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Abstract—Precise location services are seen as key enablers to
future Intelligent Transport Systems (ITSs). Relying on Vehicle-
to-Vehicle (V2V) communication links, one promising solution
consists in performing distributed Cooperative Positioning (CP).
More specifically, Cooperative Awareness Message (CAM) broad-
casts from neighboring vehicles (seen as “virtual anchors”)
are used to exchange positional information and to measure
V2V radiolocation metrics such as the Received Signal Strength
Indicator (RSSI). For the sake of fusing these non-linear hybrid
data, Particle Filters (PFs) represent the required positional infor-
mation by a set of particles with associated weights. However, in
a jointly cooperative and distributed context, the transmission of
explicit particle clouds (required by receiving neighbors to update
their own location estimates) is hardly affordable under limited
V2V channel capacity with typical numbers of particles. In this
paper we thus combine and compare several solutions in terms
of message representation and adaptive transmission policy so
as to reduce simultaneously CAM overhead, channel congestion
and computational complexity. Proposals are made at both signal
processing level (parametric density approximation) and protocol
level (jointly adaptive transmission payload, power and rate),
showing no impact on channel load in congested scenarios and
negligible CP accuracy degradation in comparison with standard
CAM transmission at critical rates.

I. INTRODUCTION

The availability of high-accuracy and seamless position
awareness is indispensable to future road safety and traffic
efficiency. However, the capability of the widely used Global
Positioning System (GPS), which is dedicated to route naviga-
tion, is far below the requirements and expectations of these
Intelligent Transport System (ITS) applications in terms of
both accuracy and service continuity (especially in challenging
-but still common- environments such as urban canyons and
tunnels) [1]–[3]. To tackle this problem in Vehicular Ad hoc
NETworks (VANETs), one solution is to benefit from the
ubiquitous position awareness of surrounding vehicles, which
is periodically received in the form of Cooperative Awareness
Messages (CAMs) over ITS-G5 channels1 [4]. Out of these
incoming CAMs, Vehicle-to-Vehicle (V2V) range-dependent
power measurements (i.e., Received Signal Strength Indica-
tor (RSSI)) can be performed and time-stamped estimated
locations (i.e., directly encapsulated in the payloads by source
neighbors) are retrieved, thus making it possible to trigger ad
hoc multilateration procedures with respect to fellow mobile

1CAM is similar to Basic Safety Message (BSM) in the U.S. and European
ITS-G5 is the preferred technology for Dedicated Short Range Communica-
tions (DSRC).

neighbors, seen as “virtual anchors” (in the sense that they
are mobile and cannot deliver their exact locations but only
estimated values). This so-called Cooperative Positioning (CP)
solution aims at providing spatial diversity and information
redundancy so as to improve the “ego” vehicle’s localization
in a variety of cases (e.g., GNSS-denied environments, sparse
road infrastructure. . . ), but also to broadcast enhanced esti-
mates back to other vehicles to assist them [2], [3] (See Fig. 1).

In this cooperative data fusion context, since real-world
observations (typically, the V2V RSSI readings considered
herein) are highly nonlinear with respect to the state variables
of interest (e.g., position, velocity, heading. . . ), the Particle Fil-
ter (PF) is a natural choice for sequential state estimation when
Kalman Filter (KF)-based methods may diverge. Nevertheless,
distributed particle-based CP induces not only high compu-
tational complexity but also extra communication cost (e.g.,
while exchanging particle clouds through message passing [5])
to achieve optimal performance levels. This limitation can
be alleviated by adopting parametric message representations
(e.g., well-known Gaussian Mixture Models (GMMs)) instead
of propagating explicit particle clouds. In the literature, this
has been considered mostly in iterative message-passing lo-
calization algorithms for generic, static and densely connected
wireless networks so far [6]–[8]. Alternatively, other specific
distributed positioning techniques can propagate and multiply
densities to produce estimated locations [9] instead of redraw-
ing samples out of the received densities. However, the latter
solutions also rely on intermediary message approximation
steps. All in all, in the VANET context, no in-depth inves-
tigation has been yet carried out in the literature to compare
the various parameterization approaches and their performance
trade-offs in terms of localization accuracy, communication
traffic, channel load, computational complexity, latency. . . ,
whereas these metrics are expected to strongly impact the
practicability and the implementability of particle-based CP.
On the other hand, in case of channel congestion, Decen-
tralized Congestion Control (DCC) mechanisms specified by
the European Telecommunications Standard Institute (ETSI)
recommend to scale the CAM transmission rate from 10 Hz
down to 2 Hz (in order not to exceed 60–70% channel load),
what is expected to degrade CP accuracy accordingly.

In this paper, we extend a generic fusion-based CP frame-
work relying on PF to cope with the stringent computation,
latency and communication constraints without deteriorating
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Fig. 1. “Ego” car receiving asynchronous CAMs from single-hop “virtual
anchors” to perform distributed CP. The dispersion of CP location estimates
(i.e. through GPS+ITS-G5) is expected to be lower than that of non-CP
estimates (i.e., standalone GPS).

significantly the localization accuracy. The main contributions
can be summarized as follows: (i) we perform an in-depth
comparison of various GMMs in CP in order to select the
best scheme; (ii) we point out the fact that using multimodal
distributions for message approximation is not always help-
ful in practical deployment scenarios but adversely leads to
high computational complexity (for modes identification and
parameterization); (iii) besides message approximations, we
also propose a transmission policy enabling adaptive transmit
payload, power, and rate to maintain high-accuracy location
awareness in any case including triggered ETSI DCC.

The paper is organized as follows. Section II presents the
problem formulation. In Section III we describe the new
proposed techniques. Next, simulation results illustrate the
achievable performance in Section IV. Finally, Section V
concludes the paper and provides an outlook of future works.

II. PROBLEM FORMULATION

A. Generic Cooperative Positioning in VANETs

We consider a network of cooperative GPS-equipped vehi-
cles exchanging CAMs over ITS-G5 channels. The goal of an
“ego” vehicle is to get high-accuracy awareness of its position
(as part of its state) based on its own flawed GPS estimate, on
V2V RSSIs with respect to single-hop neighbors (measured
out of incoming CAMs), and on imperfect state information
from the latter neighbors. Fig. 1 illustrates this CP concept.
Without loss of generality, we do not consider here Vehicle-
to-Infrastructure (V2I) communications to assist positioning
bur more generic V2V configurations, since the availability
of Road Side Units (RSU) may be not always guaranteed
depending on the operating conditions.

CP is prone to several specific challenges. First, the intrinsic
mobile nature of “virtual anchors” and vehicular wireless
channels make that the indicated neighbors’ positions as well
as the received power over V2V links may be subject to errors
and strong fading conditions respectively. The transmission
intervals between CAMs are also constrained by channel load
conditions, leading to non periodic transmissions and as such,
non synchronous data reception from “virtual anchors” (See
Figure 1). Moreover, to boost the CP accuracy, cooperative ve-
hicles tend to broadcast their positional information (i.e., state

estimates or distributions) at maximum rates and/or ranges,
thus leading to higher computational complexity (in terms of
data processing and fusion) and more importantly, to increased
network traffic, packet loss, triggered ETSI DCC, etc. that
would be eventually counterproductive to localization. These
limitations must be carefully considered when implementing
CP in VANETs.

B. System Models and Particle-based CP in VANETs

Consider the state vector θi,k = (x†i,k,v
†
i,k)† of vehicle i

including, for a 2-D system, its position xi,k = (xi,k, yi,k)†

and its velocity vi,k = (vxi,k, v
y
i,k)† at its local discrete time

index ki, which both evolve according to a mobility model.
At time ki, a measurement vector zi,k is observed, which is
related to θi,k via a measurement model.

1) Mobility Model: We consider a stochastic mobility
model suitable to vehicular contexts, referred to as modified
Gauss-Markov mobility model [2], as follow:

θi,k+1 =

(
I2 α∆T · I2

02 α · I2

)
θi,k + (1− α)

(
∆T · I2

I2

)
v̄i

+
√

1− α2

(
∆T 2 · I2

∆T · I2

)
wi,k,

(1)

where α is the memory level, ∆T the time step, v̄i = (vxi , v
y
i )†

the asymptotic 2-D velocity, wi,k = (wxi,k, w
y
i,k)† the 2-D pro-

cess noise vector, I2 the identity matrix of size 2×2. Note that
we use this mobility model to perform the prediction of both
“ego” and neighbors’ estimated locations and resynchronize
related data before fusion, like in [2], [3].

2) Observation Model: In this paper, we consider as ob-
servations two kinds of measurements, issued respectively by
the GPS receiver and the V2V communication module.

a) Absolute GPS Position: The 2-D position xi,k =
(xi,k, yi,k)† estimated by a GPS receiver, xGPS

i,k = (zxi,k, z
y
i,k)†,

is affected by additive noise nGPS
i,k = (nxi,k, n

y
i,k)† (assumed

i.i.d. centered Gaussian [2], [3], [10]), as follows:

zxi,k = xi,k + nxi,k, zyi,k = yi,k + nyi,k. (2)

b) V2V Received Power: Out of a received CAM,
the RSSI denoted by zj→i,k (on a dB scale) at vehicle i
and local time ki with respect to vehicle j while occupy-
ing position xj,ki is assumed to be measured in Line-Of-
Sight (LOS) and to follow the widely used log-distance path
loss model [11]:

zj→i,k = P (d0)− 10np log10(‖xi,k − xj,ki‖) +Xj→i,k, (3)

where P (d0) [dBm] is the average received power at a
reference distance d0 = 1 m, np the path loss exponent,
and finally Xj→i,k a centered Gaussian shadowing term with
standard deviation σSh.

In the following filtering scheme, input observations can be
composed of GPS and/or V2V RSSI measurements, depending
on the cooperation level. Generally, given the set S→i,k of
vehicle i’s “virtual anchors” at time ki, the full measurement
vector is zi,k = [zxi,k, z

y
i,k, . . . , zj→i,k, . . .]

†, j ∈ S→i,k.
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Fig. 2. Example of awareness data flow in PF-based CP framework for
two vehicles i and j. Vehicle i firstly approximates its particle-based state
{θ(p)

i , w
(p)
i }

P
p=1 by a Gaussian (mixture) distribution, then encapsulates the

parameters {πm,µm,Σm}Mm=1 in a CAM to broadcast. Receiving vehicle j
extracts these parameters to identify the distribution and draw samples from
it to reconstruct the approximated {θ̃(p)

i , w̃
(p)
i }

P
p=1.

3) Particle Filter: The key idea of PF is to approximately
represent the a posteriori density p(θi,k|z1:k) by a particle
cloud {θ(p)

i,k , w
(p)
i,k }Pp=1 of random samples θ(p)

i,k with associated
weights w(p)

i,k and to compute various estimates (e.g., Minimum
Mean Square Error (MMSE) estimator) based on these sam-
ples and weights. At time ki, the PF recursively updates the
previous particle cloud {θ(p)

i,k−1, w
(p)
i,k−1}Pp=1 using the obser-

vation zi,k by doing prediction step (i.e., approximating the
predicted posterior p(θi,k|zi,1:k−1)) and correction step (i.e.,
computing these weights w(p)

i,k relying on the likelihood func-
tion given current observations, p(zi,k|θi,k, . . . ,θj,ki , . . .), j ∈
S→i,k). The details are presented in [2].

Note that the previous likelihood function requires the
knowledge of particle-based neighboring states which raises
challenges for message passing, now constrained by ITS-
G5 impairments (e.g., 6-Mbps channel capacity with 60–70%
load available for CAM exchange, 300–800-byte CAM, event-
driven 2–10-Hz CAM rate, etc.).

III. PROPOSED APPROACHES

A. Parametric Message Approximation

In this section, the goal is to approximate the heavy particle
cloud {θ(p), w(p)}Pp=1 to facilitate its broadcast to neighboring
vehicles using Gaussian or Gaussian mixture distributions.
The main motivation for using Gaussian representations lies
in their tractable analytical properties whereas mixtures of
Gaussians are convenient to approximate very complex den-
sities by using a sufficient number of Gaussian components,
while tuning their means, covariance matrices and weights.
Mathematically, a Gaussian mixture distribution is indeed
expressed by a linear combination [12] of the form p(θ) =∑M
m=1 π

mN (θ|µm,Σm), where M ∈ Z+ denotes the num-
ber of Gaussian components, {µm,Σm, πm} are the mean,
the covariance matrix and the normalized mixture weight of
each multivariate normal density component m = 1, . . . ,M ,
respectively.

(a) (b) (c) (d)

Fig. 3. Simplified 2-D position representations including nonparametric (i.e.,
particles as dots) and parametric (i.e., diagonal Gaussian modes as solid el-
lipses and full Gaussian modes as dashed ellipses) approaches. Unimodal data
can be approximated by either unimodal Gaussian in (a) or bimodal Gaussian
in (b) and bimodal data can be approximated by either unimodal Gaussian
in (c) or bimodal Gaussian in (d). Each explicit particle representation costs
two scalars, each diagonal Gaussian mode occupies 4 scalars, and each full
Gaussian mode requires 5 scalars. One more scalar is needed for the weight
in case of bimodal distribution.

Given uniformly weighted particles Θ = {θ(p), 1/P}Pp=1

(thanks to resampling) as input data, one wishes to model
these data using a mixture of Gaussians. The Gaussian
mixture distribution is fully determined by the parameters
π = {πm}Mm=1, µ = {µm}Mm=1, and Σ = {Σm}Mm=1.
To determine the latter, we employ a Maximum Like-
lihood (ML) estimator, assuming that the particles are
drawn independently from the true distribution. The log-
likelihood function is then determined as log p(Θ|π,µ,Σ) =∑P
p=1 log

{∑M
m=1 π

mN (θ(p)|µm,Σm)
}
. Denoting the set

of unknown parameters as α = {µ,Σ,π}, the ML estimate
is defined by α̂ML = arg maxα p(Θ|α). This solution cannot
be analytically determined in closed form. However, numer-
ical iterative techniques such as the gradient descent or the
Expectation Maximization (EM) [12] algorithms, can be used
to optimize the previous likelihood function.

This message approximation procedure must be compu-
tationally efficient from the latency point of view so as
to cope with high CAM rates up to 10 Hz. Accordingly,
unimodal and bimodal Gaussians are assumed sufficient to
capture the salient properties of the true message, whereas
multimodal Gaussians (i.e., involving more than 2 modes) can
be discarded to avoid solving out too complex optimization
problems. Actually, when one cannot rely on enough neighbors
(e.g., in sparsely connected networks), the RSSI likelihood
function may be multimodal and so is the posterior location
distribution. However, this information shall be discarded by
simply censoring the CAM transmission. Indeed, a too poorly
localized vehicle shall not provide unreliable information to
its neighbors for CP purposes. In contrast, as we expect to
benefit from numerous cooperative neighbors in reasonably
dense VANETs, the RSSI likelihood function is more prone
to be unimodal, as suggested by previous studies like in [13].
Besides, GPS observation can also help to resolve geometrical
ambiguities occurring in such multimodal circumstances.

Note that since the absolute position and the veloc-
ity are weakly correlated (e.g., x-to-vx and x-to-vy cross-
correlations) in comparison with the internal correlations
between their components (i.e., x-to-y and vx-to-vy cross-
correlations) they can be separated and approximated inde-
pendently in order to ease the optimization problem (e.g.,
specifying a 4-D Gaussian distribution requires determining 14
parameters). Furthermore, the velocity is naturally unimodal
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Fig. 4. Standard CAM transmission policy (10 Hz) in (a) vs. adjusted mixed
CAM traffic (including tiny/frequent CAMs at 10 Hz and nominal/infrequent
CAMs at 2 Hz) in (b).

so a Gaussian is sufficient. Fig. 2 summarizes the message
approximation needs in CP based on a simplified example,
where vehicle i broadcasts its particle-based state over ITS-
G5 channel to support vehicle j’s CP. Fig. 3 illustrates for 2-D
particle-based positions the aforementioned possible message
representations in both non-ambiguous and ambiguous cases
(See Fig. 3(a)-(b) and 3(c)-(d), respectively).

B. Transmission Control Strategy

Basically, ITS-G5 standard supports critical 10-Hz CAM to
provide and maintain superior quality of position awareness
(See Fig 4(a)). Accordingly, our opportunistic CP exploits
this network information to boost location accuracy. However,
the ITS-G5 channels are vulnerable to such critical broadcast,
especially in dense traffic conditions. In this case, the ETSI
DCC scales the CAM rate to 2 Hz to avoid congestion, thus
loosing four fifth of the cooperative information amount for CP
(i.e., neighbors’ positions and RSSIs). The idea is to design
a transmission protocol coping with the ETSI DCC without
compensating for such information loss.

Again, CP performance strongly relies on neighboring po-
sition awareness, as well as on associated range-dependent
measurements. Using a single kind of messages for both
purposes does not appear fully efficient because the former
position can be predicted quite reliably in the short term (e.g.,
within the sub-second horizon). Hence, we can contextually
select what we need to transmit at any instant. More particu-
larly, we propose to mix “tiny” CAMs with reduced payload
(i.e., containing only vehicle’s ID without estimated state and
associated attributes) at the critical rate of 10 Hz to provide
range-dependent information (i.e., RSSI) and normal CAMs
at the lower rate of 2 Hz (in compliance with ETSI DCC).
Fig. 4(b) represents this joint transmission payload and rate
adaptation. Accordingly, we let the “ego” vehicle predict the
neighbors’ states and we reduce the burden of broadcasting
critical CAMs. Although additional “tiny” CAMs are required,
Table IV shows that they do not increase traffic.

The objective of “tiny” CAMs is to provide RSSI measure-
ments for CP, which is deliberately restricted to the closest
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Fig. 5. Evaluated VANETs and related attributes in highway scenario.

ring of neighboring vehicles (in compliance with the link
selection strategies described in [2]) due to several reasons
(e.g., significantly larger relative RSSI dispersion at large
distances, high probability of non-visibility configurations,
etc.) Accordingly, it is wasteful to broadcast the “tiny” CAMs
at critical transmission power (i.e., 33 dBm to reach the
maximum range). In addition to CAM payload and trans-
mission rate control, we thus also propose power control to
adaptively manage different ranges (say, 50–100-m for “tiny”
CAMs, 800–1,000-m for normal CAMs) to save even more
communication traffic. Once a desired transmission range is
set a priori for each type of CAM, one can determine the
corresponding transmission power, assuming the knowledge of
the log-distance path loss model in Equation (3) and receiver
sensitivity (e.g., known by calibration).

IV. PERFORMANCE EVALUATION

A. Simulation Settings and Scenarios

We model a common 3-lane highway where 15 802.11p-
connected vehicles are driving steadily (in the same direction)
at the average speed of 110 km/h (i.e., ≈ 30 m/s) for 3,000
meters, as shown in Fig. 5. We use MATLAB Monte Carlo
simulations in our evaluation framework. The main simulation
parameters are summarized in Table I.

TABLE I
MAIN SIMULATION PARAMETERS.

Parameter Value

Memory level α 0.95
Tangential acc. uncertainty 1 [m/s2]
Perpendicular acc. uncertainty 0.1 [m/s2] (to satisfy road constraints)
Sampling period ∆T 0.1 [s]
Std. of GPS errors in x and y 5–10 [m] (highway) [10]
GPS rate 10 [Hz]
CAM rate 10 [Hz] (critical), 2 [Hz] (congestion)
CAM size 300 [bytes]
“Tiny” CAM size 30 [bytes] (hypothesis)

Transmit power
33 [dBm] (critical, 1,000-m range)
-5 [dBm] (adaptive, 50–100-m range)

Receiver sensitivity -87 [dBm] [14]
Path loss exponent np 1.9 (V2V in highways) [11]
Std. of shadowing σSh 2.5 [dB] (V2V in highways) [11]
Number of particles 1,000

While evaluating the performance of the proposed ap-
proaches, we aim at assessing practical operating trade-offs
between localization accuracy, communication impairments,
and complexity, by undertaking “factor-by-factor” investiga-
tions. More particularly, we firstly analyze the effects of
parametric message approximation on localization accuracy
while assuming a default critical 10-Hz CAM rate. Then
we evaluate the effects of ETSI DCC and the proposed



transmission control strategy on CP performance without any
message approximation. Finally, we consider combining both
signal-level (i.e., message approximation) and protocol-level
(i.e., transmission control) techniques into a single solution.

B. Simulation Results

1) Signal-Level Message Approximation: Table II shows
the achieved positioning accuracy over 100 Monte Carlo runs
in terms of both median and so-called “worst-case” (WC)
localization errors (arbitrarily defined for a Cumulative Den-
sity Function (CDF) of 90%). Table II also summarizes the
CAM overhead associated with each message approximation
strategy. While identifying the density modes, the bimodal
Gaussians with full covariance matrices does not converge
within a few Monte Carlo runs due to the higher-dimensional
optimization problem, we thus deliberately ignore them in the
performance evaluation. One can remark the modest accuracy
degradation caused by parametric message approximations in
comparison with the nonparametric approach. This means in
our localization problem, the posterior distribution is rather
simple under practical deployment/connectivity conditions. It
can thus be approximated with either unimodal or bimodal
Gaussian. More importantly, Table II shows the minimum
awareness payload that needs to be carried by the 300–
800-byte CAMs and then transmitted over 6-Mbps ITS-G5
channels with 2312-byte MTU. Thus, without message ap-
proximations, it is almost impossible to perform particle-based
CP in VANETs using explicit cloud disclosure and passing.

Since message approximation is solved by iterative methods
such as EM, computational complexity and latency are also
important factors besides the accuracy performance indicator.
Table III shows the number of variables in each optimization
problem the average number of iterations required to achieve
convergence over 1 trial run. As expected, we observe that
this number increases dramatically within high-dimensional
optimization problems. Based on the previous results, consid-
ering a Gaussian mixture distribution provides too marginal
accuracy gain but leads to high computation/latency. Thus, uni-
modal Gaussian with full covariance matrix is advantageous.

2) Protocol-Level Transmission Control: In this section,
we study the impact on both localization accuracy and lo-
cal channel congestion of different transmission and fusion
rate policies, possibly in conjunction with unimodal message
approximations. The corresponding empirical CDFs of local-
ization errors are first summarized in Fig. 6. As expected and
in compliance with previous results from [2], [3], we observe
that the fusion of several modalities (i.e., GPS and V2V RSSIs)
outperforms the standalone filtered GPS solution. Interestingly,
in case of either triggered ETSI DCC or reduced CAM rate,
the fused GPS and 2-Hz RSSI scheme only yields modest
gain in case of high errors (i.e., larger than 1.2 m). This
can be explained by the fact that CP suffers from a loss of
cooperative information (neighboring positions and associated
RSSIs). This information loss can be either a temporal loss
(from a specific neighbor) or a spatial loss (from the number
of cooperative neighbors due to their asynchronous 2-Hz CAM
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transmissions2). Then we observe that the proposed method
relying on “tiny” CAMs (still without message approximation)
improves accuracy at a level equivalent to that of fused GPS
with 10-Hz CAM. The observed slight accuracy degradation
is due to accumulated prediction errors (See again Fig. 4(b))
and local cooperation with nearby neighbors only (in a 100-m
radius coverage), as constrained by power control with “tiny”
CAMs transmissions. In brief, our transmission control strat-
egy intentionally avoids critical CAM exchange but ensures
comparable localization accuracy.

3) Cross-Signal-Protocol-Level Transmission Control: We
now combine both signal level and protocol level techniques
to achieve simultaneously high precision and communication-
efficient CP. Specifically, in addition to transmission control,
we integrate message approximation with a unimodal Gaussian
(shown to be sufficient from previous simulations) when
broadcasting CAMs at 2 Hz. Note that the 10-Hz “tiny”
CAMs do not include any state awareness. Thus, they do not
require message approximation and contribute to save further
computations. The result is also shown in Fig. 4. As expected,
we observe marginal accuracy degradation caused by message
approximation when considering also transmission control.

Finally, we assess the impact of our proposed transmission
control on the channel load. Approximately, with our simula-
tion settings and scenario (i.e., 3-lane highway, 30-m/s speed,
2-s safety rule, steady vehicle movement, etc.), the number of
1-hop neighbors in normal CAM’s range (i.e., 1,000 m) and in
“tiny” CAM’s range can be up to 100 vehicles (worst case) and
10 vehicles respectively3. The channel load is roughly given in
Table IV4. We remark that transmitting critical 10-Hz “tiny”

2With 10-Hz fusion and asynchronous 2-Hz CAM reception, the sufficient
number of cooperative neighbors is not always guaranteed.

3It does not contradict the 15-vehicle scenario (i.e., 250-m road segment)
because CP only uses nearby neighbors in the range of 200–300 m (where
the path loss model is still reliable) though vehicles can receive CAMs from
isolated neighbors (up to 800–1,000 m) for maximizing awareness.

4The channel load L[%] may be roughly computed as L = N×R×P/C,
where N is the number of vehicles in range, R the Tx rate, P the packet
size, and C the maximum channel capacity (i.e., 6 Mbps).



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MESSAGE REPRESENTATIONS W.R.T. COMMUNICATION REQUIREMENT AND LOCALIZATION ACCURACY

Rep. 2-D Position 2-D Velocity Med. [m] WC [m] No. Scalars per CAMa Payload [bytes] Broadcast

1 Particles Particles 0.3222 0.7573 4,000 32,000 No
2 Uni. Gauss. (diag.) Uni. Gauss. (diag.) 0.3268 0.7628 8 64 Yes
3 Uni. Gauss. (full) Uni. Gauss. (full) 0.3253 0.7652 10 80 Yes
4 Bi. Gauss. (diag.) Uni. Gauss. (diag.) 0.3255 0.7628 13 104 Yes

a Number of scalars that need to be encapsulated in a CAM. Each scalar costs 8 bytes (binary64).

TABLE III
x-DIMENSIONAL OPTIMIZATION VS. AVERAGE NUMBER OF ITERATIONS.

Representation x-D Optimization No. of Iterations

Uni. Gauss. (diag.) 4 3
Uni. Gauss. (full) 5 3
Bi. Gauss. (diag.) 9 45
Bi. Gauss. (full) 11 187

CAMs does not congest the channel (only cost 0.4% channel
load) but improves the accuracy gain (relative drop of 13%,
22% respectively and in median and WC errors in comparison
with the fused GPS and 2-Hz CAM). Last but not least, our
proposed approach is not limited to the case of triggered ETSI
DCC but also applicable to the case of no congestion in order
to enable communication-efficient CP. In other words, it may
be a waste to broadcast full CAMs at 10 Hz while prediction
can contribute to save a significant amount of resources.

TABLE IV
CHANNEL LOAD COMPARISON BETWEEN DIFFERENT STRATEGIES.

Scheme Channel Load

10-Hz CAM 40%
2-Hz CAM 8%

Mixed 2-Hz CAM & 10-Hz “tiny” CAM 8.4%

V. CONCLUSION AND FUTURE WORK

This paper addressed the problem of V2V overhead and
channel congestion inherent to particle-based CP in GPS-aided
VANETs. On the one hand, results show that a significant
amount of the CAM payloads could already be saved under
standard protocol constraints (i.e., under normal transmission
rates and packet sizes) through parametric messages approx-
imation. This comes with almost no accuracy degradation in
comparison with impractical solutions that would explicitly
send each particles cloud to neighboring cars. Simulations
also show that unimodal Gaussian approximations of the local
estimates’ probability densities are fairly sufficient to achieve
the required localization accuracy with much lower compu-
tational complexity, while being still robust to occasional
geometric ambiguities caused by sparse VANET connectivity.
On the other hand, on top of message approximation, the
jointly adaptive transmission payload, rate, and power control
maintains the continuity of high-precision location service in
channel congestion while reducing significantly communica-
tion traffic as well as computation load in congestion-free
conditions without trading much accuracy. Future works shall
further investigate the “context-aware” transmission control,
by considering also vehicle dynamics, local vehicle density,

and neighbor-agnostic transmit censorship (in terms of block-
ing the broadcast of unreliable/ambiguous state information).
The proposals should be also tested on more realistic mobility
traces using dedicated traffic simulator and more sophisticated
V2V propagation channels.
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