
Micro-Virtualization Memory Tracing
to Detect and Prevent Spraying Attacks

Stefano Cristalli
Università degli Studi di Milano

Mattia Pagnozzi
Università degli studi di Milano

Mariano Graziano
Cisco Systems Inc.

Andrea Lanzi
Universita’ degli Studi di Milano

Davide Balzarotti
Eurecom

Abstract
Spraying is a common payload delivery technique

used by attackers to execute arbitrary code in presence
of Address Space Layout Randomisation (ASLR). In
this paper we present Graffiti, an efficient hypervisor-
based memory analysis framework for the detection and
prevention of spraying attacks. Compared with previ-
ous solutions, our system is the first to offer an effi-
cient, complete, extensible, and OS independent protec-
tion against all spraying techniques known to date. We
developed a prototype open source framework based on
our approach, and we thoroughly evaluated it against all
known variations of spraying attacks on two operating
systems: Linux and Microsoft Windows. Our tool can
be applied out of the box to protect any application, and
its overhead can be tuned according to the application
behavior and to the desired level of protection.

1 Introduction

Memory corruption vulnerabilities are currently one of
the biggest threat to software and information security.
Education plays a very important role in this area, mak-
ing programmers aware of common threats and teach-
ing them how to avoid mistakes that may lead to ex-
ploitable bugs in their code. However, education alone
is not enough, and a good defense in depth approach re-
quires also to put in place multiple layers of mitigation,
detection, and exploit prevention mechanisms.

In this field, over the past decade we have witnessed a
constant arms race, with the system designers of compil-
ers and operating systems on one side, and the attackers
on the other. Over the years, the former have introduced
many new security features to increase the complexity
of exploiting memory corruption vulnerabilities [31, 6,
41, 9, 40]. This list includes stack canaries [13, 12], data
execution prevention (DEP) [2], Address Space Layout
Randomization (ASLR) [43, 7, 26, 8], Structured Ex-

ception Handling Overwrite Protection (SEHOP) [29],
and Control Flow Integrity [3]—just to name some of
the most popular solutions. Even though the combina-
tion of all these techniques have certainly increased the
security of modern operating systems, no matter how
high the bar was set, attackers have always found a way
to overcome it to take control of a vulnerable system.

ASLR is certainly one of the most common and suc-
cessful techniques adopted by modern operating sys-
tems. In fact, the objective of the majority of mem-
ory corruption exploits is to allow the attacker to exe-
cute arbitrary code in the context of a vulnerable pro-
cess. The code can be injected by the attacker herself,
or it can be constructed by reusing instructions already
present in memory (e.g., in the case of return-to-libc or
return oriented programming). Either way, the attacker
needs to know where such code is located in memory,
in order to divert the control flow of the application to
that precise address. And here is where ASLR plays its
role: by completely randomizing the layout of the pro-
cess memory, it makes much harder for the attacker to
predict where a certain buffer (or an existing code gad-
get) will be located at run-time. Unfortunately, attackers
found a very simple and effective solution to overcome
this protection: fill the memory with tens of thousands
of identical copies of the same malicious code, and then
jump to a random page1, hoping to land in one of the
pre-loaded areas. This makes this payload delivery tech-
nique, called spraying, one of the key elements used in
most of the recent memory corruption exploits.

Researchers have been looking for ways to mitigate
this technique. Unfortunately, the few solutions pro-
posed so far [36, 16, 21] were all tailored to defend 1)
a particular application (typically the JavaScript inter-
preter in Internet Explorer), 2) using a given memory al-
locator, 3) in a specific operating system, and 4) against

1Often a fixed address located on the process heap.

1



a single form of heap spraying. This made these solu-
tions difficult to port to other environments, and unable
to cope with all possible variations of heap spraying at-
tacks. In fact, the original heap spraying attack is now
just the tip of the iceberg. The technique has rapidly
evolved in different directions, for example by taking
advantage of just in time compilers (JIT), by focusing
on the allocation of pools in the OS kernel, or by rely-
ing on stack pivoting to spray data instead of code. We
strongly believe that the increased adoption and sophis-
tication of heap spraying techniques clearly demonstrate
the need for a general and comprehensive solution to this
problem.

In this paper we present Graffiti, a hypervisor-based
solution for the detection and prevention of all known
variations of spraying attacks. We decided to implement
our solution at the hypervisor level to obtain the first OS-
independent, allocator-agnostic approach to track mem-
ory allocations that does not depend on the knowledge of
the protected process, or system. By leveraging a novel
micro-virtualization technique, Graffiti proposes an ef-
ficient and OS-agnostic framework to monitor memory
allocations of arbitrary applications. The system is mod-
ular, and relies on a set of plug-ins to detect suspicious
patterns in memory in realtime. For example, we devel-
oped a set of different detection modules based on statis-
tical inference, designed to precisely identify all known
spectrum of spraying attacks known to date. Moreover,
while all the previous techniques [36, 21] focused on the
defense of a particular application or memory allocator
against a single form of heap spraying, our system offers
the first general and portable solution to the problem.

Graffiti also offers a hot-plugging capability and there-
fore it can be installed on-the-fly without rebooting the
machine and without modifying the native operating
system. Our experiments, conducted both on Linux and
Microsoft Windows, show that Graffiti has no false neg-
atives and low false positives, with an overhead similar
to the one of previous, much more limited, solutions.

In summary, our work makes the following contribu-
tions:

• We present the principles, design, and implemen-
tation of an effective real-time memory analysis
framework. On top of our framework, we de-
veloped a set of heuristics to detect existing heap
spraying techniques. To the best of our knowledge,
we are the first to present a general, efficient, and
comprehensive framework that can be applied to all
modern operating systems and all existing applica-
tions.

• We propose a novel micro-virtualization technique
that allows Graffiti to monitor the entire system in

terms of both processes and kernel threads, with
low overhead.

• We have developed a prototype tool, and performed
an experimental evaluation on several existing real-
world spraying techniques. Our experiments show
that the system is able to detect all the classes of
spraying attacks we analyzed with low false posi-
tives and acceptable performance.

• We released the source code of the current Graf-

fiti prototype, which is available at the fol-
lowing link: https://github.com/graffiti-

hypervisor/graffiti-hypervisor

The rest of the paper is organized as follows. Sec-
tion 2 provides background information on spraying at-
tacks. Section 3 provides preliminary notions about In-
tel VT-x technology. Section 4, Section 5, Section 6 de-
scribe our solution from an architectural point of view.
Section 7 reports results on evaluating Graffiti. Section 8
discusses about the security evaluation of our system.
Section 9 compares our work with other relevant re-
search and Section 10 discusses future directions and
concludes the paper.

2 Spraying Attacks

Heap spraying is a payload delivery technique that
was publicly used for the first time in 2001 in the
telnetd remote root exploit [44] and in the eEye’s
ISS AD20010618 exploit [15]. The technique became
popular in 2004 as a way to circumvent Address Space
Layout Randomization (ASLR) in a number of exploits
against Internet Explorer [46, 47, 38].

Since 2004, spraying attacks have evolved and be-
came more reliable thanks to improvements proposed by
Sotirov [42] and Daniel [14] for a precise heap manipu-
lation. Spraying can now be classified in two main cat-
egories, based on the protection mechanisms in place in
the target machine: Code Spraying and Data Spraying.
If Data Execution Prevention [2] (DEP) is not enabled,
the attacker can perform the exploit by directly spray-
ing the malicious code (e.g., the shellcode) in the victim
process memory. On the other hand, when the system
uses the DEP protection, the attacker would not be able
to execute the injected code. To overcome this problem,
two main approaches have been proposed: (a) perform
the heap spraying by taking advantage of components
that are not subjected to DEP, such as Just in Time Com-
pilers (JITs), or (b) inject plain data that points to Return
Oriented Programming (ROP) gadgets. While the inter-
nal details between the three aforementioned approaches

2



Figure 1: Heap Spraying attack

Figure 2: Mimicry attack

may be quite different, what is important for our re-
search is that all these techniques share the same goal,
i.e., to control the target dynamic memory allocation in
order to obtain a memory layout that allows arbitrary
code execution in a reliable way.

It is important to note that spraying is still a valuable
technique also in x86_64-based operating systems. In
particular, this is the case for user-after-free vulnerabili-
ties – but spraying can also be used in conjunction with
vulnerabilities in the ASLR implementation [10], in par-
ticular types of vulnerabilities [20], or because of the
wide adoption of 32bit processes in 64bit operating sys-
tems (as recently shown by Skylined [39]).

2.1 Memory Footprint

The first characteristic of a heap spraying attack that
comes to mind is the large amount of memory that is
suddenly allocated by a process. Therefore we could er-
roneously believe that this unusual behavior alone (i.e.,
many pages allocated in a very short amount of time)
could be sufficient to implement a solution to detect
spraying attacks. For example, a simple approach could
measure the speed of memory allocation and the aver-
age amount of memory usually allocated by the applica-
tion under analysis. The first parameter would react to
a quick memory increase, a common aspect of most of
the existing attacks. The second parameter, once prop-
erly tuned for the application to protect, would act as
a threshold of memory allocation, beyond which the
behavior becomes suspicious and an alert is raised. It
seems reasonable to believe that, by checking these two
parameters, a detector could successfully prevent spray-
ing attacks.

One of the main motivation of our work is to prove
that the use of these two parameters is not sufficient for
designing an effective spraying detection system. To
prove our point, we designed a set of experiments to
show that an attacker can tune the memory allocation
behavior of an exploit to mimic the one of a normal ap-
plication.

In our tests we used as a case study a classic heap
spray attack against Internet Explorer 8 (described in
CVE-2011-1996) but it is possible to replicate similar
results with any applications where the memory alloca-
tion depends on input data. The first test we performed
aimed at measuring the memory allocation curve while
the user was visiting a small set of web sites. Fig-
ure 1 shows that the parallel execution of four common
web applications (using parallel browser’s tabs) boosts
the memory allocation of Internet Explorer to around
200MB. The same graph also shows the allocation curve
of the CVE-2011-1996 exploit launched by Metasploit.
In this case, the malicious behavior is easy to detect
since it produces a huge allocation of memory in a short
period of time – that then drops drastically after the suc-
cess of the exploit. The drop is due to the fact that
the shellcode spawns a process and releases the system
resources of the previous execution thread along with
its own memory. Other spraying attacks exhibit simi-
lar curves, a weakness that could be used to identify an
ongoing malicious activity.

In the second experiment we wanted to answer two
separate questions: i) how the total amount of memory
allocated by the exploit affects the reliability of a spray-
ing attack; and ii) whether it is possible for an attacker
to slow down the attack in order to mimic the slope of
the allocation curve observed on benign web pages. To

3



this end, we first modified our exploit to decrease the
amount of sprayed memory. As we expected, reducing
the number of allocated pages also reduces the probabil-
ity of landing on one of them, thus making the exploit
less reliable. We measured this phenomenon by run-
ning each exploit configuration ten consecutive times,
counting in each case the number of successful attacks.
The results of our tests show that the memory used by
the original exploit can be largely reduced maintaining
an acceptable success rate. For instance, the attack was
still successful in 80% of the cases with a total memory
consumption of only 131 MB – that is considerably less
than what IE8 used in our benign scenario.

We then modified again the original exploit, this time
introducing a delay between each memory allocation to
mimic the behavior of a benign application. This change
had no impact on the success rate of the attack. Figure 2
shows the allocation curve of our modified exploit, com-
pared with a base line obtained by running Internet Ex-
plorer with six open tabs. From this experiment, it is
clear that neither the speed nor the amount of memory
can be used as the only criteria to detect a potential heap
spraying exploit. By setting the threshold too low, the
system would generate too many false alarms, and by
raising the threshold too high the system would be vul-
nerable to evasions.

This conclusion motivates our further investigation to
design a better memory monitoring and spraying attacks
detection technique.

3 Preliminary Notions on Intel VT-x

Before we discuss our solution, we need to briefly intro-
duce some virtualization concepts that we will use in the
rest of the paper. Intel VT-x is a technology available in
various Intel CPUs to support virtualization [23, 30].

VT-x defines two particular transitions: vmexit, to
move from the guest to the hypervisor, and vmentry,
to move in the opposite direction. As a result, the hy-
pervisor is executed only when particular events in the
guest trigger an exit transition. The set of events caus-
ing these transitions is extremely fine grained and can be
configured by the hypervisor itself. Such events include
exceptions, interrupts, I/O operations, and the execution
of privileged instructions (e.g., accesses to control reg-
isters). Exits can also be explicitly requested by in-guest
software, using the vmcall instruction. Because of its
similarity to system calls, this approach is commonly
called hypercall. Whenever an exit occurs, the hard-
ware saves the state of the CPU in a data structure called
Virtual Machine Control Structure (VMCS). The same
structure also holds the set of exit-triggering events that

are currently enabled, as well as other control informa-
tion of the hypervisor.

Another technology we need to introduce is the Ex-
tended Page Tables (EPT). This technology has been
introduced to support memory virtualization, which is
the main source of overhead when running a virtualized
system. If enabled, the standard virtual-to-physical ad-
dress translation is modified as follows. When a soft-
ware in the guest references a virtual address, the ad-
dress is translated into a physical address by the Mem-
ory Management Unit (MMU). However, the result of
this operation is not a real physical address, but a guest
physical address (gpa). The hardware then walks the
EPT paging structures to translate the gpa into a host
physical address, that corresponds to the actual physi-
cal address in the system memory. The EPT technology
also defines two new exit transitions: EPT Misconfigu-
ration and EPT Violation, respectively caused by wrong
settings in EPT paging entries and by a guest attempting
to access memory areas it is not allowed to. By alter-
ing the EPT entries, the hypervisor has full control of
how the guest accesses physical memory. For example,
it can remove write permissions from an entry, so that
any write-access by the guest triggers a violation.

Threat Model
Our threat model considers an attacker that is able to
exploit (either locally or remotely) an application run-
ning on the machine and to perform a spraying payload
delivery. The use of a hypervisor-based technology is
motivated by the goal of providing an OS-independent
detection system and a more secure reference monitor.

Since we leverage late-launching to deploy our solu-
tion on operating systems running on physical machines,
without requiring a reboot, we assume that the machine
to be protected is clean when Graffiti is loaded. Thus, we
consider the protection of already infected systems to be
out of the scope of this paper.

4 Architecture Overview

In order to considerably improve over the state of the
art, we set five main requirements for our detection sys-
tem. First, it should be completely independent from
the memory allocator used by the protected applications
(R1). Second, it has to operate system-wide, i.e., it
should be able to detect any memory allocation and de-
allocation that occurs in the system (R2) and it must be
able to recognize any memory page that gets executed
in the operating system (R3). Fourth, in order to op-
erate correctly, our system should not require any OS-

4



dependent information (R4). Finally, the overhead intro-
duced by the system should be reasonable, in line with
other system-wide protection mechanisms. In particular,
we consider a “reasonable” overhead, anything compa-
rable to the one introduced by other virtualization sys-
tems such as XEN or VMware (R5).

To satisfy these five requirements, our system was de-
signed to be easily extensible and configurable, and to
tune its behavior (and therefore its overhead) to match
the current level of risk of the monitored system. This is
achieved by using two separate modes of operation.

Our monitoring platform is based on a custom hyper-
visor that normally runs in what we call monitor mode.
In this mode, the hypervisor intercepts every new mem-
ory page that is allocated in the system, along with the
CR3 register associated to the process that is requesting
the memory. Whenever the total amount of memory re-
quested by a single process exceeds a certain threshold
(computed experimentally as described in Section 2.1)
the system switches to security mode and starts perform-
ing additional checks to detect the presence of a possible
attack for that particular application (while remaining in
monitor mode for the other applications). In Section 2.1
we proved that a fixed threshold is not able to properly
capture all the possible variations of spraying attacks.
For this reason, in our system we use a threshold not
for detection, but only to improve the performance of
the system by disabling expensive checks when the total
memory used by the process is too low for an attack to
be successful. It is important to stress that in our solu-
tion, lowering the threshold for a given application does
not introduce any false positives from the detection point
of view, but only increases the overhead for that particu-
lar application alone (and not for the rest of the running
system or for any other application).

When a process exceeds this minimum allocation
threshold, the hypervisor performs two main tasks.
First, using the EPT, it removes the execution permis-
sion from all the allocated pages, so that any attempt to
execute code will be intercepted by the system. Second,
it invokes the static analyzer component to check for the
presence of a potential spraying attack. The actual de-
tection is delegated to a configurable number of analysis
plugins.

Figure 3 provides an overview of the system archi-
tecture and shows the interactions among the different
components. The figure is divided in three parts, with
user space on top, kernel space in the middle, and our
custom hypervisor at the bottom. When an application
(in this case a web browser) requests new memory, the
kernel searches for a free page and it allocates it. At this
point, when the OS tries to update the page table, the op-
eration is intercepted by our hypervisor. If our system is

Kernel

#1023
...
...

#0

VulnBrowser
int interpreter()
{
...
malloc(...);
...
}

GET / HTTP/1.1

explo.js

h
t
t
p
:
/
/
e
v
i
l
.
c
o
m

m
a
l
l
o
cUser mode

Kernel mode

Non-root mode
Root mode

Trap!

Hypervisor

Memory
Tracer

Attack
Detector

Hardware

Figure 3: Architecture of the Memory Allocation Tracer.

running in monitor mode, the hypervisor only tracks the
new memory allocation and gives back control to the
operating system. If instead the application has already
requested enough memory to trigger the security mode,
our attack detection routines are executed to inspect the
memory and flag any heap spraying attempt.

System Deployment
The main component that enables the protections en-
forced by Graffiti needs to keep an accurate track of all
the allocation and deallocation operations that occur in
the system. The main motivation of using a hypervisor
is that, from a low level perspective, memory allocation
is strictly dependent only on the hardware architecture,
and not on the operating system itself. Thus, by working
below the operating system, Graffiti avoids all the intri-
cacies introduced by the various allocation engines, and
therefore it does not require to modify or instrument the
protected system (e.g., to place hooks inside OS compo-
nents). Graffiti leverages late-launching to load its pro-
tection mechanism while the target is running. This hot-
plug capability is achieved without rebooting the sys-
tem, so it is transparent to the native OS. Finally, it is
important to note that Graffiti is a very flexible system
and can be configured according to the target needs. For
instance, it can be deployed to monitor only a single sen-
sitive process (e.g., a browser, or a PDF viewer), a set of
thereof, or even the entire running system.

Our current prototype is implemented as an extension
of HyperDbg, an open-source hardware-assisted hyper-
visor framework [17]. In Sections 5 and 6 we present

5



the design and implementation of the two main compo-
nents of the system: the Memory Tracer and the Attack
Detection Routines.

5 Memory Tracer

To implement our heap spraying protection technique,
we must first keep track of all the allocation and deallo-
cation operations that occur inside the system. Ideally,
the most obvious solution to track memory allocations
would be to modify the allocator itself, by extending the
operating system with a new tracking feature. By doing
so, however, our system would need to be customized
for a particular operating system, and we would need to
constantly update our tracker according to any OS up-
grade.

To avoid this problem, we decided to implement our
tracking approach at the hypervisor level (requirements
R1 and R4), i.e., below the operating system. Since our
approach is based on virtualization, from now on we will
refer to the protected system alternatively with the term
guest or target.

5.1 Tracer Design

Our system is designed to intercept every modification
that is made by the guest OS to paging structures, and
to recognize when the change corresponds to the cre-
ation or to the elimination of a page. To better illustrate
our tracing technique, we will often refer to the paging
structures that are used in the Intel architectures [23].

Whenever a process requires a new page, the kernel
walks the paging structures of the requesting process
looking for a usable Page Table Entry (PTE) in one of
the Page Tables of the process (i.e., the second level
structures). If none is found, it either allocates a new
Page Table, by altering an entry on the first level paging
structure (also known as the Page Directory), or it swaps
some of the pages of the process to disk to create some
empty slots. Once it has found or created a usable PTE,
the kernel modifies it to map the allocated physical page
to a virtual address, sets the lower 12 bits of the PTE
to match the attributes of the page (e.g., read/write,
user/supervisor), and returns the virtual address to
the requesting process.

Our defense mechanism needs to keep a fine-grained
view of every allocation to protect the system against
spraying attacks. In particular, according to the address
translation and new page allocation we need to intercept
six different events: (1) Creation (2) Modification and
(3) removal of a page. (4) Creation (5) Modification (6)
Removal of a page table.

Whenever one of these six events is triggered by the
kernel, our hypervisor intercepts the operation and acts
accordingly. The first triple of events is traced to keep
track of which pages a process allocates. The second
group, on the other hand, must be traced to ensure that
our system maintains a complete view of the allocated
pages and does not miss any event in the first category.

5.2 Page Table Monitoring
Since Graffiti operates at the hypervisor level, it lever-
ages the EPTs to write-protect all the page structures of
a process. By doing so, it can intercept all modifica-
tion attempts, as part of any of the six cases enumerated
above. At first, the hypervisor detects when a new pro-
cess is created by intercepting write operations to the
CR3 register. As soon as a it is spawned by the kernel, a
process will have just a limited number of paging struc-
tures, possibly inherited by its parent process (e.g., on
Linux this depends on the flags of the clone() syscall
that is used to spawn the process). To protect all its pag-
ing structures, Graffiti needs to traverse the page direc-
tory (pointed by the value of the CR3 register) and write-
protect all the page tables pointed by each PDE. Page
tables are scanned as well, to keep track of the physical
pages allocated to the process by the kernel. After this
setup phase is completed, each attempt to modify one of
the pages would cause a trap in our hypervisor system.

Implementing the approach we just described while
maintaining an acceptable overhead is a challenging
task. At first, we use the EPTs to write-protect every
paging structure of a target process. By doing so, when-
ever the OS kernel attempts to modify such structures
because the process requires it (1), an EPT violation
transfers the execution to the memory tracer component
of our hypervisor framework (2). The violation is han-
dled by removing the write protection and keeping a
copy of the value of the entry (PTE or PDE) being modi-
fied (3), and re-executing the faulting instruction by per-
forming an entry with the monitor trap flag (MTF [23])
raised (4). After the instruction has been executed, the
hypervisor obtains again the control thanks to the exit
caused by MTF (5), compares the new value stored in
the entry with the old one and uses this information to
infer which of the six kernel operations described pre-
viously has occurred (6). Eventually, the protection is
restored (7) and the control is given back to the guest
kernel (8).

To make the tracing mechanism clearer, consider the
following scenario: the hypervisor intercepts a write at-
tempt to the 2nd PTE of the 1st page table. This PTE
originally contains the value 0. After single-stepping
through the write instruction, we collect the new value
of the PTE: old:0x00000000 new:0xcaffe007.

6



This means that the guest kernel is mapping a physi-
cal page (at address 0xcaffe000) with a rw permission
and making it accessible to both user and kernel space.
In fact, the three lowest bits are set, making the entry
present, writable, and accessible to user mode processes.
For our framework, this operation corresponds to a cre-
ate page event. To intercept when a process is created,
we catch CR3 write operations in the guest. When the
CR3 value that is going to be written corresponds to the
one of a process we want to protect, we apply the pro-
tection to its paging structure, as explained above. It is
important to stress that our approach is completely OS
independent, as the only knowledge we rely on is the
meaning of the bits stored in the paging structures, and
those solely depend on the CPU architecture.

5.3 Graffiti Micro-Virtualization

The system described so far does not satisfy the require-
ment R2. In fact our solution should be able to monitor
the entire system, and not only a few processes at a time.
Unfortunately, by extending the previous approach to
the whole guest operating system (all user-space pro-
cesses and kernel threads), we observed a thrashing [4]
phenomenon that introduced a large overhead in the
memory allocation. This phenomenon creates a large
number of context switches between OS and hypervisor,
thus increasing the system overhead.

This phenomenon happens when a modification of a
memory page of the running process creates as a side
effect a modification of a memory page of another non-
running process. This is a consequence of the fact that
some memory pages are shared among processes, and
some kernel tasks perform operations on memory pages
of different processes. We refer to this problem as the
interference problem.

The impact of this interference can be measured by
running two simple tests. In the first, we computed the
overhead introduced by our system while protecting a
single process (Internet Explorer 10) and in the second
we protected other two processes (Acrobat and Firefox)
on top of Internet Explorer. The overhead on Internet
Explorer alone went from 22% in the first test to 63%
in the second, just as a side effect of monitoring two
additional applications. Unfortunately, the interference
of protecting more processes and the kernel itself would
quickly slow down the entire system to a point in which
it would not be usable anymore.

Ideally, we would like to design our system to
avoid the interference problem, so that the overhead
would not depend on the number of monitored pro-
cesses. To achieve this goal, we propose a novel micro-
virtualization technique, where each process runs inside

its own virtual memory sandbox and our tracking sys-
tem enables the memory protection of just the process
which is currently running. More in details, our micro-
virtualization technique bases its approach on the fact
that the VMCS contains a pointer to the EPT (EPTP)
currently used by the hypervisor (see Section 3). Since
we use the EPT to protect the processes (as explained
in Section 5), our idea is to create a different EPT for
each of the processes we protect, and change the EPTP
in the VMCS at every context switch. From a low level
perspective, this corresponds to intercepting every CR3

write operation (also easily trappable through VT [17])
and modifying the VMCS so that the EPTP points to
the EPT of the process that has been scheduled for ex-
ecution. Protected processes will have their own EPTs,
while un-protected ones will just use a common EPT.
To this end, every time a new process is created, the
system creates a new EPT and associates it to the new
process. It is important to note that the creation of this
new EPT is not very costly, since the page table at the
process creation is tiny and we only need to identify and
protect some of them. By using such a mechanism, the
hypervisor automatically disables the memory tracking
of the other unprotected processes and enables the trap-
ping only for the pages that are related to the currently
protected processes, thus avoiding the thrashing side ef-
fect. Since this solution requires only to change the
EPT pointer when a context switch occurs, it does not
increase the overhead of the system.

In order to validate our micro-virtualization mech-
anism we performed two main experiments by using
three applications: IE10, Acrobat Reader and Firefox.
During our first experiment we only protect one appli-
cation (IE10) and we compute the execution time and
the overhead obtained by surfing several web pages in
three main cases: (1) without hypervisor (2) with out
hypervisor but without micro-virtualization and (3) with
hypervisor and micro-virtualization enabled. From this
first experiment the micro-virtualization does not intro-
duce any additional overhead to the system when is used
to protect a single process (23% in both cases with and
without micro-virtualization). The only overhead intro-
duced by the micro-virtualization occurs during the first
loading of the new process. In this case the hypervisor
needs to build up the EPT table for the new process by
walking the process page tables. The overhead intro-
duced during the loading time is 8%.

In the second experiment we test the scalability of
our system with the new micro-virtualization mecha-
nism enabled. This time we protect all three applications
and we compute, like in the previous experiment, the ex-
ecution time and the overhead obtained by surfing sev-
eral web pages in the same three main cases: (1) with-

7



out monitoring the application (no hypervisor enabled)
(2) with hypervisor but without micro-virtualization and
(3) with hypervisor and micro-virtualization enabled.
The overhead was 63% without micro-virtualization
and 23% with micro-virtualization, confirming that the
micro-virtualization is able to remove the overhead in-
troduced by the interference problem.

As a result of our novel micro-virtualization architec-
ture, our system is able to monitor an arbitrary num-
ber of different applications, without any increase in the
system overhead. More specifically the overhead only
applies to a particular protected application and it does
not propagate to the rest of the system. For instance, if
the user wants to protect only the browser and the PDF
viewer against heap spraying attacks, any other applica-
tion would not suffer any side effect or slowdown from
our tracking system.

6 Detection Components

Whenever the total memory dynamically allocated by a
process raises over a certain configurable threshold, the
tracer switches to security mode and triggers a config-
urable number of static analysis routines to verify if a
spraying attack is ongoing in the system.

Our current prototype includes three different com-
ponents, presented in details in the next sections. These
serve only as possible examples of the heuristics that
can be easily plugged into our platform, and they could
therefore be improved or extended with other tech-
niques.

Malicious Code Detector
The aim of this component is to detect the simplest form
of heap spraying. In this case, we assume the heap is
randomized but executable, and therefore the attacker
can spray the memory of the vulnerable target with mul-
tiple copies of a shellcode. Thus, the goal of this de-
tector is to identify the presence of shellcodes inside the
memory allocated by a process.

Our technique works as follows. First, the detector
scans a fraction n of the most recently allocated memory
pages and tries to disassemble them starting at twenty
randomly selected offsets. For simplicity, any sequence
of assembly instructions that terminates with a control
transfer instruction that invokes a library call or system
call is marked as a potential shellcode. To avoid cases
where an attacker tries to obfuscate its attack by using an
indirect control transfer instruction (iCTI), we consider
each iCTI as a potential shellcode terminator.

The scan process is repeated for each allocated page
and the detector finally reports the distribution of the

number of potential shellcode detected in each page. If
the average number is higher than a given value, it raises
an alarm. This approach derives from the observation
that in the normal operation of a benign program only a
small portion of the analyzed memory pages would con-
tain a relevant fraction of valid instructions sequences.
In an exploitation scenario, instead, most of the ana-
lyzed pages would contain close to 20 potential shell-
code sequences. It is important to note that when the
system starts disassembling from one page it continues
till it reaches a code pointer, that may as well be located
in a different page. If multiple pages are involved in
such analysis they are all considered and marked as a
shellcode container.

Self-unpacking Shellcode Detector

In this second scenario, we assume the same environ-
ment described before (ASLR enabled, DEP disabled),
but we now consider the case in which an attacker packs
her shellcode to make the detection more difficult. For
example, all Metasploit payloads in spraying-assisted
exploits are packed by default, e.g., by using the shikata-
ga-nai encoder. Packed shellcodes are typically made
up of a number of seemingly meaningless bytes, pre-
pended with a small unpacking routine. The routine and
the packed code are usually adjacent (i.e., they are lo-
cated in the same memory page), as splitting them would
lead to a waste of space and consequent loss of effective-
ness when mounting the spraying attack.

Our second detection plugin is designed to detect
packed shellcodes as soon as they start unpacking, and
is tightly binded to the memory tracer. The component
enforces what we call a dynamic W⊕X protection. As
soon as the memory tracer detects a new page allocation,
it modifies the EPT entry corresponding to the newly al-
located page so that a violation will be triggered when a
write access to that page is attempted (R-X). The detec-
tor intercepts these attempts and modifies the EPT entry
of the accessed page so that write accesses are enabled,
but not execution accesses (RW-). If this new protec-
tion triggers a violation, we have a write-then-execute
situation, which is fairly common in nowadays systems
(especially with JIT engines). However, this mecha-
nism allows to observe the more anomalous situation in
which code modifies the same memory page in which
it resides, that indicates the presence of self modify-
ing code, used by packed shellcodes as described above.
This technique is also effective when DEP is enabled on
the heap memory, and the attacker uses a JIT-spraying
attack. In fact, if the JIT-sprayed payload is packed, it
will need to unpack itself and thus will trigger our de-
tection heuristic.

8



Data Spraying Detector

When DEP is enabled, and JIT spraying is not a viable
solution (e.g., there is no JIT engine in the vulnerable
process), a possible exploit solution is to use return ori-
ented programming. In this case, the attacker no longer
sprays the heap with executable code but instead with
multiple copies of a ROP chain. To trigger the code, the
attacker then uses a pivoting sequence to move the stack
pointer into the heap and let execution slide down the
ROP chain, as we explained in Section 2.

To detect data spraying attacks, we designed a com-
ponent that samples the most recently allocated mem-
ory pages of a process, and it considers any word inside
them as a potential memory address. For each of these
candidate addresses, the data spraying detector checks
whether this address points to a valid executable page,
and, if so, marks it as a potential code pointer. In case
the total number of code pointers for each page is over a
threshold, the system raises an alarm.

Unfortunately, even though this policy may sound
reasonable at a first glance, we observed that in prac-
tice it suffers from a large amount of both false positives
and false negatives. The first problem is related to the
fact that modern operating systems use different tech-
niques to load pages, one of which is called Demand
Paging [4]. In this case the pages are only brought into
memory when the running-process demands them. This
optimization creates an issue for our detection method
because when the system extracts the potential code
pointers from the memory pages and checks if they point
to a valid code page, the page may not be present in the
page table (even if it is properly allocated). We observed
this behavior during our experiments, and the result is
that certain addresses would be discarded—thus poten-
tially creating false negatives by missing a page that is
part of a spraying attack.

To avoid this issue, we modified our hypervisor to
intercept page faults in the guest system when Graffiti

switches to security mode for a given process. When
the detector checks an address that points to a memory
page that is not mapped, the system does not discard it
but keeps it as a potential code pointer into the memory
structures of the hypervisor. Afterwards, when the pro-
cess gets access to the demanded page, the system loads
it and our detection system intercepts the page faults and
it checks if the potential code pointer points to this mem-
ory page. If true, the system marks all the memory pages
previously allocated that contain such address as suspi-
cious and then it re-applies again the previous technique
on the new set of pages.

The second problem of our original technique is the
high number of false positive we observed in the experi-
ments because benign memory pages also contain a sig-

nificant number of code pointers (e.g., in case of C++
classes or arrays). To reduce the false positives created
by those benign memory pages, we improved our de-
tector algorithm by replacing the pointers counter with
a more sophisticated pointers frequency analysis. The
idea is to compute the frequency of the code pointers
that every page of the entire set contains, instead of ana-
lyzing every page individually. While the absolute num-
ber of code pointers may be deceiving, we observed that
the distribution of those pointers in case of benign ap-
plications is really diverse, while in case of an attack the
distribution tends to be quite uniform.

7 Experimental Results

The goal of our experiments is to first measure the over-
head of the system in a realistic environment and then to
show how effective our heuristics are in distinguishing
spraying attacks from a normal allocation behavior.

Our code is composed by three main software com-
ponents: a core hypervisor framework based on Hy-
perDBG, the micro-virtualization implementation, and
the detector plugins. The core hypervisor framework
is written in a combination of C (17353 LoC) and as-
sembly (545 LoC). The micro-virtualization and detec-
tor components account for 1435 lines of C program-
ming language.

All tests presented in this section were performed on
two machines, equipped with an Intel Core i5-2500 @
3.3 GHz and 8GB of RAM, running respectively Win-
dows 7 Professional 32bit and Debian Wheezy 32bit
(kernel 3.2).

Activation Threshold and Overhead

Our system is designed to be adaptive. Consequently,
the only part that is always active is the Memory Tracer.
Our micro-virtualization solution confines the overhead
to a single process and allows our system to monitor an
arbitrary number of different applications without any
increase in the overhead of the rest of the system.

During normal operation, the tracker overhead is neg-
ligible, and it is only noticeable when the monitored ap-
plication allocates tens of megabytes of memory at a
time – typically at start up or when a large document
is open. To measure this worst case scenario, we used
the stress suite to simulate a program that intensively
allocates memory on a Windows 7 and on a Linux 3.2
hosts at a rate of 8MB every 2 seconds. The overhead
we observed during the allocation phase was of 24% on
Windows and 25% on Linux for a single process with-
out considering context switch. Again, it is important to

9



Figure 4: Detection Overhead for Internet Explorer 8

note the experiments performed in these tests produced
a very intensive memory allocation activity and it is not
representative of the memory behavior of the entire life
of a process.

On top of this overhead, each application can observe
a different overhead when Graffiti switches to security
mode and enables the detection modules to scan the ap-
plication memory. The frequency at which this happens
depends on the value of the activation threshold. The
lower the threshold, the hardest it is for an attacker to
evade detection – but the higher the potential overhead
for the application. “Potential” in this context means
that the actual overhead also depends on the application:
some use so little memory during their normal operation
that the security mode would never be triggered - also
for very low values of the threshold. Moreover, most
of the applications only allocate large amount of mem-
ory when the user opens a document, but then the use of
memory becomes quite constant - and therefore Graffiti’s
negative impact tends to be concentrated only on the few
initial seconds, and becomes negligible after that.

To measure this trade-off we performed two exper-
iments. In the first, we asked some users to surf the
web by using Internet Explorer 8 on Windows 7 with
our detection system activated. We choose IE8 since
this application usually uses a large amount of memory
and it represents one of the main targets of spraying at-
tacks. To mimic a realistic behavior, the users kept a tab
open on GMail, and then alternately opened three other
tabs performing memory intensive activities: watching
videos on YouTube, browsing Facebook, and checking
hundreds of pictures on 9gag. In the second experiment,
we used Acrobat Reader for Linux to open 100 benign
PDF files including conference papers, books, Ph.D. dis-
sertations, and very large manuals (i.e., the Intel Manu-
als).

Following the approach used by Nozzle [36], we se-
lected a sampling rate of 10% (number of pages checked

by our detection module over the total number of pages
allocated). As a reference, with this value Nozzle in-
troduced an overhead of 20% to Internet Explorer. The
overhead obtained with our system is shown in Figure 4
for different values of threshold. Also in the worst case
with the activation threshold set to 150MB, the over-
head was only 12%. Moreover, the heuristic responsi-
ble for most of this overhead is the one that requires to
randomly disassemble the content of the memory pages.
Since this component is useless on any modern OS when
DEP is enabled, the detection overhead of Graffiti be-
comes barely noticeable.

Moreover, our experiments with Acrobat Reader
never reached the activation threshold, even when it was
set at the conservative value of 100MB. In this case, the
overhead of Graffiti on the normal use of the application
was constantly zero – showing that for some popular ap-
plications our framework can provide a very complete
protection against known and unknown attacks with no
additional overhead.

Detection Accuracy
To test the effectiveness of our system, we measured the
true and false positives rates for each individual detec-
tion technique that is currently included in the Graffiti

prototype. To test the detection rate we used several real
world exploits that cover all the different spraying tech-
niques and variations mentioned in this paper. It is im-
portant to note that the six attacks that we chose for our
experiments, summarized in Table 3, are representative
for the entire spectrum of the techniques used by the
spraying attacks described in Section 2. On top of this
qualitative test, we also performed a quantitative test us-
ing over 1000 different malicious PDF documents that
rely on heap spraying in the exploitation phase.

In the first test we show the effectiveness of our sys-
tem to detect exploits based on stack pivoting, by using
the attack described in CVE-2011-1996. The attack first
sprays the stack frames on the heap and then executes a
number of ROP gadgets in order to disable the DEP pro-
tection. During the spraying phase the attack allocates
on average 384MB.

In this case, the static analyzer applied the code point-
ers frequency analysis on the attack memory pages. The
component detected a high number of code pointers with
a variance close to 0 in all the allocated memory pages,
and thus it raised an alert successfully preventing the at-
tack. To evaluate the false positive of such technique,
we instructed our detector to track all the memory pages
allocated by Internet Explorer 8 while browsing the first
1000 top Alexa domains [1]. In this case, the frequency
of code pointers had a very high variance on all mem-
ory pages captured by the system, thus generating zero

10



Web Domain Average Variance

amazon.com 3 259.30
ask.com 7 867.90
baidu.com 8 559.57
blogspot.com 2 158.88
craiglist.org 6 391.15
delta-search.com 8 809.21
facebook.com 23 3521.68
google.co.jp 10 562.99
google.com.br 7 459.57
google.com 10 46.44
instagram.com 14 2763.22
microsoft.com 5 395.72
msn.com 16 2916.28
yahoo.com 14 1183.43

Table 1: Code Pointer Frequency Analysis Results.

Web Domain Shellcode per page Average Guess Offset

amazon.com 10/500 1/20
ask.com 2/500 1/20
baidu.com 48/500 4/20
blogspot.com 64/500 4/20
craiglist.org 10/500 2/20
delta-search.com 8/500 3/20
facebook.com 25/500 4/20
google.co.jp 162/500 3/20
google.com.br 69/500 3/20
google.com 74/500 3/20
instagram.com 224/500 5/20
microsoft.com 0/500 —
msn.com 5/500 1/20
yahoo.com 13/500 1/20

Table 2: Shellcode Frequency Analysis Results.

false alarms (Table 1 reports the results for the first 14
domains analyzed).

In the second set of experiments we tested the effec-
tiveness of the Malicious Code detection component. In
this case we used the exploit for CVE-2009-2477 af-
fecting the Javascript interpreter of Mozilla Firefox 3.5.
This attack exploits a memory corruption vulnerability
in the Firefox browser, in which the Javascript inter-
preter fails to preserve the return value of the escape()
function and results in the use of an uninitialized mem-
ory area. During the exploit, Graffiti reported that the av-
erage number of analyzed pages containing a potential
shellcode was 100% – thus raising an alarm and stop-
ping the attack. To test the false positive of the same
detection technique, we used the same browser to visit
the top 1000 Alexa domains. In this case, the average
number of potential shellcodes per page was always be-
low 50% and therefore no false alert were raised in the
test. In table 2 we reported results about the first 14
domains analyzed, the number of pages that present po-
tential shellcode and the average on shellcode found in
the first 500 allocated memory pages. As we can see
from the table, our malicious code detector component
does not present any false positive.

CVE Application Exploit Technique Detected

2010-0248 Adobe Flash player ROP + packed sc Yes
2011-0609 Adobe Reader JIT + packed sc Yes
2011-2462 Adobe Reader ROP + packed sc Yes
2010-2883 Adobe Reader Ret2Lib + packed sc Yes
2011-1996 IExplorer ROP Yes
2009-2477 Firefox Plain Shellcode Yes

Table 3: Exploitation Detection Results.

In our third experiment, we analyzed the Self-
unpacking Shellcode Detector component. In this case
we selected different CVEs and we used the metas-
ploit [35] tool to exploit them with packed payloads. In
particular, we used two packing methods: the shikata-
ga-nai packer and a simple xor algorithm. Our detection
system was always able to intercept the first execution
of the packed code and consequently detect the attacks
without any false negative. Also for this component, we
tested the false positive rate by browsing the top 1000
domains from the Alexa dataset. We did not observe any
false positive, even though several website included ob-
fuscated Javascript code. A further investigation on ob-
fuscated java-script shows that the de-obfuscation rou-
tine is implemented at the compiler level so it does not
present any problem or generate any false positive in our
system.

To conclude, Table 3 reports all the vulnerabilities we
used for our tests, along with the type of payload deliv-
ery and the detection results of Graffiti. Even though our
detectors had a very high precision in all our tests, an
attacker equipped with knowledge about the internals of
our detectors could try to mimic the behavior of a be-
nign application to evade detection. A further analysis
of such attacks is presented in Section 8.

Aggregated Experiments
So far, we tested each piece of our infrastructure in isola-
tion. In our final experiments, we put all pieces together.
In the first test, we used Graffiti to analyze three datasets:
a set of 1000 malicious PDF documents, a set contain-
ing 1000 benign web pages, and one containing 1000
benign PDFs. The first dataset was collected by a com-
pany working on malware analysis, while the other in-
cluded the top Alexa web pages and random documents
collected from various sources. All experiments were
conducted with a very conservative activation threshold
of 150MB and a sampling rate of 10%. Graffiti suc-
cessfully detected all malicious documents, with zero
false alarms. Moreover, the overhead on loading the
web pages was in average of 23% (a value in line with
previous OS-specific approaches that were only able to
protect the web browser).

11



In the second experiment, we asked real users to use a
Graffiti-protected system during their everyday activities
for a total of 8-to-10 hours per day in a 7-days period.
Graffiti was installed on two Windows 7 machines, con-
figured to monitor Internet Explorer 8 with an activation
threshold of 150 MB. All three spraying attacks detec-
tors were enabled during the experiments (even though
the first was not necessary on this setup). Overall, the
real users visited a total of 492 distinct web pages and
the detectors were activated 55 times, with an average
of ≈8 times per day. On the same period, Graffiti raised
12 alerts on pages that seemed to be benign. A closer
inspection of the FPs showed the data spraying detector
(Section 6) to be the only responsible. This component
is in charge of detecting data spraying attacks and bases
its detection on the number of potential code pointers
present in memory.

It is important to stress the fact that the three detec-
tion plugins are not the main contribution of our work,
and our micro-virtualization framework allows other re-
searchers to easily improve, extend, and replaced them
with other techniques. For instance, a possibility to de-
crease the false positive rate of this component could
be to check not only if the code pointer points to a cor-
rect executable page, but also whether it points to a dan-
gerous machine instruction sequences (e.g., a gadget).
We manually inspected the websites that raised the false
alarms and we found that applying such simple method
would be able to prevent all the alerts. This check could
be activated only when the data spraying detector iden-
tifies a possible attack, to prevent a significant increase
of the overhead.

8 Security Evaluation

It is possible that an attacker, knowing the internals of
our three detectors, could mount a mimicry attack that
can successfully evade detection. For instance, an at-
tacker can elude the code pointers frequency analysis by
mimicking the variance of benign memory pages. Al-
though this technique can be successful, it has two re-
strictions. The first is related to the minimum number
of gadgets that the attacker needs to connect to perform
a useful attack. To be useful, an attack should execute
either an API call or a system call. Based on the number
of API call parameters, we estimate that a useful num-
ber of gadgets for a standard shellcode is around 20 (i.e.,
to call the VirtualProtect function, commonly used
in Windows shellcodes to remap a page as executable)
even though some previous works show that the length
of the gadgets for useful shellcode may vary from 8 to
12 [32]. The second restriction is related to the maxi-
mum number of gadgets that an attacker can include to

build a shellcode. Theoretically this number could be in-
finite. In case of spraying attacks, to increase the chance
of success, the size of the shellcode should be smaller
than the size of the NOP-sled, otherwise the probability
to divert the control-flow of the application to the ap-
propriate entry points decreases. In our experiments, for
benign applications the range of code pointers in mem-
ory varies between 0 and 1024, with the vast majority
of pages on the left end of the scale. These values are
hard to mimic in a real attack. It may be possible in
certain particular cases, but still our component would
have considerably raised the bar making the exploitation
much more difficult.

Another way an attacker can avoid detection is by
evading the shellcode frequency analysis. To this end,
the attacker can act on two parameters. She can decrease
the number of successful entry points for each page – but
this would drastically decrease the success rate of the at-
tack. A second, more subtle, technique would consist in
spraying the memory only with NOP instructions, and
inject only one copy of the shellcode in a second time,
when Graffiti already concluded its analysis. In this case
we could extend our component to postpone the analysis
when long nop sequences are identified. It is important
to note that the attacker cannot wait for a long time in
order to inject the shellcode, since any additional mem-
ory allocation done by the application would break the
continuity of the nop sled.

A current limitations of Graffiti is that it cannot han-
dle the case when an application allocates a big chunk
of memory at the beginning of the process and then uses
its own allocation functions to perform memory opera-
tions. However, since none of the applications that we
tested in our experiments exhibited such behavior, we
left this case for a future improvement.

To summarize, we believe that evading our three
heuristics is not easy but it is certainly possible. How-
ever, the contribution of this paper is not in the heuris-
tics per se, but in the underlying monitoring framework.
Graffiti offers the first comprehensive, multi-OS solu-
tion, and this is an important step forward compared
with existing defense solutions and compared with other
techniques presented in previous papers.

9 Related Work

Several solutions have been proposed so far to cope with
single instances of the spraying problem. In the follow-
ing we summarize the existing works that address heap,
JIT, and data spraying techniques.

12



Heap Spraying

Researchers have proposed several approaches for de-
tecting heap-spraying attacks [36, 16, 21]. For exam-
ple, Egele et al. [16] used x86 emulation techniques to
defend web browsers against drive-by download attacks
that use heap-spraying code injection. More in details,
the authors proposed to check for the presence of a shell-
code by monitoring all the strings that are allocated by
the JavaScript interpreter. Their goal is similar to that
of NOZZLE [36], which uses static analysis of the ob-
jects on the heap to detect heap-spraying attacks. In par-
ticular, NOZZLE scans memory objects looking for a
sequence of instructions that includes a NOP sled and
ends with a malicious shellcode. However, as the au-
thors point out, the tool presents several drawbacks. For
example, attackers can evade detection by avoid using
large NOP sleds. Moreover, NOZZLE is also specific
for the Java Script Engine Memory Allocator and it can-
not be applied to a generic application. Another work
to defend against heap spraying attack is BuBBLE [21].
In this case, the authors start from the assumption that
an attack needs to spray a large part of the Heap mem-
ory with homogeneous data (i.e. NOP sled). BuBBLE
breaks such an assumption by inserting special values
in a random position inside strings before storing them
in memory, and removing them when a string is used
by the application. Again this solution is specific for the
Javascript language and it cannot be easily ported for the
protection of other applications.

Our approach is different since it does not require to
know how the memory allocator of a particular inter-
preter engine works, and consequently it does not re-
quire access to source code and it is operating system
independent. Moreover, it can protect any system ap-
plication as well as kernel subsystems without any as-
sumption about internals of the protected component.

JIT Spraying

Bania [5] proposed a detection technique based on the
fact that in order to force the JIT compiler to generate
code, an attacker should use ActionScript arithmetic op-
erators. However, it is not mandatory for JIT spraying
attacks to use arithmetic operations.

Another JIT spraying defense has been proposed by
Hu et al. [22]. This solution consists of a kernel patch,
JITsec, that tests for several conditions when a system
call is invoked. In particular, the authors argue that an
application can maintain its security properties and exe-
cute code from the stack and heap by decoupling sen-
sitive from non-sensitive code and allowing the latter
to run from writable memory pages. As a result, such
detector only detects attacks that directly issue system

calls. Mimicry attack and ROP attacks are therefore not
covered by this model.

JITDefender [11] is another work based on hardware-
assisted technologies which aims at defeating JIT Spray-
ing attacks. The system protects the Virtual Machine dy-
namic memory pages created by the JIT-Compiler and
allows to execute only the pages requested by the VM.
This approach is strictly VM dependent, and it can only
detect JIT-spraying attack.

Our solution is orthogonal to the type of attack, and
therefore it can successfully detect JIT-spraying attacks
without any assumption about the instructions that are
used by the attacker.

Finally, Lobotomy [27] proposes to mitigate JIT
spraying attacks by applying the principle of least-
privilege to the Firefox JIT engine: by splitting the
compiler and executor modules of the engine, indeed, it
greatly reduces the amount of code that needs to access
writable and executable pages. The main drawbacks
of Lobotomy, with respect to Graffiti, are: 1) its over-
head, that is sensibly high if compared with ours, and
2) the need to re-design the JIT engine of the protected
process. The latter is particularly hindering because it
greatly limits the portability of Lobotomy to other JIT
engines. On the contrary, Graffiti can seamlessly protect
any program, without modifying any of its inner com-
ponents.

Data Spraying
Several defensive solutions have been proposed to avoid
pivoting-based techniques [28, 33, 34]. One of the most
deployed is part of EMET [28], a solution designed
by Microsoft. EMET is a utility that helps to prevent
vulnerabilities in software from being successfully ex-
ploited. Among other features, EMET also addresses
the problem of stack pivoting attacks by checking if the
stack pointer points outside of a process stack bound-
aries whenever a dangerous API is invoked. However,
several researchers proved that it is possible to bypass
the EMET technology in many ways [24, 18, 37] . The
impact of these studies show that technologies that oper-
ate at the same level of execution of the malicious code
need to be extensively tested and carefully designed to
offer the desired protection and avoid possible bypasses.
Consequently, these studies also shows the importance
of designing reference monitors that operate at a lower
level (e.g., at the hypervisor level) such as Graffiti to
avoid these trivial attacks.

Moreover, Microsoft recently introduced two new
countermeasures to hinder browser exploitation: iso-
lated heap and delayed free [25, 45]. Both these tech-
niques raise the bar for use-after-free attacks; as stated
by the Fortinet Labs researchers [19], they also make

13



heap manipulation harder, but they are not a general so-
lution as they protect only the Internet Explorer browser.

10 Conclusion

In this paper we propose an efficient and comprehensive
solution to defeat spraying attacks by tracking the mem-
ory allocations of the system in an OS-independent way.

Overall, our paper makes several contributions: we
introduce the concept of micro-virtualization that allows
us to design an efficient and effective memory allocator
tracker. We presented Graffiti, a general and extensible
memory analysis framework that has good performance
and it is freely available and open source. On top of it,
we created three heuristics to detect and prevent spray-
ing attacks. However, we believe that in the future Graf-

fiti can also be extended and adopted in other domains,
such as malware analysis or memory forensics.

References

[1] Alexa top domains. http://www.alexa.com/

topsites/category/.

[2] Rop attack against data execution preven-
tion technology, 2009. http://www.h-

online.com/security/news/item/Exploit-

s-new-technology-trick-dodges-memory-

protection-959253.html.

[3] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and
Jay Ligatti. Control-flow integrity. In Proceed-
ings of the 12th ACM Conference on Computer and
Communications Security, CCS ’05, pages 340–
353, New York, NY, USA, 2005. ACM.

[4] Greg Gagne Avi Silberschatz, Peter Baer Galvin.
Operating system concepts. http://os-book.

com/.

[5] Piotr Bania. Jit spraying and mitigations. arXiv
preprint arXiv:1009.1038, 2010.

[6] Emery D. Berger and Benjamin G. Zorn. Diehard:
Probabilistic memory safety for unsafe languages.
SIGPLAN Not., 41(6):158–168, June 2006.

[7] Eep Bhatkar, Daniel C. Duvarney, and R. Sekar.
Address obfuscation: an efficient approach to
combat a broad range of memory error exploits. In
In Proceedings of the 12th USENIX Security Sym-
posium, pages 105–120, 2003.

[8] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVar-
ney. Efficient techniques for comprehensive pro-
tection from memory error exploits. In Proceed-
ings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM’05, pages 17–17,
Berkeley, CA, USA, 2005. USENIX Association.

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre
Rebert, and David Brumley. Unleashing Mayhem
on binary code. In IEEE Symposium on Security
and Privacy, pages 380–394, May 2012.

[10] Liang Chen and Qidan He. Shooting the osx
el capitan kernel like a sniper, 2016. https:

//speakerdeck.com/flankerhqd/shooting-

the-osx-el-capitan-kernel-like-a-

sniper.

[11] Ping Chen, Yi Fang, Bing Mao, and Li Xie. Jitde-
fender: A defense against jit spraying attacks. In
Jan Camenisch, Simone Fischer-Hbner, Yuko Mu-
rayama, Armand Portmann, and Carlos Rieder, ed-
itors, SEC, volume 354 of IFIP Advances in Infor-
mation and Communication Technology. Springer,
2011.

[12] Crispin Cowan, Matt Barringer, Steve Beattie,
Greg Kroah-hartman, Mike Frantzen, and Jamie
Lokier. Formatguard: Automatic protection from
printf format string vulnerabilities. In In Pro-
ceedings of the 10th USENIX Security Symposium,
2001.

[13] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In In
Proceedings of the 7th USENIX Security Sympo-
sium, pages 63–78, 1998.

[14] Mark Daniel, Jake Honoroff, and Charlie
Miller. Engineering heap overflow exploits with
javascript, 2008.

[15] eEye Research. Microsoft internet informa-
tion services remote buffer overflow (sys-
tem level access), 2001. https://web.

archive.org/web/20061026101830/http:

//research.eeye.com/html/advisories/

published/AD20010618.html.

[16] Manuel Egele, Peter Wurzinger, Christopher
Kruegel, and Engin Kirda. Defending browsers
against drive-by downloads: Mitigating heap-
spraying code injection attacks. In Proceedings of

14



the 6th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assess-
ment, DIMVA ’09, pages 88–106, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[17] Aristide Fattori, Roberto Paleari, Lorenzo Mar-
tignoni, and Mattia Monga. Dynamic and trans-
parent analysis of commodity production systems.
In Proceedings of the 25th International Confer-
ence on Automated Software Engineering (ASE),
Antwerp, Belgium, September 2010. https://

code.google.com/p/hyperdbg/.

[18] Fireeye. Using emet to disable emet.
https://www.fireeye.com/blog/threat-

research/2016/02/using_emet_to_disabl.

html.

[19] Fortinet Labs. Is use-after-free exploitation dead?
The new IE memory protector will tell you. http:
//blog.fortinet.com/.

[20] Ivan Fratric. Exploiting internet explorer
11 64-bit on windows 8.1 preview, 2013.
https://ifsec.blogspot.com/2013/11/exploiting-
internet-explorer-11-64-bit.html.

[21] Francesco Gadaleta, Yves Younan, and Wouter
Joosen. Bubble: a Javascript engine level counter-
measure against heap-spraying attacks. In Fabio
Massacci, Dan Wallach, and Nicola Zannone, ed-
itors, ESSoS, Pisa, 3-4 February 2010. Springer
Berlin / Heidelberg, January 2010.

[22] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi,
Jack W. Davidson, David Evans, John C. Knight,
Anh Nguyen-Tuong, and Jonathan Rowanhill. Se-
cure and practical defense against code-injection
attacks using software dynamic translation. In Pro-
ceedings of the 2Nd International Conference on
Virtual Execution Environments, VEE ’06, pages
2–12, New York, NY, USA, 2006. ACM.

[23] Intel Corporation. Intel 64 and IA-32 Architec-
tures Software Developer’s Manual - Volume 3
(3A,3B,3C combined), March 2013.

[24] Bromium Labs. Bypassing emet 4.1.
http://bromiumlabs.files.wordpress.

com/2014/02/bypassing-emet-4-1.pdf.

[25] MWR Labs. Isolated heap & friends - object
allocation hardening in web browsers. https:

//labs.mwrinfosecurity.com/blog/2014/

06/20/isolated-heap-friends---object-

allocation-hardening-in-web-browsers/.

[26] Lixin Li, James E. Just, and R. Sekar. Address-
space randomization for windows systems. In
ACSAC, pages 329–338. IEEE Computer Society,
2006.

[27] Jauernig Martin, Neugschwandtner Matthias,
Milani-Comparetti Paolo, and Christian Platzer.
Lobotomy: An Architecture for JIT Spraying Mit-
igation. In Proceedings of the International Con-
ference on Availability, Reliability and Security
(ARES), September 2014.

[28] Microsoft. The enhanced mitigation experience
toolkit. http://support.microsoft.com/kb/

2458544.

[29] Microsoft. Structured exception handling over-
write protection (sehop). http://support.

microsoft.com/kb/956607.

[30] Gil Neiger, Amy Santoni, Felix Leung, Dion
Rodgers, and Rich Uhlig. Intel Virtualization
Technology: Hardware Support for Efficient Pro-
cessor Virtualization. Intel Technology Journal,
10(3):167–177, August 2006.

[31] Gene Novark, Emery D. Berger, and Benjamin G.
Zorn. Exterminator: automatically correcting
memory errors with high probability. In Jeanne
Ferrante and Kathryn S. McKinley, editors, PLDI,
pages 1–11. ACM, 2007.

[32] Michalis Polychronakis and Angelos D Keromytis.
Rop payload detection using speculative code ex-
ecution. In Malicious and Unwanted Software
(MALWARE), 2011 6th International Conference
on, pages 58–65. IEEE, 2011.

[33] Aravind Prakash and Heng Yin. Defeating rop
through denial of stack pivot. In Proceedings of the
31st Annual Computer Security Applications Con-
ference, ACSAC 2015, pages 111–120, New York,
NY, USA, 2015. ACM.

[34] Rui Qiao, Mingwei Zhang, and R. Sekar. A prin-
cipled approach for rop defense. In Proceedings
of the 31st Annual Computer Security Applications
Conference, ACSAC 2015, pages 101–110, New
York, NY, USA, 2015. ACM.

[35] Rapid 7. Metasploit penetration testing software.
http://www.metasploit.com.

[36] Paruj Ratanaworabhan, Benjamin Livshits, and
Benjamin Zorn. Nozzle: A defense against heap-
spraying code injection attacks. In Proceedings of
the Usenix Security Symposium, August 2009.

15



[37] Duo Security. Wow64 and so can you
bypassing emet with a single instruction.
https://duo.com/assets/pdf/wow-64-

and-so-can-you.pdf.

[38] Skylined. Microsoft internet explorer 6 - (iframe
tag) buffer overflow exploit, 2004. https://www.
exploit-db.com/exploits/612/.

[39] Skylined. Heap spraying high addresses in 32-bit
chrome/firefox on 64-bit windows, 2016. http:

//blog.skylined.nl/20160622001.html.

[40] Kevin Snow, Srinivas Krishnan, Fabian Monrose,
and Niels Provos. Shellos: Enabling fast detection
and forensic analysis of code injection attacks. In
USENIX Security Symposium, 2011.

[41] Kevin Z. Snow, Fabian Monrose, Lucas Davi,
Alexandra Dmitrienko, Christopher Liebchen, and
Ahmad-Reza Sadeghi. Just-in-time code reuse: On
the effectiveness of fine-grained address space lay-
out randomization. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP
’13, pages 574–588, Washington, DC, USA, 2013.
IEEE Computer Society.

[42] Alexander Sotirov. Heap feng shui in javascript,
2007.

[43] The PaX Team. Pax address space layout
randomization. Technical report http://pax.

grsecurity.net/docs/aslr.txt.

[44] Team Teso. 7350854.c, 2001. https://www.

exploit-db.com/exploits/409/.

[45] Trendmicro Labs. Mitigating UAF Ex-
ploits with Delay Free for Internet Explorer.
http://blog.trendmicro.com/trendlabs-

security-intelligence/mitigating-

uaf-exploits-with-delay-free-for-

internet-explorer/.

[46] Vupen. Microsoft Internet Explorer javaprxy.dll
COM Object Vulnerability / Exploit (Security Ad-
visories). http://www.vupen.com/english/

advisories/2005/0935.

[47] Vupen. Microsoft Internet Explorer ”Msdds.dll”
Remote Code Execution / Exploit (Security Ad-
visories). http://www.vupen.com/english/

advisories/2005/1450.

16


