchers and, as a result, many
generic unpacking techniques have been proposed in the literature. In partic-
ular, researchers have addressed this problem from different perspectives: (i)
by making the analysis platform resilient to anti-analysis techniques [1], (ii) by
tracing the execution of the binary at different granularity levels [2, 3], (iii) by
adopting different heuristics to detect the original entry point of the binary [4], or
by dumping the code at the appropriate moment [5], and (iv) by improving the
efficiency of the unpacking process [6]. Although some of these approaches use
static analysis techniques [7], the majority rely on the execution of the sample.



Nevertheless, there is a specific protection technique that takes advantage of
an intrinsic limitation of dynamic analysis, i.e., the fact that it only explores a
single execution path. Shifting-decode-frames or partial code revelation consists
of unpacking the code on demand, just before its execution. These packers only
reveal one code region at a time, decrypting only the code covered by a single
execution path. In previous work [8], we classified this behavior at the highest
level of complexity (with the exception of virtualization based packers). One of
the most common and famous packers that employ this technique is Armadillo,
which is widely used among malware writers.

These protection scheme is particularly effective in cases in which the sample
employs anti-sandbox techniques to conditionally execute the payload, or when it
is designed to communicate with external entities (e.g., a Command and Control
Server). If the sample is executed inside an isolated environment or the server
is unavailable, certain parts of its code will never be executed under a single-
path dynamic execution engine. In both cases, a packer like Armadillo would
not reveal the portions of the code that are not executed.

Therefore, the first solution that may come to mind to deal with these packers
is to resort to some form of multi-path exploration. Several works [9–13] have
studied multi-path exploration to improve coverage in dynamic analysis. While
these works address some of the limitations of dynamic analysis, none of them
has addressed the specific problems that may arise when adopting this technique
for the generic unpacking of samples protected with shifting-decode-frames.

On the one hand, packers heavily rely on self-modifying code and obfus-
cated control flow, making very hard to automatically explore different execution
paths. One of the major limitations of multi-path exploration is its computa-
tional overhead, making the approach almost infeasible for large-scale malware
analysis. On the other hand, in our case we do not need to execute all possible
paths, but only to guide the execution in a way to maximize the recovered code.
Moreover, as the program does not need to continue once the code has been
unpacked, the memory consistency is less of an issue in the unpacking prob-
lem. As a result, multi-path exploration of packed programs is still an open and
interesting problem, that requires a new set of dedicated and custom techniques.

Peng et al. [13] proposed the application of a fully inconsistent multi-path
exploration approach and applied their technique to improve the execution path
coverage in malware, focusing in particular on environment sensitive malware.
In this paper, however, we focus on the specific characteristics of the described
packing technique. These particularities allow us to apply different optimiza-
tions and heuristics to multi-path exploration, improving the feasibility of this
technique, especially for complex cases.

In particular, in this paper we want to answer two questions: Is it possible
to apply new optimizations to the classic multi-path exploration to efficiently
uncover protected regions of code for packers using shifting-decode-frames? And
is it possible to design new heuristics specific to the unpacking domain, that can
guide the multi-path exploration and increase the recovery of the protected code?



Fig. 1. General workflow of our approach.

Our main contributions are oriented to answer these questions: (i) we propose
a set of optimizations for the application of multi-path exploration to binaries
protected by shifting-decode-frames, (ii) we introduce a new heuristic that can
guide multi-path exploration to unpack previously unseen regions of code and
(iii) we evaluate this approach and present three different case studies.

2 Approach

Moser et al. [14] proposed for the first time the application of multi-path explo-
ration for the analysis of environment-sensitive malware. This approach lever-
aged dynamic taint analysis, symbolic execution, and process snapshotting in
order to explore multiple execution paths in depth-first order.

In order to evaluate our system, we implemented a modified version of multi-
path exploration applying a set of domain specific optimizations that allow us
to selectively explore certain interesting regions of code: which in our case is the
code of the original program protected by the packer.

Our multi-path exploration engine is built on top of TEMU and Vine, the
components of the Bitblaze [15] platform. TEMU allows to trace the execution
of a binary, applying dynamic taint analysis, whereas Vine is an analysis engine
based on Vine-IL, an intermediate language, that allows to design control-flow
and data-flow analysis algorithms.

The general workflow of our solution is as follows (see Figure 1). We first ex-
ecute the sample in a single-path execution mode and extract different pieces of
information. We analyze the packer structure and identify the regions of memory
that contain the protected code, by applying the techniques developed in previ-
ous work [8]. In a second step, we extract the memory that was unpacked in this
first run, and compute the control flow graph of the unpacked code in order to
find interesting points in the code (i.e., control flow instructions that lead to the
unpacking of new regions of code). This process provides us a list containing the
control flow instructions that lead to new regions. We use this list as part of a



heuristic to guide multi-path exploration. Finally, we apply our optimized multi-
path exploration engine using this pre-computed information to prioritize paths
that will likely drive to the unpacking of new regions. This two-step process is
repeated until our system cannot recover any additional code.

This section is divided in three parts. First, we introduce our multi-path
exploration approach, and describe several design decisions. Second, we describe
a set of optimizations we developed over this model, and third, we present the
heuristic that allows us to prioritize execution paths in this specific domain.

2.1 General Approach

Symbolic execution. Symbolic execution allows to evaluate a program over a
set of symbolic inputs instead of concrete values. A constraint solver can evaluate
the symbolic expression that must be satisfied to follow a given path, providing
an appropriate set of values for each input variable. The reader can refer to
previous literature [14,16] for a better understanding of symbolic execution and
its limitations.

Some symbolic execution engines [17, 18] simplify symbolic expressions to
enhance the efficiency of the computations of the constraint solver. Alternatively,
other works [19, 20] propose the use of weakest preconditions, a method that
keeps the computational complexity and size of the formulas O(n2) [16]. We
leveraged Vine, a tool that can compute the weakest precondition of an execution
trace and to generate a query to the STP constraint solver.

Indirect memory accesses (i.e., memory access instructions in which the ad-
dress itself is tainted and it depends on program input) are a recurrent problem
in symbolic execution. When the program is evaluated symbolically, the address
can contain any value constrained by the symbolic expression. This limitation
is specially problematic for the symbolic execution of jump tables, a mechanism
widely used by compilers to implement switch statements.

Some approaches let the constraint solver reason about the possible values,
while other approaches perform alias analysis in order to determine the possible
memory ranges pointed by the index [16]. In our case, we let Vine adopt the
concrete value observed during the execution for every tainted memory index
avoiding symbolic processing. Although this unsound assumption implies that
some paths will never be executed, it simplifies the reasoning process involved in
multi-path exploration. This limitation can be eventually mitigated in cases in
which several paths in the program trigger the execution of a page or function,
successfully triggering its unpacking routine.

System-level snapshots. In order to save the execution state at a given point
(before a conditional jump is evaluated), we collect a system-snapshot. Previous
approaches have proposed the use of process snapshots, a technique more effi-
cient in terms of computational overhead and disk space. Nevertheless, making
snapshots of the process state (memory and registers) involves many technical
problems that are not easy to address. Processes running on the system gen-
erally use resources provided by the operating system like files, sockets, or the
registry. Besides, the kernel of the operating system maintains many structures



with information regarding the memory assignment, heaps, stacks, threads, and
handles. While saving and recovering the memory and register state is not diffi-
cult to implement, it is hard to maintain the system consistency when the state
of a process is restored. Moser et al. [14] proposed several methods to ensure
that the process can continue running even if it is restored to a previous state
(e.g., avoiding closing handles).

Since the optimization of process snapshots is beyond the scope of this study
and stands as a research problem by itself, we adopt a system-snapshot approach
that, in spite of sacrificing system efficiency, allows us to securely restart the
execution of a program at any point maintaining the consistency of the whole
system.

Taint sources. We taint the output of the APIs that are most interesting for our
goals, including network operations such as connect, recv, gethostbyname or
gethostbyaddr, file operations such as ReadFile or CreateFile, API functions
for retrieving command line arguments such as wgetmainargs or ReadConsoleInput,
and other functions typically used to query the system state like GetSystemTime
or Process32First / Process32Next.

Target Code Selection. In shifting-decode-frames, we can distinguish two
parts in the code. First, there must be a decryption routine that is usually highly
obfuscated and armored with anti-analysis tricks. This routine is in charge of
taking control when the execution of the protected code jumps from one region
to another, decrypting the next region of code, and encrypting the previous one.

Our goal only requires to apply multi-path exploration to the protected code,
avoiding the decryption and anti-analysis routines. In order to do this, we first
need to determine the place where the original code is decrypted and executed.
This problem has been widely studied in the past and researchers have proposed
different heuristics. To this end, we implemented a framework based on a pre-
vious approach [8] to analyze the execution trace of the binary and divide the
execution into layers. Our framework also incorporates several heuristics that
can highlight the code sections that likely contain the original code. This infor-
mation is also presented to the analyst who may select other regions to explore
on demand, if necessary.

2.2 Domain specific optimizations

In this section we introduce six custom optimizations that simplify the multi-
path exploration problem in the case of binary unpacking.

Inconsistent multi-path exploration. In some cases, traditional symbolic
execution approaches cannot execute certain paths that, despite of being feasible,
are difficult to solve for a constraint solver. For instance, a parser routine may
access tables with a symbolic index. Reasoning about indirect symbolic memory
accesses requires a complex processing such as alias analysis.

In these cases, when our constraint solver cannot provide a solution, we
take an unsound assumption and query the constraint solver ignoring the path



restrictions imposed by the previous instructions in the trace. This approach lets
us explore the path by forcing a set of values consistent with the last tainted jump
instruction, but potentially inconsistent with the previous path restrictions.

In our specific domain, maintaining the consistency of the system is only im-
portant in order to avoid system crashes until every protected region of code has
been unpacked. While other domains may suffer from this unsound implemen-
tation (e.g., malware analysis may require to know under which circumstances
a certain path is triggered), in our case this information is not relevant, as long
as the system remains stable enough to unpack the different regions.

Partial symbolic execution. In order to reduce the size of the code to be
explored symbolically, we restrict symbolic execution to the original malicious
code (i.e., unpacking routines are explored in single-path execution mode). One
may think that the unpacking code will never have conditional branches that
depend on system input, but there are packers, like Armadillo, that apart from
protecting the original code of the binary, apply licensing restrictions. Moreover,
this packer fetches the system date using the GetSystemTime API function in
kernel32.dll, and executes conditional jumps that depend on the information
collected. Nevertheless, this code will not trigger the unpacking of new regions of
code. Also, this code is generally highly obfuscated and does not follow standard
calling conventions, making more difficult to correctly trace and symbolically
process this code. For these reasons, we restrict multi-path exploration to the
regions suspected to contain the code of the original application.

Local and global consistency. Another aspect to consider is the consistency
of the symbolic execution engine. For example, the S2E project [18] allows to
run programs at different consistency levels.

In order to minimize the computational overhead we apply a locally consis-
tent multi-path exploration approach. This means that we respect the consis-
tency within the regions that contain the original code of the binary, but we
allow the variables in this region to adopt values that are inconsistent with the
rest of the code (e.g., system libraries). For instance, a program may update
a variable with a value coming from keyboard input after a scanf call. This
function applies some restrictions to the input, as well as some parsing. As a
result, the value adopted by the variable would be restricted by the (potentially
complex code) present in the library. In order to avoid this complexity, we let
the variable adopt any value creating a fresh symbolic variable for it.

First, we avoid tracing any taint-propagating instruction if it is executed
outside the explored regions. In this way, when the execution trace is processed
in the symbolic engine, only the instructions in the explored regions impose
restrictions over the symbolic variables.

Second, the first time a new taint (that has been created outside the interest-
ing regions of code), is propagated to our explored code, we create a completely
new taint value for each of the memory bytes affected by this taint, in such a
way that our system will consider those bytes as free variables.

Finally, whenever the program calls to a function outside the region delim-
ited, if the arguments of the call are tainted then the result of the call can



be consequently tainted. As we do not record the execution of such code, the
taint propagation chain will be broken and our tool will be unable to provide
a solution. Executing symbolically all the code present in these API functions
can become computationally infeasible. For this reason, we avoid recording the
execution of code outside the boundaries of our regions of interest. In order to
allow Vine to process these traces with broken taint propagation, we create a
new independent symbolic variable whenever necessary. In this case, again, we
lose program consistency. Nevertheless, as we describe in Section 2.2, this in-
consistency does not affect our approach but on the contrary, lets us explore as
many paths as possible (triggering the execution and thus the unpacking of new
regions of code).

State Explosion. One of the limitations that make multipath exploration in-
feasible to analyse large programs is the well-known state explosion problem [21]:
when the number of state variables increases, the number of states grows expo-
nentially. Many samples may have infinite program states, for example when
unbounded loops are implemented in the explored code.

Unfortunately, constraint solvers are not suitable to reason about long ex-
ecution traces. In our case, we configured our multi-path exploration engine
to discard execution paths with a trace longer than a given threshold. This
parametrization allows us to keep the analysis as simple as possible and compu-
tationally feasible.

Blocking API calls. Our system uses a mechanism to bypass blocking API
function calls. In some cases, the program gets blocked waiting for user input
or certain events in the system. For this reason, when certain APIs such as the
read or recv functions are called, instead of letting the program run, we restore
the instruction pointer to the return address in the moment of the call. Also, we
fill the output buffers and output values with fake data, and taint those buffers.
This approach allows us to successfully run the samples that would otherwise
need some network simulation or external interaction.

String comparison optimization. The last optimization implemented is re-
lated to string comparisons, an operation commonly performed by malware to
parse commands (e.g., IRC or HTTP bots). These string comparisons are com-
monly implemented by means of system API calls such as strcmp and strlen.

Some functions can return different non-tainted constant values depending
on the path followed during execution (that may depend on tainted conditional
jumps). Nevertheless, since the code is outside the boundaries of the protected
code, these paths will not be explored. For instance, an strlen-like function will
have a character counter that is incremented for each non-null character found
in the string. This counter is a non-tainted value, and our approach does not
explore any alternative paths inside the function. As a result, the function will
return a non-tainted constant value although the input parameter is tainted.

In order to deal with this limitation and to minimize the processing overhead
in such string operations, we hooked 15 different string comparison functions in
several DLLs in order to taint the return value of the function whenever a tainted
value is provided as input parameter to it.



2.3 Heuristic to guide the multipath exploration

One way to reduce the state space and thus the complexity of multipath ex-
ploration is to apply heuristics in order to determine which paths should be
expanded first. We propose a heuristic based on the intuition that, for a packer
protected using the shifting-decode-frames technique, a subset of its execution
paths (i.e., one or several instructions in the program) can trigger the execution
of a region (e.g., function or memory page). Therefore, in these cases, it is not
necessary to explore all the possible paths in order to fully unpack all the content
of a binary.

First, our system extracts all the executed code and unpacked memory re-
gions from a single-path execution trace in order to recover as much code as
possible. Then, it analyzes this code and determines the instructions that refer-
ence locations in the program that have not been unpacked yet. The system then
constructs the call graph and control flow graph of the trace and finds the paths
that lead to interesting instructions, and finally it provides this information as
input to our multi-path exploration engine in order to prioritize the execution
of certain paths that would trigger the unpacking of new regions of code. The
next sections detail how this process is performed.

Dumping unpacked memory regions. Our framework monitors memory
writes and execution, and allows us to dump the unpacked and re-packed memory
regions after each run. Once we obtain a complete memory dump, we filter it
in order to keep only the regions susceptible of being explored in a multi-path
fashion. In order to do this, we first indicate which regions we want to explore,
and then we generate a filtered memory dump containing (i) the memory blocks
that overlap those regions, and (ii) all the execution blocks traced for those
regions.

Disassembly and translation to intermediate language. In order to ana-
lyze the memory dumped by our tool, we implemented our custom disassembly
engine to process the unpacked frames of code. This engine is based on the
binutils disassembly interface and the libdisasm library.

First, for each execution block recorded during the analysis of the packer,
we perform a linear sweep disassembly. Execution blocks do not contain any in-
struction that affects the control flow of the program and therefore a linear-sweep
algorithm will always successfully extract the code for these blocks. Second, for
each conditional jump pointing to blocks that were not executed, we disassem-
ble the target blocks if they are located in memory already dumped. In this
case, we follow a recursive-traversal algorithm in order to disassemble as many
instructions as possible from the non-executed parts of the unpacked frames, fol-
lowing any jump, conditional jump or call instruction found. Finally, this code
is translated to Vine Intermediate Language (Vine IL) for further processing.

Obtaining interesting points in the code. Next, we build the Control Flow
Graph for every function found in the disassembled code. We then process the
result in order to find points in the code that may trigger the unpacking of other
regions of code.



– Control flow instructions. Control flow instructions (jmp,call, and cjmp)
alter the execution flow of the binary and therefore are susceptible of trigger-
ing the unpacking of new frames of code. First, if a non-conditional control
flow instructions is executed, then the address pointed by the instruction will
be executed next. In the case of cjmp instructions, it is possible to find cases
in which only one of the branches is executed. Nevertheless, considering that
we also disassemble non-executed instructions extracted from the unpacked
memory frames, we can also find jump and call instructions that lead to
regions of code not previously observed.

– Direct memory addressing. Instructions that access a memory address
not previously unpacked can trigger the decryption of a new region.

– Indirect function calls. Indirect function calls constitute a problem in
multi-path exploration. When the register containing the call address is
tainted, we need to reason about all the possible values that it can adopt. In
our case, we have simplified this problem by concretely evaluating the call
address regardless of its taint value. In order to allow our system to explore
different targets for the call, we consider these instructions as interesting
points in the program. Our engine will try to explore all the different paths
that drive the execution to this point, since they may write different values
over the register or memory address used in the indirect call.

– Constants. Finally, we also analyze the constant values provided as imme-
diate values in the code and check if they may reference a memory address
contained in the original code. This approach allows us to consider potential
register-indirect or memory-indirect addressing operations.

Finding interesting paths. Once we have identified the interesting points in
the code, we can distinguish three different cases:

– Non-conditional instructions that were executed and triggered the unpack-
ing of a region of code. Examples are direct memory addressing operations,
constants, or unconditional jumps. We discard these points in the code since
they are no longer interesting for guiding the execution.

– Conditional jumps in which only one of the possible branches was executed.
In these cases, we notify our engine that the alternative branch is an inter-
esting point that should be reached in the next iteration.

– We include any instruction that can potentially trigger the unpacking of a
new region, if it is located at a memory address not executed before.

Finally, functions calls represent a special case that must be considered. For
instance, there may be a case in which a fully unpacked function (that was
executed) has unexplored paths that drive to new regions of code. There will
be one or several points in the code that trigger a call to such function. Even if
all these points were executed during previous runs, there are still unexplored
paths in the function so we need to keep them in the list of interesting points.
This can be applied recursively to all the inter-procedural calls we find in the
code.



Once we have identified the list of interesting points in the code, we compute
the paths that reach each of them. Whenever a loop in the CFG is detected,
we consider two possible paths: one that enters the loop, and another one that
does not satisfy the loop condition. We keep iterating the ancestor basic blocks
until we reach the function entry point. The final result will be a sequence of
(cjmp,address) pairs. For each conditional jump, we indicate the address that
should be executed next in order to reach the interesting point in the code.

Eventually, there might be several different paths reaching interesting points
in the code. Instead of simplifying the list, we keep all the possible paths because
they might introduce different path restrictions during execution. In fact, many
of the paths computed will not be feasible (i.e., there is no possible assignment
for the variables in order to force the path). This feasibility will be tested by the
constraint solver during multi-path exploration.

The output of our system is a complete list of the interesting points that
can be reached for each of the two possible branches of each cjmp. This list is
provided as input to the multi-path exploration engine to guide the execution
to the interesting parts of the code.

Queries to the SMT solver. Whenever a tainted conditional jump is exe-
cuted, we check if it is present in the list of interesting conditional jumps com-
puted in the previous phase. If the cjmp is present in the list, we inspect the
number of interesting points that can be reached from each of its paths. Then,
we query the SMT solver:

– If the two paths drive to interesting points.
– If only one of the paths leads to an interesting region, but it is not the path

taken by default.

If the solver cannot provide a feasible solution, we query the solver again ignoring
the path restrictions imposed by the execution trace. If there is a feasible set
of values that can be forced in order to follow the alternative path, we create a
snapshot and decide the next path to execute.

Path selection algorithm. In order to select the next path to execute, we
iterate the execution tree in Breath First Search order. This approach allows us
to incrementally expand all the paths in the execution tree. More specifically,
we select the first path that meets the following conditions:

– The path has been forced less times than the rest of paths.
– If several paths have been forced the same number of times, we prioritize

those that were solved by the SMT solver in a consistent manner.

This approach allows us to avoid the recursive exploration of loops, in cases
in which there are other paths that will reach the same region more efficiently.

During exploration, we update the list of interesting paths whenever a new
memory region is unpacked, removing all the entries that refer to the region.

Path brute-forcing. In order to avoid exploring repeatedly the same paths
in cases in which there is a complex logic with loops, we limit the maximum



number of times that a path can be forced. When we reach this limit, we query
the list of conditional jumps we obtained from static analysis, and try to force the
execution of conditional jumps that have never been tainted. Since the branch is
not tainted, the SMT solver cannot be queried to compute a set of values to force
the branch consistently. While this method to force the execution may result
into an undetermined behavior or the instability of the process, there are cases
in which this unsound approach lets the system reach other interesting regions
of code. For instance, a command parsing routine may divide the input strings
into tokens and have a complex parsing logic with plenty of loops. There may be
cases in which a loop has to be repeated many times (i.e. loop condition is not
tainted). If this loop includes tainted branches and a complex logic inside it, it
would unnecessarily make the system expand the execution tree too many times.
In these cases, when we reach a certain limit of expansions for each conditional
jump, our approach forces the exit of the loop and continues execution. A similar
case occurs when a loop variable is not tainted itself, but it is set to a constant
value (that triggers the exit) when a specific path is followed. This path may
only be triggered once we fully explore inner loops, growing the execution tree
excessively. In this case our system will inconsistently force the path to reach
this point before expanding further the tree. A different case may occur when the
variable is updated using instructions that do not involve tainted values (e.g.,
inc, or add an immediate value). In this last case, our approach would force the
exit of the loop even if the variable is never set with the correct value.

In conclusion, if a certain memory region can be reached from different exe-
cution paths, even if the constraint solver is not capable of providing a feasible
set of values, our approach will reach the region if there is at least one path that
can be forced in a consistent or inconsistent manner, always trying to maintain
system consistency to avoid exceptions and system instability.

Also, in cases like page-granularity protection, we only need to trigger a
subset of the paths in order to reach all the code pages, avoiding to explore the
rest of paths and thus reducing the complexity of the problem.

3 Evaluation
In order to evaluate our approach, we implemented our engine on top of TEMU,
totalling 7,500 C/C++, 1,300 Python and 500 OCaml lines of code.

In this section we present three different case studies corresponding to packers
that protect samples at different granularity levels. On the one hand, Backpack is
a packer proposed by Bilge et al. [22] that protects the binary with function-level
granularity. On the other hand, Armadillo is a well-known commercial packer
that allows to protect binaries with a page granularity.
3.1 Backpack
In order to test our approach against Backpack, we downloaded the source code
of the Kaiten IRC bot, reported to be distributed using the shellshock bash
vulnerability4. This sample connects to an IRC channel and receives commands

4 http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-

vulnerability-downloads-kaiten-source-code/. (Accessed: 2015-11-13)

http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/
http://blog.trendmicro.com/trendlabs-security-intelligence/shellshock-vulnerability-downloads-kaiten-source-code/


Iteration 0 Iteration 1 Iteration 2 No heuristics

Functions unpacked 5/31 11/31 27/31 8/31

Interesting points - 52 96 -
Cjmps - 36 110 -

Snapshots - 167 544 6015
Tainted-consistent cjmps - 161 525 5888
Tainted-inconsistent cjmps - 6 19 127
Untainted cjmps - 0 40 -
Long traces discarded - 6 0 -

Time 5m 24m 1.2h 8h
Table 1. Results obtained for the Kaiten malware packed with backpack.

to perform actions such as remote command execution or network flooding.
Backpack is designed to protect the binary at compile time and it is implemented
as an LLVM plugin to protect C programs. However, due to a limitation of the
plugin, to successfully compile Kaiten using Backpack we had to modify the
command dispatching routines of the malware to substitute function pointers
with direct calls. Given the functionality of the malware, we configured our
system to taint network input considering the recv, connect, read, write and
inetaddr system API functions. Also, we parametrized our system to expand
each tainted conditional jump a maximum of 8 times. Once this limit is reached,
our system inconsistently forces the conditional jumps that were visited but not
tainted.

Table 1 shows the results obtained for this experiment. The sample con-
sists of 31 protected functions that implement a total of 22 different commands,
triggered by IRC commands and private messages. The unpacking is performed
iteratively. In the first iteration we run the malware without applying any multi-
path exploration, revealing only 5 out of 31 functions.

Our heuristic engine reported 52 interesting points and 36 conditional jumps
in the code. In the first multi-path iteration, 6 new functions were unpacked
requiring a total of 167 snapshots. These functions correspond to the 6 different
IRC commands implemented by the bot. One of these commands is PRIVMSG,
that triggers the execution of a function that processes the rest of arguments
to trigger different bot commands. Once this function was unpacked in the first
multi-path iteration, our static analysis found 96 interesing points in the code
and 110 conditional jumps that could drive the execution to functions not yet
unpacked. In the last iteration, 27 functions were triggered requiring 525 snap-
shots. These results show that a concrete execution only reveals a little portion
of the real contents of the binary. Also, the heuristic allows to discover new
functions in the binary exploring a relatively low number of paths.

Table 1 also shows the number of tainted conditional jumps forced consis-
tently and inconsistently. The number of inconsistently forced cjmps is very low
in both cases. Our local-consistency based exploration algorithm and the rest
of domain-specific optimizations allow us to tolerate certain inconsistencies with
the rest of the system, improving the ability of the approach to force locally



consistent paths. Nevertheless, there are still a few cases in which inconsistent
assumptions allow to explore alternative paths that otherwise would be infeasible
to explore.

We can also observe that our system recovered the code of almost all the
protected functions. More specifically, the 22 main commands were revealed,
and only 4 helper functions remained protected due to the early termination of
the process. In the last multi-path exploration run, up to 40 untainted condi-
tional jumps were forced inconsistently in order to trigger the unpacking of new
functions. These cases correspond to non-tainted conditional jumps that were
identified by our heuristic engine as points that could potentially lead to the
unpacking of still protected regions of code. These inconsistencies caused the
process to terminate when trying to access inexistent strings.

The last row shows the total time required in order to run the python and
OCaml code in charge of postprocessing the execution traces, computing the
heuristic, and the multi-path exploration itself. For this sample, the scripts re-
lated to the heuristic accounted for the 18% of the total processing time.

The last column shows the results when only the domain specific optimiza-
tions were applied (no heuristics were used for path selection). In this case, we
let the system run for a total of 8 hours. In this time, the system explored up to
6,000 conditional branches, but was only able to recover 8 functions.

3.2 Armadillo

Armadillo is one of the most popular packers among malware writers. It allows
to protect binaries with page granularity. This technique, also named CopyMem-
II, consists of creating two separate processes. The first process attaches to the
second one as a debugger, capturing its exceptions. When this process starts
the execution at a region not present in memory, an exception is produced and
the debugger process takes control. This process makes sure that the exception
corresponds to a protected memory page, and then it decrypts the page and on
the memory of the debugged process, protecting again the previously executed
memory page so that it cannot be collected by an analyst. Following this scheme,
only one single page of memory is present in memory at any given time, making
extremely difficult for an analyst to recover the entire code of the malware.

We used Armadillo 8.0 to protect two different samples with several pages of
code and a complex internal logic. These samples belong to the SDBot and the
SpyBot malware families. These families of bots typically connect to IRC servers
and accept complex IRC commands. However, only the code of the requested
functionality is decrypted in memory. Moreover, these specific samples present
a very complex command parsing routine that triggers, at different points, code
in memory pages that cannot be reached in any other way. We selected these
samples in order to properly test our heuristics, and to demonstrate how our
optimizations allow to reduce the complexity of multi-path exploration allowing
to drive the execution towards the most interesting points in the execution tree,
recovering all the code pages efficiently.



In order to measure the complexity of these samples, we applied the IDA-
Metrics5 plugin. The most complex function in SDBot has 417 branches and a
cyclomatic complexity of 321. Overall, it has 104 functions with a total cyclo-
matic complexity of 674. SpyBot, in contrast, has its command parsing routine
spread in 4 functions, and although the most complex function presents a cyclo-
matic complexity of 135, its overall complexity is 953, significantly higher than
SDBot.

Table 2 shows the results obtained for the SDBot sample protected by Ar-
madillo. The malware contains 7 pages of code, but a first concrete execution
only reveals code in the first and last pages, leaving a total of 5 protected pages.
To fully recover every page, we needed to run our engine in 3 iterations. Also,
for this sample, it is strictly necessary to trigger some specific paths inside the
command parsing routine in order to reach certain pages of code. This function
was reached in the first multi-path run, that revealed 2 more memory pages. A
second run revealed 2 more pages that were reached through the function, and
the last run reached the last memory page. We can observe that the number of
interesting points (i.e. targets in the control flow graph that trigger the unpack-
ing of a previously unseen region) is always very low because only a few paths
linked the code in one page to code in the next. Although this means that it
is only possible to reach these pages by executing those points in the code, it
also means that our system only needs to focus on steering the execution to-
wards those points in the code, ignoring all other paths that are not related to
them. This brings a very large improvement over a classic multi-path execution
approach.

Despite the high number of conditional jumps reported in Table 2, we can
observe that the number of snapshots remains low because our heuristics and
optimizations allow to priorities the paths and to limit the depth of the execution
tree in presence of loops. The number of inconsistent queries is lower than the
number of consistent queries, as a result of the local consistency model described
that allows tainted variables to adopt free symbolic values (i.e., not tied to global
restrictions). We can also observe that our system only needed to force one
untainted conditional jump in the second and third iterations, in order to force
the exit of complex loops in the command parsing routine.

The last column shows the results for multi-path exploration without heuris-
tics. Similarly to the previous experiment, we let the system run for 8 hours and
observed that although the number of expanded conditional jumps was much
higher (3660 snapshots), only 4 pages were recovered.

Finally, Table 3 shows the results obtained for the SpyBot malware. In this
case, the command parsing routine is spread in several functions that combined
together present a more complex logic than SDBot and an higher number of
untainted conditional jumps. This sample was unpacked in 2 multi-path explo-
ration runs. In this case, the concrete execution revealed 3/9 code pages, the
first multi-path exploration revealed 8 pages, and finally one last multi-path
exploration reached the last page.

5 https://github.com/MShudrak/IDAmetrics

https://github.com/MShudrak/IDAmetrics


Iter. 0 Iter. 1 Iter. 2 Iter. 3 No heuristics

Pages unpacked 2/7 4/7 6/7 7/7 4/7

Interesting points - 3 2 7 -
Cjmps - 65 162 264 -

Snapshots - 14 366 367 3974
Tainted-consistent cjmps - 13 295 296 3660
Tainted-inconsistent cjmps - 1 71 71 314
Untainted cjmps - 0 1 1 -
Long traces discarded - 1 14 14 -

Time 30m 2.2h 2.8h 3.2h 8h
Table 2. Results obtained for the SDBot malware and Armadillo 8.0.

Iteration 0 Iteration 1 Iteration 2 No heuristics

Pages unpacked 3/9 8/9 9/9 6/9

Interesting points - 26 1 -
Cjmps - 163 214 -

Snapshots - 113 153 4466
Tainted-consistent cjmps - 17 31 4096
Tainted-inconsistent cjmps - 96 122 370
Untainted cjmps - 17 34 -
Long traces discarded - 9 34 -

Time 30m 3h 2.75h 8h
Table 3. Results obtained for the SpyBot malware and Armadillo 8.0.

We can observe that the number of conditional jumps that can drive the
execution to the interesting points is similar but there is a higher number of
interesting points. Nevertheless, for this sample there was one single transition
point to reach the last code page, located deep into the last command parsing
routine of the bot. In this experiment, we can notice that the number of queries
that the SMT solver was not able to solve is higher, resulting into more tainted
and untainted conditional jumps forced inconsistently. Again, like in previous
cases, when the system was run without heuristics, only 6 pages were recovered
after 8 hours, requiring a much higher number of snapshots. In this last case,
the postprocessing scripts represented the 59% of the processing time.

4 Discussion

In order to evaluate our approach we have presented three case studies cor-
responding to samples with complex routines, hundreds of conditional jumps
depending on program input, and many string parsing loops. The results of
our experiments show that, by adding several domain specific optimizations and
heuristics, it is feasible to apply multi-path exploration to unpack complex bi-
naries protected with shifting-decode-frames.

We selected three case studies in order to test our approach, using two dif-
ferent packers for protection. Although the number of tests is low, we selected



representative samples with complex logic and different protection granularities.
In fact, most of the packers reveal all the protected code at once and only few
present this advanced protection mechanism. Beria applies the same approach
as Armadillo, but presents a lower overall complexity. Unfortunately, it is not a
common packer, and thus we found no interesting samples available.

We only tested one sample protected with Backpack because was developed
for GNU/Linux and it requires the source code of the malware in order to apply
the protection at compilation time. Given this restriction, we selected the most
complex GNU/Linux malware source code we could compile with Backpack.

In the case of Armadillo, we needed to meet several requirements in order
to properly test our approach and heuristics. First, we needed samples with
complex routines depending on program input. These samples had to trigger the
execution of new regions of code (not executed in a single concrete run), only
after executing a fairly complex amount of code. Also, we selected samples that
did not already present a custom packing routine. Otherwise, only that routine
would be protected by Armadillo, greatly simplifying our job and not providing
a challenge for our system. Similarly, we had to discard samples that decode and
inject all their code into another process once the execution starts, as well as
droppers, downloaders, and simple spyware due to their simplicity.

Our approach is based on whole system emulation, which has a number of
well-known limitations. For instance, red-pills can be used to determine if the
execution environment in which it runs is a virtual/emulated environment or
a real machine. In fact, Paleari et al. [23] proposed a method to automatically
discover and generate red-pills in system emulators. In particular, during this
project we found two implementation errors in the Dynamic Binary Translation
engine of QEMU that affected all its versions and impeded the correct emulation
of the Armadillo packer. In this context, several publications and projects [3,24,
25] have reported the incapacity of emulators to correctly execute the Armadillo
packer. We solved this issue and reported it to the QEMU developers.

Finally, although the samples evaluated in this study were not affected by the
following techniques, complex packers may leverage them to hinder our approach.

– Calling convention violation. Malware can violate calling conventions in
order to obfuscate the code. If these techniques are employed to obfuscate
API function calls (e.g., stolen bytes), our tracing mechanisms could fail to
locate string parsing functions, affecting some of our optimizations.

– Alternative methods to redirect control-flow. In order to evade multi-
path exploration, malware samples may potentially use alternative methods
to redirect the control flow: alternative combinations of instructions such as
push + ret, indirect calls, call + pop + push + jmp, SEH or VEH based
redirection, opaque predicates in branch instructions, or even obfuscating
the computation of triggers [26].

– Resource exhaustion. Our techniques reduce the computing overhead of
multi-path exploration. Nevertheless, creating memory snapshots and query-
ing SMT solvers over long traces still requires significant computing re-
sources. A packer may increase the complexity of the code affecting impact-



ing the performance of multi-path exploration. A malware writer may design
a complex CFG with a high number of loops and conditional jumps specifi-
cally crafted to increase the number of paths to explore with our heuristic.

– Nanomites. This technique consists in replacing conditional branch instruc-
tions by software interrupts (e.g. INT 3) that cause the execution to break. A
parent process intercepts the exception and then overwrites the conditional
jump. A more complicated example involves redirecting the execution of the
child by evaluating its context (state of the EFLAGS register) and redirecting
its execution to the appropriate address, without even replacing the inter-
rupt instruction with the original instruction. This technique would break
taint propagation and prevent us from successfully reconstructing the CFG.

5 Related Work

Manual unpacking requires a substantial reverse engineering effort. Consequently,
many researchers have focused on generic unpacking in recent years. Both static [7]
and dynamic approaches have been proposed, but due to the complexity of static
approaches, most of the authors have focused on dynamic analysis, installing
drivers in the system [6,27] or tracing the execution [3].

Some of these systems rely on heuristics and monitor coarse-grained events [27],
while others monitor memory writes and memory execution at different granular-
ity levels [3,6,28,29], compare the static and run-time version of the memory [2],
perform statistical analysis [5], or measure the entropy variation [4].

Other approaches rely on hybrid static and dynamic analysis [30]. Virtualization-
based packers constitute a special category of protection techniques. Several au-
thors have focused on unpacking these packers from different perspectives [31–
33]. Nevertheless, these protection engines are a different challenge that require
other techniques in order to recover the original code.

Transparent execution [1, 35, 36] is focused on dealing with malware capa-
ble of detecting the analysis environment and modifying its execution to evade
detection. Nevertheless, these techniques do not explore the different execution
paths that a binary may have. Bilge et al. [22] demonstrated that this limitation
can be leveraged by an attacker in order to defeat unpackers that assume that
all the code will be present in memory at some moment in time.

In order to improve the test coverage in malware analysis, Moser et al. [14]
proposed a system to explore different execution paths based on taint analysis
and symbolic execution. Our work is built on top of this research, adding a set
of optimizations and heuristics to deal with a specific use-case.

Almost in parallel, Song et al. [15] developed a platform for binary analysis.
This platform was used in many different follow-up works, including identifica-
tion of trigger-based behaviour [10], reasoning about code paths in malware using
mixed concrete and symbolic execution [11], or even triggering the unpacking
routine of environment sensitive malware [12].

Another closely related project is S2E [18], a platform that introduces the
concept of selective symbolic execution (application of symbolic execution to only
certain memory regions) and execution consistency models. Schwartz et al. [16]



summarized the challenges and limitations that affect efficiency and feasibility
of symbolic execution. Taint policies and the sanitization of tainted values have
a direct impact on over-tainting and under-tainting errors. Indirect memory ac-
cesses with symbolic addresses, jump tables, or the size of the constraint systems
are aspects that have no clear solution.

Finally, X-Force [13] is a system capable of forcing execution paths inconsis-
tently and recovering from execution errors by dynamically allocating memory
and updating related pointers. More specifically, they focus on 3 different goals:
(i) constructing the control flow graph of a binary, type reverse engineering, and
discovering hidden behavior in malware. Our approaches share some concepts,
such as forcing the execution inconsistently. However, their main contribution is
a technique to recover from errors (which is not as important in our domain),
while our contributions are a set of domain-specific optimizations, and a heuris-
tic to drive the exploration. Also, we focus on applying multi-path exploration
to unpacking samples with a complex command parsing logic, a problem that
typically presents a high complexity. To this aim, our approach mixes consistent
and inconsistent multi-path exploration to maximise system consistency in order
to reach deep execution paths. Overall, our goal is not to improve multi-path
exploration, but to show if and how this technique can be used for unpacking,
and which customizations are required in order to improve its results. To sum
up, all these approaches suffer from the well-known path explosion problem [21].
This limitation makes necessary to develop heuristics and optimizations in or-
der to improve the feasibility of multi-path exploration, and this is the main
contribution of our paper.

6 Conclusions

In previous sections we have described the domain-specific optimizations and
heuristics that can be implemented over multi-path exploration to unpack shifting-
decode-frames protectors. We have evaluated our approach over three different
case studies covering Backpack, a function granularity based packer, and Ar-
madillo, a well-known packer that protects binaries with a page-granularity. Our
test cases cover different samples with complex command parsing logic.

Multi-path exploration has been addressed by several researchers but it is not
generally used for real-scale malware analysis due to its technical complexity and
its limitations. Our results show that it is possible to apply optimizations and
heuristics to multi-path exploration in order to address specific problems such
as the malware protection technique covered by this study.

Acknowledgements

We would like to thank the reviewers for their insightful comments and our
shepherd Brendan Dolan-Gavitt for his assistance to improve the quality of this
paper. This research was partially supported by the Basque Government under
a pre-doctoral grant given to Xabier Ugarte-Pedrero.



References

1. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM conference on
Computer and communications security, ACM (2008) 51–62

2. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: Automating
the hidden-code extraction of unpack-executing malware. In: Proceedings of the
22nd Annual Computer Security Applications Conference (ACSAC). (2006) 289–
300

3. Kang, M., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed
executables. In: Proceedings of the 2007 ACM workshop on Recurring malcode.
(2007) 46–53

4. Cesare, S., Xiang, Y.: Classification of malware using structured control flow. In:
Proceedings of the Eighth Australasian Symposium on Parallel and Distributed
Computing-Volume 107, Australian Computer Society, Inc. (2010) 61–70

5. Sharif, M., Yegneswaran, V., Saidi, H., Porras, P., Lee, W.: Eureka: A Framework
for Enabling Static Malware Analysis. In: Proceedings of the European Symposium
on Research in Computer Security (ESORICS). (2008) 481–500

6. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast, generic, and safe
unpacking of malware. In: Computer Security Applications Conference, 2007. AC-
SAC 2007. Twenty-Third Annual, IEEE (2007) 431–441

7. Coogan, K., Debray, S., Kaochar, T., Townsend, G.: Automatic static unpack-
ing of malware binaries. In: Reverse Engineering, 2009. WCRE’09. 16th Working
Conference on, IEEE (2009) 167–176

8. Ugarte-Pedrero, X., Balzarotti, D., Santos, I., Bringas, P.G.: [SoK] Deep Packer
Inspection: A Longitudinal Study of the Complexity of Run-Time Packers. In:
Proceedings of the IEEE Symposium on Security and Privacy, IEEE Computer
Society (May 2015)

9. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proceedings of the 23rd Annual Computer Security Applications Conference
(ACSAC). (2007) 421–430

10. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically
identifying trigger-based behavior in malware. In: Botnet Detection. Springer
(2008) 65–88

11. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin, H.: Bitscope: Automatically dissecting malicious binaries. School of
Computer Science, Carnegie Mellon University, Tech. Rep. CMU-CS-07-133 (2007)

12. Jia, C., Wang, Z., Lu, K., Liu, X., Liu, X.: Directed hidden-code extractor for
environment-sensitive malwares. Physics Procedia 24 (2012) 1621–1627

13. Peng, F., Deng, Z., Zhang, X., Xu, D., Lin, Z., Su, Z.: X-force: Force-executing
binary programs for security applications. In: Proceedings of the 2014 USENIX
Security Symposium, San Diego, CA. (2014)

14. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: Security and Privacy, 2007. SP’07. IEEE Symposium on, IEEE (2007)
231–245

15. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer
security via binary analysis. In: Information systems security. Springer (2008) 1–25

16. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid



to ask). In: Security and Privacy (SP), 2010 IEEE Symposium on, IEEE (2010)
317–331

17. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th

USENIX conference on Operating Systems Design and Implementation (OSDI).
Volume 8. (2008) 209–224

18. Chipounov, V., Kuznetsov, V., Candea, G.: S2e: A platform for in-vivo multi-path
analysis of software systems. ACM SIGARCH Computer Architecture News 39(1)
(2011) 265–278

19. Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signatures using
weakest preconditions. In: 20th IEEE Computer Security Foundations Symposium
(CSF), IEEE (2007) 311–325

20. Leino, K.R.M.: Efficient weakest preconditions. Information Processing Letters
93(6) (2005) 281–288

21. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Tools for Practical Software Verification. Springer (2012)
1–30

22. Bilge, L., Lanzi, A., Balzarotti, D.: Thwarting real-time dynamic unpacking. In:
Proceedings of the Fourth European Workshop on System Security, ACM (2011)
5

23. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: How
to automatically generate procedures to detect cpu emulators. In: Proceedings of
the USENIX Workshop on Offensive Technologies (WOOT) Vol 41. (2009) 86

24. Deng, Z., Zhang, X., Xu, D.: Spider: Stealthy binary program instrumentation
and debugging via hardware virtualization. In: Proceedings of the 29th Annual
Computer Security Applications Conference, ACM (2013) 289–298

25. Balzarotti, D., Cova, M., Karlberger, C., Kirda, E., Kruegel, C., Vigna, G.: Efficient
detection of split personalities in malware. In: Network and Distributed System
Security Symposium (NDSS). (2010)

26. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using
conditional code obfuscation. In: Network and Distributed System Security Sym-
posium (NDSS). (2008)

27. Guo, F., Ferrie, P., Chiueh, T.C.: A study of the packer problem and its solutions.
In: Proceedings of the 2008 Conference on Recent Advances in Intrusion Detection
(RAID). (2008) 98–115

28. Stewart, J.: Ollybone: Semi-automatic unpacking on ia-32. In: Proceedings of the
14th DEF CON Hacking Conference. (2006)

29. Kim, H.C., Inoue, D., Eto, M., Takagi, Y., Nakao, K.: Toward generic unpacking
techniques for malware analysis with quantification of code revelation. In: The 4th

Joint Workshop on Information Security. (2009)
30. Caballero, J., Johnson, N., McCamant, S., Song, D.: Binary code extraction and

interface identification for security applications. In: Proceedings of the 17th Annual
Network and Distributed System Security Symposium, ISOC (2009) 391–408

31. Rolles, R.: Unpacking virtualization obfuscators. In: 3rd USENIX Workshop on
Offensive Technologies.(WOOT). (2009)

32. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Automatic reverse engineering of malware
emulators. In: 30th IEEE Symposium on Security and Privacy, IEEE (2009) 94–109

33. Coogan, K., Lu, G., Debray, S.: Deobfuscation of virtualization-obfuscated soft-
ware: a semantics-based approach. In: Proceedings of the 18th ACM conference
on Computer and communications security, ACM (2011) 275–284



34. Ghosh, S., Hiser, J., Davidson, J.W.: Replacement attacks against vm-protected
applications. In: ACM SIGPLAN Notices. Volume 47., ACM (2012) 203–214

35. Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained malware analysis using stealth
localized-executions. In: IEEE Symposium on Security and Privacy, IEEE (2006)
15–pp

36. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating emulation-
resistant malware. In: Proceedings of the 1st ACM workshop on Virtual machine
security, ACM (2009) 11–22


	RAMBO: Run-time packer Analysiswith Multiple Branch Observation

