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Abstract—Named Data Networking (NDN) is an innovative
paradigm to provide content based services in future networks.
As compared to legacy networks, naming of network packets
and in-network caching of content make NDN more feasible
for content dissemination. However, the implementation of NDN
requires drastic changes to the existing network infrastructure.
One feasible approach is to use Software Defined Networking
(SDN), according to which the control of the network is delegated
to a centralized controller, which configures the forwarding data
plane. This approach leads to large signaling overhead as well as
large end-to-end (e2e) delays. In order to overcome these issues,
we propose to enable NDN using a stateful data plane in the
SDN network. In particular, we realize the functionality of an
NDN node using a stateful SDN switch attached with a local
cache for content storage, and use OpenState to implement such
an approach. In our solution, no involvement of the controller
is required once the OpenState switch has been configured.
We benchmark the performance of our solution against the
traditional SDN approach considering several relevant metrics.
Experimental results highlight the benefits of a stateful approach
and of our implementation, which avoids signaling overhead and
significantly reduces e2e delays.

Index Terms—Stateful SDN, Named Data Networking, Open-
State.

I. INTRODUCTION

An increasing usage of content-based applications such as
video sharing, social media networking, and e-commerce, has
led to a dominant use of the Internet as a content distribution
network (CDN). However, implementing content distribution
in legacy IP networks is challenging. Indeed, the communi-
cation model in legacy IP networks is based on the packet
exchange between pairs of hosts, which requires mapping
content to location endpoints as well as deploying CDNs or
P2P networks [1]. In this scenario, Named Data Networking
(NDN) emerges as a promising paradigm in which hosts
address the content in network packets rather than contacting
the host containing the content, hence greatly simplifying
content distribution. Moreover, each network node in NDN is
equipped with a content store, which caches a copy of already
delivered contents. In this way, future content requests can be
satisfied from the network nodes instead of the content server.

Content caching is therefore a key component of NDN,
and significantly benefits both users and network operators.
From the user’s perspective, the ability to retrieve content
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from intermediate nodes in the network, reduces delays and
enhances the quality of experience. From the operator’s point
of view, the network overhead is greatly reduced, especially if
multiple users request the same content (e.g., popular videos
and live sport streams). In light of such advantages, future
5G systems will integrate caching capabilities in the network,
especially to provide media and entertainment services [2].

Implementing NDN requires, however, a drastic change in
the legacy network infrastructure. In this regard, Software
Defined Networking (SDN), which also represents one of the
core technologies in the network evolution towards 5G [3],
can be leveraged to realize the NDN concept. Indeed, in SDN
control plane and data plane are separated, and a logically
centralized controller programs the data forwarding plane by
keeping a global view of the network. As a consequence,
SDN enables a programmable network, lowers operational
costs and allows for flexible services. This allows us to easily
install the functionality of an NDN node on top of the SDN
controller that is responsible to process and react to NDN
packets received from all the switches in the data plane.

An existing implementation of the SDN paradigm is Open-
Flow (OF) [4], which is a standard protocol enabling the
communication between the SDN controller and the network
devices. In OF, the controller installs match-action forwarding
rules on the network switches. Since the switches are state-
less and the rules are static, the switch must interact with
the controller for any “new” action or change of action to
be performed in the data plane, hence leading to a large
communication delay and a large amount of control traffic.
In many time-critical network applications, where contacting
the controller may be unfeasible, some control logic can
be delegated to the switches, which allows modification of
the forwarding rules based on local network events. Such
an approach, enabling swift local decisions at the switch
without involving the controller, requires to support states
within the switches and is called stateful data plane, in contrast
to the vanilla stateless OF data plane. OpenState [5] is a
recent extension of OF that enables a stateful SDN approach,
leveraging a standard OF switching architecture.

In this work, we combine the stateful SDN approach with
the NDN technology, and realize the functionality of the NDN
node by attaching a local cache to a stateful SDN switch,
implemented through OpenState. The switch autonomously
provides the required content provisioning functionality with-
out interacting with the SDN controller. The main advantages
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of our approach are the simplicity, since the NDN control logic
is embedded directly within the switch, and the smaller latency
with respect to vanilla SDN, since the NDN control logic
does not need any interaction with the controller to operate.
In particular, our main contributions are as follows:

• Architecture: we propose an NDN network architec-
ture that enables direct support of caching within SDN
switches;

• S/N-DN node: we design a stateful SDN/NDN (S/N-DN)
node, i.e., a stateful SDN switch capable to perform the
functionality of an NDN node;

• Implementation: we provide a stateful data plane imple-
mentation of the S/N-DN node using OpenState, thus
avoiding any interaction with the controller at runtime;

• Performance evaluation: we evaluate the performance
of our solution in an emulated environment considering
several relevant metrics. Moreover, we benchmark our
solution with a traditional, stateless OF data plane imple-
mentation of the S/N-DN node.

The remainder of the paper is organized as follows. Sec. II
gives an overview of stateful SDN and of NDN, which are
the two pillars of our work. Sec. III introduces our solution,
and Sec. IV presents the data plane implementation of our
approach. Sec. V describes the methodology we use to evaluate
our solution, while Sec. VI presents experimental results.
Sec. VII discusses related works and highlights the novelty
of our solution. Finally, conclusions are drawn in Sec. VIII.

II. PRELIMINARIES

In this section, we give an overview of stateful SDN and
NDN technologies as these are the two pillars on which our
solution is based. First, we describe stateful SDN as well as
the platforms that help to implement a stateful data plane.
Then we explain the NDN architecture along with its main
components.

A. Stateful SDN

Existing SDN technologies such as OpenFlow [4] forces
separation of control and data plane of a network. As a
consequence, all the network intelligence is contained in the
logically centralized controller that is responsible to govern
the “dumb” switches. This means that the controller becomes
responsible for all the network-wide and local decisions, hence
resulting in large signaling overhead and latency.

In stateful SDN, part of the network intelligence is moved
from the controller to the switches; specifically, the controller
is involved in making network-wide decisions since it has a
global view of the network, while switches make decisions
that only rely on switch-local states.

Stateful switches maintain states for all the incoming traffic
flows, with each flow being identified by a flow key. Based
on the current state, the switches apply match-action rules
on the packets belonging to the flows, hence reducing the
need to rely on the controller to make local decisions. In
this regard, OpenState [5] extends OpenFlow to configure
stateful data plane. In order to enable the stateful functionality,
OpenState switches run programmable eXtensible Finite State

Machines (XFSMs), where an XFSM implements two tables:
a state table and a flow table. The state table stores the
current state for each active flow, while the flow table stores
the match-action rules. Differently from a vanilla OF flow
table, in OpenState, one of the fields used for matching a
flow is the current state and the action allows to change the
state. Interestingly, this approach enables the implementation
of the XFSMs using almost the same hardware architecture
as vanilla OF switches, exploiting the efficient lookup in a
Ternary Content-Addressable Memory (TCAM). Indeed, for
any incoming packet, first its state is looked up from the state
table, then the action and the next state are chosen based on
both the current state and the packet header, according to the
flow table. When accessing the state table to lookup and update
the state of a flow, OpenState defines two different keys: the
lookup scope defines the packet header fields used for lookup,
and the update scope defines the ones used for update. Their
distinct definitions allow a more flexible packet processing, as
discussed in [5]. The complete OpenState protocol specifica-
tion is available at [6], while the feasibility of implementing
hardware-based OpenState switches is addressed in [7].

P4 [8] is an alternative approach to OpenState to implement
stateful SDN. Specifically, P4 is a high level programming
language used to describe the packet processing within a
switch with a much higher flexibility than OpenFlow, in
which the set of available matching fields is fixed. Indeed,
P4 allows an arbitrary definition of the packet parsing and
processing, and thus enables programmable, protocol indepen-
dent switches. A P4 program is developed obliviously from
the underlying switching architecture and a P4 compiler has
the responsibility to tailor the required packet processing to
the underlying hardware architecture, designed according to a
specific processing model [9], [10].

Unlike OpenState, where the states are embedded within the
available TCAMs, in P4 the states are available through ex-
ternal objects, thus leaving stateful data plane implementation
as optional. For this reason, we have implemented the NDN
node through OpenState, which natively supports a stateful
data plane in OF-compatible switches.

B. Named Data Networking (NDN)

Named Data Networking (NDN) [11] is an architecture to
support the Information Centric Networking (ICN) approach
that aims to change the traditional IP network into a content-
oriented one. In legacy IP networks, packets in the network
are destined to specific IP addresses; in contrast, NDN packets
are destined to a content, thus the routing is based on content
identification (i.e., data names). Moreover, each network node
in NDN is able to cache contents, thus content requests can
be satisfied by multiple nodes in the network. The routing is
anycast and based on two types of packets: Interest and Data,
and both carry a content name. This name is hierarchically
structured, similar to URLs, and each name is divided into
components, e.g., /polito/tng/courses/A.pdf. The Interest
packet is generated by the data consumer and sent to the
NDN network. The network nodes forward the Interest packets
towards the data producer (i.e., the server hosting the content)
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based on the content name. The Data packet gets back to the
consumer by following the reverse path of the correspond-
ing Interest packet. The nodes typically cache the contents
received back from the data producer. Thus, in the case a
node receives an Interest packet for a locally stored content,
the node will answer directly with the Data packet, avoiding
the forwarding of the packets to/from the data producer.

In order to manage the forwarding of Interest and Data
packets, each NDN node features the following data structures:

1) Content Store (CS), which caches a copy of already
requested contents;

2) Cache Lookup Table (CLT), which allows to understand
if a requested content is already stored in the CS;

3) Pending Interest Table (PIT), which stores forwarded In-
terests along with the interface from which the Interests
were received, when they cannot be satisfied from the
CS;

4) Forwarding Information Base (FIB), which contains
forwarding rules based on the content names; it is the
equivalent of IP routing tables in the context of legacy
IP networks.

When an Interest packet arrives at an NDN node, the latter
first extracts the content name and checks the availability of
the requested content in its CS through the CLT; if the content
is available, then the Data packet is sent back to the consumer.
Otherwise, the content name is looked up in the PIT to find any
matching entry; if it exists then the incoming interface of this
Interest is inserted in the PIT. In case there is no matching
entry in the PIT, then the Interest is forwarded towards the
producer based on the FIB. At this point, a new entry is
created in the PIT, which records the pending request in terms
of content name and incoming interface. Inside the FIB, the
node performs longest prefix matching on the content name
to forward the Interest packet; if no matching entry exists in
the FIB, then the Interest is discarded.

When a Data packet arrives, the content name in the packet
is looked up in the PIT and the content is forwarded to all
the interfaces listed in the PIT entry. Once the content is
transmitted towards the consumers, the PIT entry is deleted.
In addition, a copy of the content is cached in the CS and the
CLT is updated, so that future Interest packets can be locally
satisfied. In the case the CS is full, one content is evicted
to make space for the new content to store, and the CLT is
updated accordingly.

III. THE STATEFUL S/N-DN APPROACH

Here we propose our stateful S/N-DN solution, which
combines the SDN and NDN technologies, i.e., we equip
a stateful SDN switch with the components that allow us
to implement the NDN approach therein. As a result, we
can make NDN-related decisions within the switch without
interacting (at runtime) with the SDN controller.

As discussed in detail in Sec. VII, previous works have
combined SDN and NDN, but failed to fully integrate the
two technologies. Indeed, stateless SDN switches cannot make
local decisions on how to process NDN Interest/Data packets,
thus a dedicated agent, external to the switch, is typically

envisioned for the actual packet processing. Our stateful SDN
approach, instead, integrates the NDN data structures (CLT,
PIT) directly within the switch and avoids the interaction with
an external NDN agent.

We begin this section by explaining our proposed stateful
S/N-DN architecture. Then, we highlight the challenges we
face, along with the solutions we envision to enable NDN in
an OF network. Finally, we present a toy example to better
clarify the proposed solution.

A. The proposed architecture

Owing to the benefits of incorporating caching capabilities
in an SDN network, we propose that each OF switch is
attached with a local cache. We call this node comprising the
OF switch and the cache, cache-equipped switch. We envi-
sion that the cache-equipped switch, upon receiving content
requests from a user, should primarily try to satisfy the request
by exploiting its own cache. If the content is not available
therein, the request should be remotely satisfied either from
the data producer or from a cache-equipped switch along the
path towards the data producer. Although the above mentioned
functionality can be provided by either following the stateful
or the stateless approach, we envision that the cache-equipped
switch functions in the stateful manner, enabled by OpenState
technology. In this way, the switch can make decisions on its
own, by maintaining the states of pending requests, thereby
eliminating the need to interact with the controller at runtime.
It follows that this approach requires no control traffic (at
least to operate the NDN control logic) after bootstrapping
the switches, which reduces the end-to-end user latency.

Our network architecture, as shown in Fig. 1, is based, for
simplicity, on a single SDN domain. The SDN domain consists
of cache-equipped switches, an SDN controller and the hosts,
which are typically the terminals handled by users. The cache-
equipped switches are connected with a tree topology to
the server, which acts as the data producer and owns the
complete catalog of the requested contents. As mentioned
earlier, the cache-equipped switch firstly tries to satisfy the
content requests using its own cache, otherwise the request
is forwarded towards the server. In response, the server sends
the requested content to the host, and a copy of each content
is stored in the switch cache for future requests. It is fair to
assume that the delay for content retrieval is negligible when
the content is stored in the cache within the switch.

Importantly, the cache-equipped switches must forward re-
quests based on the content name, which is not possible in
legacy IP networks. Each of the hosts in Fig. 1 acts as an NDN
consumer that generates Interest packets. The server acts as an
NDN producer, which responds to the hosts with Data packets.
Finally, the functionality of an NDN node is implemented
inside the cache-equipped switch. Hence, we name the cache-
equipped switch with NDN functionality as S/N-DN Node (i.e.,
an integrated SDN-NDN node) and use this term hereinafter.
As explained in Sec. II-B, the main components of an NDN
node are: PIT, FIB, CLT and CS. Thanks to the availability of
local states, the OpenState switch can support the behavior
of the PIT and of the CLT, thus the switch can forward
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Fig. 1. The Stateful S/N-DN architecture.

autonomously the content requests either to the cache or to
the server.

The cache combines a cache agent and an actual storage,
implemented with either volatile or non-volatile memory.
The cache agent receives the messages from the switch and
interacts with the local storage. The main functionalities are
the following:

• whenever an Interest packet is received, the requested
content is read from the storage and then a Data packet
is sent to the requesting host; notably, thanks to the
CLT implemented within the switch, an Interest packet is
received only when the content is available in the local
storage;

• whenever a Data packet is received, the content is written
on the cache. In case of an eviction, a control message
is sent to the switch with the fingerprint (as described in
the following section) of the evicted content, to properly
update the CLT implemented within the switch.

To support such interface functionalities between the switch
and the cache, a simple embedded computer (e.g., Raspberry
Pi) could be adopted.

B. Challenges and solutions

It is not straightforward to enable NDN over an OF network.
Notably, TCP cannot be adopted as transport protocol; indeed,
it is not suitable for NDN because its end-to-end congestion
and flow control are not suitable to interact with caching
schemes and to support one-to-many communications, as
required in an NDN architecture [12]. Thus, we use UDP/IP
protocol, i.e., we consider that NDN Interest/Data packets are
included in the payload of UDP packets. Second, an OF-switch
cannot process NDN packets, as content identification is not
possible. The OF protocol allows the switches to parse only
a limited set of fields from an incoming packet, in particular
it is not possible to parse the data field at the UDP layer.
Following the approach introduced in [13]–[16], we piggyback
the NDN semantics in the UDP/IP header fields. Specifically,
we compute a fingerprint of the content name and store it
in the UDP source and destination ports. Hence, the switch
can identify the content referred by Interest packets using the
fingerprint. Last, the available space in the packet header is

limited; only 32 (16+16) bits are available in the UDP port
fields. For variable name components, an option is to partition
the available bits into groups, one for each name component.
However, if the number of name components grows large, the
number of bits per component decreases, hence the probability
of fingerprint collision increases. The solution we recommend
in such case is to store the fingerprint in other OF-matchable
fields such as IPv6 source and destination addresses.

C. A toy example

In order to better explain our solution, we consider the
toy scenario depicted in Fig. 2 (top), and use it to explain
the main interactions between the network entities and the
corresponding packet format, as shown in Fig. 2 (bottom). The
scenario includes a host requesting content A, before and after
the content is stored in the cache. For simplicity, we assume
a simple Ethernet network connecting a host, a server and a
cache to the OpenState switch. In the following, we report the
sequence of exchanged packets. Notably, no interaction occurs
between the switch and the SDN controller.

1) The host generates an Interest packet (P1) for content
A and sends it to the switch inside the S/N-DN node.
The hash of the content name, denoted by “hash(A)”, is
coded using 32 bits of the UDP source and destination
ports, while the NDN Interest packet is inserted in the
UDP payload. Since the content is not stored in the
cache, the switch forwards the request (P1) to the server.

2) The server generates a response packet (P2) in which
the Data is inserted into the UDP payload field. The
response packet is sent to the switch inside the S/N-DN
node, which does not only forward it to the host, but
also places a copy of the packet in the local cache. In the
response packet, the server uses multicast IP and MAC
destination addresses since, in general, the data could be
directed to multiple hosts, whose requests were pending
in the switch.

3) The host generates another Interest packet (P3) for the
content A and sends it to the switch. Since the content
A is already stored in the cache, the switch forwards the
request to the cache instead of the server.

4) The cache agent sends back the content to the host
through a Data packet (P4). This packet is destined
directly to the requesting host, since content retrieval
from the cache is instantaneous and it is not possible to
have pending requests for a content in the cache.

IV. STATEFUL CACHING IMPLEMENTATION

We now describe the stateful data plane implementation of
an S/N-DN node. To this end, as a first step, in Sec. IV-A we
consider an OpenState switch and the associated controller. On
top of the controller, we develop an application to properly pre-
configure the OpenState switch so that packet forwarding can
be performed based on content names. This simple application
lays the foundation for developing a more complete application
(detailed in Sec. IV-B) that allows the controller to configure
the stateful switch to work as an S/N-DN node. Note that
this enhanced application enables the switch to provide a
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Fig. 2. Exchange of messages in the toy example when content A is requested.

prototypical support for the NDN data structures (e.g., PIT and
CLT), thus integrating the main NDN control functionalities
within the switch.

A. NDN Packet Forwarding using OpenState

We describe a basic network application that controls the
switch destination port of NDN Interest and Data packets
based on the content name, instead of the usual forwarding
based on layer-2/3 headers. We assume just one host acting
as a data consumer and one server acting as a data producer,
connected as in Fig. 2.

Each content is identified by a fingerprint applied on its
name. The state is associated to the content. Depending on the
current state, the request is forwarded to a distinct port, i.e.,
either the server or the cache. This behavior is described by the
state machine diagram in Fig. 3. Specifically, there are three
possible states: default, pending and stored. Initially, the state
of any content is set to “default”. When a request for a content
in default state is received, the request is sent to the server and
the content becomes “pending”. When the content is pending,
all new requests for it will be dropped, since redundant. On
the contrary, in the case of a data packet from the server,
the content will be sent to the cache and to the host and the
content will become “stored”. When the content is stored, any
request for the content will be forwarded to the cache, and the
content data from the cache will be forwarded to the host. If
the content is evicted from the cache, the cache agent notifies
the switch using a dedicated packet (e.g., adopting a special
MAC address), which triggers the state of the content again
in the “default” state. Table I shows the actual flow table
that is installed on the switch by the controller, just during
the bootstrapping of the S/N-DN node, and that implements
specifically the XFSM described in Fig. 3. Note that the
identification of Data packets or Interest packets is performed
assuming a single layer-2 network connecting server and hosts,
but it can be easily generalized to layer-3 networks. To lookup
and update the state, we use the content fingerprint as key for
the state table. Since the content fingerprint is stored in the

Default

Request|Fwd server

Request|Drop

Data|Fwd cache, Fwd host
PendingStoredData|Fwd host

Request|Fwd cache

Eviction|Drop

Fig. 3. State machine diagram for NDN packet forwarding. The notation on
the arrow is event|action.

TABLE I
FLOW TABLE FOR NDN PACKET FORWARDING

Match fields Actions
State Event Action Next state

Default MACsrc=*
MACdst=* Fwd to server Pending

Pending MACsrc=server
MACdst=*

Fwd to cache
Fwd to host Stored

Pending MACsrc=*
MACdst=* Drop Pending

Stored MACsrc=cache
MACdst=EVICTED Drop Default

Stored MACsrc=cache
MACdst=* Fwd to host Stored

Stored MACsrc=*
MACdst=* Fwd to cache Stored

TABLE II
EXAMPLE OF STATE TABLE IN AN S/N-DN NODE

Flow key State
* Default
UDP dst port = 888 PendingUDP src port = 777
UDP dst port = ... ...UDP src port = ...

UDP ports of the packet, we set the lookup scope and the
update scope equal to the UDP source and destination ports.

As an example, Table II shows the state table corresponding
to a pending content, whose fingerprint corresponds to UDP
ports 888 and 777. Notably, while Table I is fixed and pre-
configured during bootstrapping, Table II stores the active
flows (i.e., stored and pending contents) and its occupancy
varies with the time.

B. S/N-DN Node using OpenState

We extend the basic NDN packet forwarding in OpenState
for one host, described in the previous section, to implement
the full functionality of the S/N-DN node with multiple hosts.
As shown in Fig. 4, we have an OpenState switch connected
with the cache, through the cache agent, at port PC . The
server is connected to the switch through port PS , and the
switch contains U user ports from P1 to PU . The stateful
switch combines two state machines: XFSM 1 is responsible
to forward the traffic to the cache or the server, mimicking the
behavior of PIT and FIB of a standard NDN node; XFSM 2 is
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used for learning the MAC addresses of the hosts connected
at the U user ports and guarantees layer-2 connectivity.

Each of XFSM 1 and XFSM 2 contains a state table and a
flow table; thus, in our application we have four tables: state
table 1, flow table 1, state table 2 and flow table 2. The flow
table of XFSM 1 extends the flow table described earlier in
Table I. For simplicity, in the following we discuss in details
the case with two user ports P1 and P2 (i.e., U = 2). Later, we
will comment on how to generalize it to an arbitrary U . The
flow entries of the two tables are shown in Tables III and IV,
in decreasing order of priority. The “pending” states, referred
to a specific content, are coded as:

• “Pending10”: the request received from P1 is pending;
• “Pending01”: the request received from P2 is pending;
• “Pending11”: the requests received from P1 and P2 are

pending.
Upon arrival of an Interest packet at XFSM 1, the content state
is looked up from state table 1. Assuming that the content
has been requested for the first time, the content is in the
“default” state and the Interest packet is forwarded to the
server (i.e., entries 1 and 2 in Table III). If the arrival port
is P1 (or P2), then the next state of the flow is “Pending10”
(or “Pending01”).

Moreover, the Interest packet is sent to XFSM 2 where the
switch operates the standard MAC learning and forwarding
procedure, following the approach proposed in [5]. The corre-
sponding flow table is shown in Table IV. The lookup scope
of XFSM 2 is the packet destination MAC address, which is
used to look up the state of the flow from state table 2. The
next state depends on the ingress port of the incoming packet,
i.e., if the in-port is P1, then the next state is “portP1”. The
update scope of XFSM 2 is the source MAC address of the
packet. Thus, state table 2 stores the correspondence between
the MAC address and the corresponding switch port.

Coming back to XFSM 1, entries 3–8 of Table III corre-
spond to a content in “pending” state, i.e., the content has
been forwarded to the server and the switch is waiting for
the server response. Meanwhile, if another request arrives
for the same content, the “pending” state will be updated
to reflect the actual set of ports from which the requests
arrived. Entries 9–11 of Table III manage the response from
the server carrying the Data packet with the requested content.
The switch forwards the content to the ports coded in the
“pending” state and to the cache, and then changes the state
of the content into “stored”. As a result, any future request
for this content will be forwarded to the cache instead of
the server, coherently with entry 14. Then, the cache agent
will answer with the requested content, using the destination
MAC address corresponding to the requesting host. When such
Data packet enters the switch, entry 13 will allow the correct
forwarding to the destination port through XFSM 2. Finally,
when the content is removed from the cache, the cache agent
informs the switch to change the state of the corresponding
flow from “stored” to “default” (entry 12).

C. S/N-DN node for U > 2

We discuss here how to generalize XFSM 1 for a generic
number of user ports U . The “pending” state is now coded as

Cache

XFSM 1

MAC learning
of user ports

XFSM 2

OpenState Switch

Traffic forwarding,
 PIT, FIB

Agent

Fig. 4. Architecture of a stateful S/N-DN node.

TABLE III
FLOW TABLE 1 OF S/N-DN NODE, U=2

No. Match fields Actions
state event action next state

1 Default MACsrc=*, MACdst=*, Fwd to server, Pending10in-port=P1 Goto XFSM2

2 Default MACsrc=*, MACdst=*, Fwd to server, Pending01in-port=P2 Goto XFSM2

3 Pending10 MACsrc=*, MACdst=*, Goto XFSM2 Pending10in-port=P1

4 Pending10 MACsrc=*, MACdst=*, Goto XFSM2 Pending11in-port=P2

5 Pending01 MACsrc=*, MACdst=*, Goto XFSM2 Pending11in-port=P1

6 Pending01 MACsrc=*, MACdst=*, Goto XFSM2 Pending01in-port=P2

7 Pending11 MACsrc=*, MACdst=*, Goto XFSM2 Pending11in-port=P1

8 Pending11 MACsrc=*, MACdst=*, Goto XFSM2 Pending11in-port=P2

9 Pending10 MACsrc=server, Fwd to cache, StoredMACdst=* Fwd on port P1

10 Pending01 MACsrc=server, Fwd to cache, StoredMACdst=* Fwd on port P2

11 Pending11 MACsrc=server, Fwd to cache, StoredMACdst=* Fwd on ports P1,P2

12 Stored MACsrc=cache, Drop DefaultMACdst=EVICTED

13 Stored MACsrc=cache, Goto XFSM2 StoredMACdst=*

14 Stored MACsrc=*, MACdst=*, Fwd to cache, Storedin-port=* Goto XFSM2

TABLE IV
FLOW TABLE 2 OF S/N-DN NODE, U=2

Match fields Actions
state event action next state
Default in-port=P1 Drop portP1
Default in-port=P2 Drop portP2
portP1 - Fwd on port P1 -
portP2 - Fwd on port P2 -

“PendingX” where X is a binary string with 1 in position i
whenever the Interest for a specific content is pending from
port i. The total number of pending states is 2U − 1. For
example, “Pending1010” means that the request is pending
from user ports 1 and 3. Now, entries like 1–2 in Table III
must be equal to U , i.e., one entry for each user port. Entries
like 3–8 must be one for each pair of user port and “pending”
state, thus summing to a total of U(2U − 1) entries. Entries
like 9–11 in Table III must be one for each “pending” state,
thus summing to (2U − 1). Finally, entries 12–14 in Table III
will remain the same.

Table V summarizes the number of entries, which grows as
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TABLE V
NUMBER OF ENTRIES IN XFSM 1 AND XFSM 2

Table State transition or mapping Num. entries

Flow table 1

Default → Pending U
Pending → Pending U(2U − 1)
Pending → Stored 2U − 1
Stored → Stored 2
Stored → Default 1

Flow table 2 Default → PortP U
PortP → PortP U

State table 1 Content → Stored C + 1
State table 2 MAC → PortP U + 3

O(U2U ). The number of entries in state table 1 corresponds to
the number of contents in “stored” or “pending” state. Thus, it
is bounded by the maximum number of contents in the cache
(equal to C) plus the number of contents that are “pending”.
Notably, one additional entry is present in the state table for
the “default” state. Instead, the number of entries in state table
2 is equal to the number of MAC addresses learned by the
switch, which is upper bounded by U +3 assuming one MAC
address learned for each user port, one entry for the cache,
one entry for the server and one default entry.

D. Enhanced flow table definition in XFSM 1

Table V highlights the limited scalability of the flow table
definition in XFSM 1 when U is large. This is mainly due to
the self transition from/to “pending” state, whenever the state
of a pending content must be updated to include the port from
which a new request has been received. In other words, if the
current state for a content is “pendingX”, with X being the
adopted bit string representation of the arrival ports, and a new
Interest packet for the same content arrives from port i, the
new state “pendingY ” is obtained by setting the ith bit of Y
to one, i.e., using the logical OR operation:

Y = X ∨ 2U−i+1 i = 1, . . . , U. (1)

Thus, to support this simple state transition in flow table 1,
the controller has to pre-configure all the possible transitions
from a given “pendingX” state and a given i arrival port
to the new state “pendingY ”, producing U(2U − 1) entries
as discussed before. This approach is what we described in
Sec. IV-C and it is actually what we have experimented since
it is the only option available when adopting the OpenState
switch emulator provided in [6]. Nevertheless, the original
paper on OpenState [5] envisions the possibility of computing
simple operations on the current state in order to compute
the new state. In this case, (1) could be coded into a single
entry in flow table 1, substituting all the U(2U − 1) entries
from “pending”→ “pending”. Similarly, with a single entry, it
would be possible to configure all the “default” → “pending”
transitions.

Furthermore, if OpenState was able to operate a pro-
grammable action based on the current state, it would be
possible to avoid also the 2U−1 entries “pending”→ “stored”
states. Indeed, given “pendingX” state, when a Data packet
arrives from the server, the set of user ports where to forward
the packet (in addition to the cache) could be defined as the

TABLE VI
ENHANCED VERSION OF XFSM 1

Table State transition Num. entries

Flow table 1

Default → Pending 1
Pending → Pending 1
Pending → Stored 1
Stored → Stored 2
Stored → Default 1

set of destination ports where the ith bit of X is 1. This would
allow to code the transitions “pending” → “stored” into just
1 single entry.

In summary, Table VI shows the final number of entries if
the programmability of OpenState would be allowed in terms
of simple logical operations to compute both the new state
and the actions to apply. The number of entries in the flow
table would be O(1) allowing the approach to scale for a large
number of user ports.

V. PERFORMANCE EVALUATION METHODOLOGY

Here we introduce the methodology we use to evaluate
the performance of our system. We start by presenting the
performance metrics we adopt, then we describe the stateless
approach for implementing the S/N-DN node, against which
we benchmark the performance of our stateful approach.
Finally, we describe our testbed and evaluation settings.

A. Performance metrics

In order to evaluate the system performance, we look at the
following metrics:

• End-to-end (e2e) delay, measured in ms: time difference
between the generation of an Interest packet and the
arrival of the Data packet with the requested content at
the host;

• Cache download probability, Pcache ∈ [0, 1]: computed
as fraction of content requests that are satisfied by directly
downloading the content from the local cache;

• Control traffic, measured in bit/s: amount of traffic ex-
changed between the OF switch and the SDN controller
over time, considering only the messages related to our
NDN application;

• Memory occupancy, measured in kbytes: memory needed
to store the state entries and flow entries in the switch.

B. Stateless caching in SDN

As a benchmark for our approach, we consider an S/N-DN
node implemented through a standard, stateless OF switch. In
the following, we use the terms stateful approach and stateless
approach to represent, respectively, stateful and stateless data
plane implementations of the S/N-DN node.

The architecture of a stateless S/N-DN node is shown in
Fig. 5. An OF switch consists of U user ports, one port PC

connected to the cache through the cache agent, and one port
PS to connect to the server. The switch is controlled by the
SDN controller, which stores the NDN-specific data structures,
i.e., PIT, FIB and CLT. In addition, the controller is also
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Fig. 5. Architecture of a stateless S/N-DN node.

responsible to forward the traffic towards the cache or the
server and to run a reactive MAC learning application. To
learn the MAC address of a host connected to a port, upon
receiving the first packet from the host, the controller installs
a flow entry in the OF switch, which is used to forward the
subsequent packets to the host. Note that, in a network of
stateless S/N-DN nodes, each of the OF switches is attached
to a local cache but only one SDN controller stores the PIT,
CLT and FIB tables for all the S/N-DN nodes.

The sequence of exchanged packets is shown in Fig. 6. The
scenario and the packet formats are the same as in Fig. 2,
i.e., the host requests content A twice, before and after the
content is stored in the cache. In more detail, first, the host
sends the Interest (P1) for content A to the switch, which
then sends an OF packet in message to the controller carrying
a copy of P1. The controller creates an entry in the PIT,
indicating that content A is needed by the host port. Then,
it sends a packet out message to the switch to forward the
Interest (P1) to the server port. Hence, P1 is forwarded to the
server that sends back the Data packet (P2) carrying content A.
Upon receiving the content, the switch again contacts the
controller by sending out a packet in message carrying P2.
The controller now checks its PIT table and then instructs the
switch, by sending a packet out message, to send the content
to the host port and to the cache port. After the previous step,
content A has reached the host and it is stored in the cache.
Now, if the host requests again the same content (P3), then a
copy of the Interest packet is again forwarded to the controller
in a packet in message to check in the CLT if the content
is available in the cache. Since now the content is in the
cache, the controller instructs the switch, through a packet out
message, to forward the Interest (P3) to the cache port. The
cache agent responds with the Data packet (P4) directed to the
host MAC address. This packet is received by the switch and
then forwarded to the host based on the local MAC matching
rules. In addition, when a content is evicted from the cache,
the cache agent sends an eviction message to the controller,
such that the controller updates the corresponding CLT.

In the above scenario, the whole packet exchange, excluding
the packets between the switch and the controller, are the same
as those depicted in Fig. 2 for our proposed stateful approach.
Thus, the two approaches are equivalent from a functional
point of view. The stateless approach requires that the switch
interacts with the controller for each Interest packet, since the
main NDN data structures (PIT and CLT) are managed by
the controller and not directly by the switch as in our stateful

Host Switch Cache Controller Server

P1

P1

P2

P2 P2

P3

P3

P4
P4

packet_in (P1)

packet_out 

packet_in (P3)

packet_out

packet_in (P2)

packet_out

  Eth(Host)-->Eth(Server)           IP(Host)-->IP(Server)          hash(A)            Interest(A)P1

Eth(Server)-->Eth(Multicast)  IP(Server)--> IP(Multicast)     hash(A)             Data(A)P2

  Eth(Host)-->Eth(Server)          IP(Host)-->IP(Server)           hash(A)            Interest(A)P3

  Eth(Cache)-->Eth(Host)          IP(Server)--> IP(Host)           hash(A)              Data(A)P4

Ethernet IP UDP ports

Fig. 6. Packet interaction in stateless implementation of S/N-DN node when
content A is requested.

S/N-DN node.

C. Testbed implementation

We create our testbed on a server installed with Ubuntu
16.04. Mininet1 is used to emulate our network scenario.
We use OpenState virtual switch provided in [6] for stateful
S/N-DN node and a standard OpenFlow v1.3 virtual switch
for stateless S/N-DN node. The switch is managed by Ryu
controller. The applications running on Ryu to support the
stateful and stateless S/N-DN nodes have been developed in
Python. Furthermore, the server and the cache agent (including
the cache) are implemented as Mininet hosts running their
respective software written in Python using Scapy2 tool. The
server can receive content requests and respond with actual
content data. The cache agent is able to: (i) save content
received from the server in a local Least Recently Used (LRU)
cache, (ii) respond to content requests received from the host
by sending the content data, and (iii) inform the switch about
eviction of any content from the cache. We use a reference
NDN traffic generator3 to generate a trace of NDN Interest
packets. This trace of content requests is replayed by the host
at a specified rate using the tcp_replay Linux utility.

D. Evaluation of performance metrics

In order to evaluate the memory occupancy of the flow
tables, we use the standard OpenFlow “flow stats” request
and reply messages. The SDN controller sends the flow stats
request message and receives back the memory occupied by
each of the installed flow entries. In the stateful approach,

1http://www.mininet.org
2http://www.secdev.org/projects/scapy/
3https://github.com/named-data/ndn-traffic-generator
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TABLE VII
SCENARIO PARAMETERS

Parameter Description
dss One-way delay between switch and server [ms]
dsc One-way delay between switch and controller [ms]
Ĉ Normalized cache size

since the flow tables do not change after the initial configura-
tion, the flow stats request and reply messages are exchanged
only once in the beginning.

For the evaluation of the control traffic, we use Wireshark4

to count the number of control messages (exchanged between
the OF switch and the SDN controller) as well as to compute
the size of each message. Furthermore, we only consider the
control messages required for content retrieval; we do not
include the messages required for initial configuration or the
ones for retrieving flow statistics.

E. Evaluation scenario

We setup the scenario described in Fig. 1, comprising of an
OpenState/OpenFlow switch, a cache, a server and a host. The
switch is configured by the application running on top of the
Ryu controller. The server and the cache run their respective
software, while the host replays the traffic generated by the
NDN Traffic Generator. A total of 1000 content requests are
periodically generated at the rate of 1 packet/s. This guarantees
that the time interval between two subsequent requests is
always greater than the e2e delay of the first request, regardless
of the stateful/stateless approach. The content catalog contains
100 data items, each of fixed size. The content for each Interest
packet is chosen at random across the catalog according to a
given distribution of content popularity. The system parameters
are summarized in Table VII. Therein, dss represents the
one-way propagation delay between the OF switch and the
server, while dsc represents the one between the OF switch
and the SDN controller. Furthermore, Ĉ ∈ [0, 1] represents the
normalized cache size, i.e., the size C of the cache normalized
by the catalog size, both measured in terms of content items.

VI. EXPERIMENTAL RESULTS

Given the aforementioned evaluation settings, we perform
experiments on our testbed to validate the proposed approach
and assess its performance. We now assume uniform distribu-
tion of content popularity and data size5 equal to 1200 bytes.
Fig. 7 shows the end-to-end (e2e) delay of the content re-
quested by the host, for Ĉ = 1 and dss = 100 ms. In the
case of our stateful approach, dsc does not affect the e2e
delay experienced by the host, since, once the switch has
been configured, it never interacts with the controller. The
figure clearly shows that there are two phases in the system:
a transient phase during which the cache is not full and the
switch stores a copy of each of the distinct content items in
the cache, and a stationary phase which starts as soon as the

4https://www.wireshark.org/
5Data size comprises also the standard NDN header for content identifica-

tion.
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Fig. 7. The e2e delays during transient and stationary phases for the stateful
approach, when Ĉ = 1 and dss=100 ms.

cache is fully utilized. During the transient phase, a requested
content not stored in the cache is fetched from the server and
the incurred e2e delay is around 218 ms, which is the round-
trip time between the switch and the server plus the processing
time. Conversely, during the stationary phase, all of the 100
contents are available in the cache and the e2e delay is always
around 18 ms, which is coherent with the processing time
evaluated in the transient phase.

In the following we will present our results during the
stationary phase.

A. End-to-end delays

Fig. 8 depicts the e2e delays of the content requested by
the host for different values of dss. The results refer to the
stateful approach with Ĉ = 0.5. At dss = 100 ms, for each of
the requested content, the e2e delay is centered around either
18 ms or 218 ms, depending on the availability of the content
in the cache. Indeed, even if the cache is always fully utilized
in the stationary phase, it cannot store all of the 100 contents
due to its limited size. Thus, some contents are evicted to make
room for newly requested items, according to the LRU eviction
policy. Similarly, at dss = 50 ms, the e2e delays are centered
around either 18 ms or 118 ms. Finally, at dss = 0 ms, even
the content that is not in the cache is retrieved instantly from
the server, thus the e2e delays is centered around 18 ms.

Fig. 9 instead compares the stateful and the stateless ap-
proaches in terms of the distribution of the e2e delay. In
particular, it shows stacked bar plots, for different normalized
cache sizes, representing the probability that the e2e delay lies
within the specified intervals. In the case of stateful approach,
the e2e delay is distributed in the intervals 0–99 ms and 200–
299 ms, depending on the availability of the content in the
cache. For the stateless approach, instead, much larger e2e
delays are observed: they now range between 200 and 299 ms,
and between 600 and 699 ms. This is because the stateless
approach relies on the communication with the Ryu controller
to implement the functionality of the S/N-DN node, which
depends on the parameter dsc. Moreover, the impact of the
normalized cache size is also evident for both approaches.
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At Ĉ = 0.9, approximately 93% of the content requests are
satisfied by the cache, hence incurring lower e2e delays, while
for the remaining 7% requests the contents are fetched from
the server resulting in much larger e2e delays. At Ĉ = 0.5,
approximately 50% of the content requests are satisfied by the
cache, while at Ĉ = 0.1, approximately 9% and 91% of the
content requests are satisfied, respectively, from the cache and
the server.

Fig. 10 compares the average e2e delay, computed over
all content requests, for the stateful and stateless approaches,
as a function of Ĉ. The delay of the stateful approach
is approximately three times less than that of the stateless
approach for small Ĉ, while the difference becomes two times
for large Ĉ. We plot the average e2e delay as a function of
dsc in Fig. 11. The figure clearly shows that the average delay
increases linearly with dsc for the stateless approach, while
the performance is independent of parameter dsc in the stateful
case. Indeed, recall that, unlike the latter, the stateless solution
heavily relies on the communication with the SDN controller
in order to implement the NDN functionalities, hence its per-
formance significantly depends on the communication latency
between the controller and the switch.
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B. Cache download probability

We compute the cache download probability as Ĉ varies as
well as for content requests that are generated according to
uniform and Zipf (with α = 0.75) distributions of content
popularity. Moreover, the behavior of the cache download
probability does not depend on the adopted (stateful/stateless)
approach, rather on the generation process of the content
requests. This is because, as previously discussed in our setup,
the time to retrieve a requested content is much lower than
the time interval between two requests. As shown in Fig. 12,
the cache download probability exhibits a linear behavior for
the uniform popularity, and non-linear for Zipf popularity;
both behaviors are well known and in accordance with Che’s
approximation for LRU caches [17].

C. Control traffic for stateless approach

The OF control traffic is essential in the stateless data plane
implementation of the S/N-DN node, as explained in Sec. V-B.
In particular, 4 OF messages (see Fig. 6) are exchanged
between the switch and controller when the requested content
is not available in the cache. In addition, while operating in
the stationary phase, the cache is full and each unavailable
content, after being fetched from the server, is stored in
the cache in place of the least recently used content. This
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Fig. 12. Cache download probability for dss=100 ms and dsc=100 ms.

leads to an additional control message sent to the controller
informing about the evicted content, thus a total of 5 OF
messages are exchanged. On the other hand, only 2 OF
messages are exchanged when the content is available in
the cache. Furthermore, note that the installation of the flow
entry for the destination MAC address of the host takes place
during the transient phase, hence it is not included in this
computation. In summary, in our scenario, the average number
of control messages for the stateless approach can be computed
as follows:

5(1− Pcache) + 2Pcache. (2)

Fig. 13 shows the average number of control messages per
content request, for different values of Ĉ, under uniform and
Zipf distributions of content popularity. At small Ĉ, around 5
OF messages are exchanged, since the corresponding Pcache

is close to 0. As Ĉ increases, Pcache increases and thus the
number of messages decreases. If the cache stores all content
items (i.e., Ĉ = 1), then Pcache = 1 and only 2 OF messages
are exchanged.

In addition to evaluate the number of control messages, we
also measure the corresponding bandwidth. Table VIII shows
the empirical size of the Ethernet frames of the OF messages
that are exchanged when the requested content is available in
the cache and when it is not. We consider two possible cases:
either the carried data is small (equal to 100 bytes) or large
(equal to 1200 bytes, almost the maximum allowed to avoid
IP fragmentation in the OF traffic).

Table IX shows the network overhead for the two ap-
proaches. The network overhead is defined as the OF control
traffic exchanged with the controller in stationary conditions,
i.e., when the cache is full, normalized by the data traffic
received from the server. In the stateless approach, the network
overhead depends on the availability of the content in the
cache as well as the size of the data packets, since a copy
of the data packet may be sent to the controller carried by
an OF packet in message. When the data is small and is not
locally cached, the overhead can reach almost 800%, since
more than 1.1 kbytes (refer to the size of the corresponding 5
OF messages in Table VIII) are exchanged for just 100 bytes
of data. The overhead is instead much smaller when the data
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Fig. 13. Control traffic for the stateless approach, for dss=100 ms, dsc=100
ms and one request per second.

TABLE VIII
ETHERNET FRAME SIZE OF OF MESSAGES FOR DATA BETWEEN 100 AND

1200 BYTES

Scenario OF message Size

Content not available

packet in(Interest) 276 bytes
packet out(Interest) 106 bytes
packet in(Data) 354-1454 bytes
packet out(Data) 122 bytes
packet in(eviction) 276 bytes

Content available packet in(Interest) 276 bytes
packet out 106 bytes

TABLE IX
CONTROL TRAFFIC OVERHEAD FOR THE STATEFUL AND STATELESS

APPROACHES

Approach Scenario Data Normalized
packet OF traffic

Stateful any any 0%

Stateless
Content not available 100 bytes 799%

1200 bytes 180%

Content available 100 bytes 269%
1200 bytes 31%

is large, since the OF traffic is better amortized. Nevertheless,
in the best case, i.e., the large data locally available at the
cache, the overhead is still approximately 30%.

We also show, in Fig. 13, the average bandwidth required
for the stateless approach for each content request, and the
required bandwidth for the large data packets, assuming 1
request per second. The required bandwidth varies between
3 kbps and 18 kbps, which is small due to the limited request
rate considered in the experiment. Notably, this depends on
the request generation rate and the cache size.

In our proposed stateful approach, on the other hand, after
the initial pre-configuration, the switch acts autonomously
without any interaction with the SDN controller (excluding the
legacy monitoring messages), thus the number of OF messages
as well as the network overhead is null.

D. Memory occupancy

Table X shows the empirical memory required for each entry
in the flow tables of XFSM 1 and XFSM 2. Instead, state tables
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TABLE X
EMPIRICAL MEMORY OCCUPANCY FOR XFSM 1 AND XFSM 2

Table State transition Memory (per-entry)

Flow table 1

Default → Pending 168 bytes
Pending → Pending 152 bytes
Pending → Stored 176 or 192 bytes
Stored → Stored 152 or 160 bytes
Stored → Default (eviction) 152 bytes

Flow table 2 Default → PortP (MAC learning) 128 bytes
PortP → PortP (MAC forwarding) 88 bytes
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Fig. 14. Empirical memory occupancy in the OpenState switch for a stateful
S/N-DN node.

are not present in standard OF architectures, hence no message
is available to query their memory occupancy. In the following
results we estimate their occupancy by using as reference: (i)
32+U +1 bits for each entry of state table 1, obtained as 32
bits (i.e., the content fingerprint) plus U bits to code the set
of destination ports plus 1 additional bit for the stored state,
and (ii) 48 + U bits for each entry of state table 2 (i.e., 48
bits of MAC address that serves as flow key in XFSM 2 plus
U bits to code the state).

Fig. 14 shows the total memory occupancy for both the flow
tables and the state tables, respectively, assuming C = 100
contents. Since the number of flow entries grows as O(U2U )
as discussed in Sec. IV-C, the memory occupancy of the flow
tables increases rapidly by increasing the number of user ports
U . However, it can be observed that the memory occupied by
the flow tables inside the switch for U = 8 is approximately
350 kbytes, which is feasible for hardware implementation
based on TCAM memories [18]. Regarding the state entries,
they depend on the user ports as well as the cache size (see
Table V) but their occupancy remain below 0.6 kbyte, thus
they are negligible.

With regard to the stateless approach, the whole function-
ality of the NDN node is implemented in the SDN controller
while the switch plays a minor role; as a result, the number of
flow entries installed in the switch is limited. Specifically, only
U entries are installed, one for each MAC address associated
with each user port. Note, however, that the small memory
occupancy required by the stateless approach comes at the
cost of large e2e delays.

VII. RELATED WORKS

NDN is an ICN architecture whose baseline implementation
was carried out under the project called Content Centric
Networking (CCN) [1]. The significance of deploying SDN
and ICN capabilities in future networks has led to a consid-
erable amount of research that aims at combining both the
technologies.

A first family of works implements ICN over SDN, without
an integration among the two layers. The works in [13], [19]
implement an OF-based CCN node, in order to provide CCN
functionalities such as caching and name forwarding in an
SDN-based data plane. The CCN node consists of an OF
switch, a wrapper and a CCNx daemon (i.e., a reference
CCN implementation). The wrapper pairs each port of the
switch with a CCNx interface, thus making it responsible
for the communication between the switch and the daemon.
A similar approach is taken in NDNFlow [20] where an
ICN node is implemented by installing CCNx daemon on a
legacy OF switch. The authors consider a network scenario
involving both ICN-enabled as well as legacy OF switches.
They implement an ICN module in the SDN controller, which
uses an ad-hoc protocol on the south-bound interface of the
controller, in parallel to OpenFlow, to control the ICN-enabled
OF switch. In order to implement a CCNx node, computing
resources must be integrated with the switch to run the CCNx
daemon. Instead, in our stateful S/N-DN node the processing
of NDN packets runs directly on the switch (thanks to the
supported state machines) and thus allows to achieve full line-
rate performance.

In [14] and [21], switches are not ICN-aware, making the
SDN controller responsible for managing ICN request and
response packets. This solution is similar to the stateless
approach we compare with, and incurs large delays due to
the required interaction between the switch and the controller,
differently from our stateful approach which completely avoids
such interaction. Very recently, other works have investigated
how to integrate ICN in a 5G architecture using a stateless
SDN approach. Indeed, [22] provides a 5G-ICN architec-
ture implemented with the network slicing paradigm, while
[23] combines NDN and SDN in the context of vehicular
networks. Due to the centralized nature of approach, both
works suffer limited reactivity as perceived by the users due
to the continuous interaction between the controller and the
switch to forward properly data and interest packets. The
work in [24] proposes to combine ICN, C-RAN and SDN
in heterogeneous networks. The adopted approach is based
on logically centralized controllers responsible for all the ICN
related operations (e.g., content addressing and matching), thus
incurring large processing overload on the controllers and
limiting large-scale deployment of heterogeneous networks.
The paper suggests to install matching rules directly on the
SDN switches to reduce the interaction with the controllers.
This enhanced version is similar to the stateless approach
considered in our work.

The work [25] is one of the initial works that combine
SDN with ICN. Differently from our work, the considered
ICN architecture has three main components: rendezvous,
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topology management and forwarding. The network function
of topology management and rendezvous are realized in two
centralized nodes, called topology manager and rendezvous
server respectively. The topology manager builds forwarding
identifiers, used for source routing, using bloom filter-based
encoding scheme [26]. The forwarding network function is
delegated to the SDN controller. This centralized approach
for packet forwarding incurs significant scalability issues. In
contrast, we focus on a decentralized approach according to
which NDN Interest/Data packets are routed without involving
the controller.

Similar to our idea of implementing an NDN node using a
stateful SDN data plane, NDN.p4 [27] provides a preliminary
implementation of NDN node using P4 abstraction [8] to
program the data plane. In particular, [27] enables a P4
switch to process NDN Interest and Data packets. The switch
implements PIT and FIB tables but cache lookup is not
implemented. In our work, we adopt OpenState instead of
P4, and we allow the switch to implement the PIT and CLT,
thus it operates autonomously the forwarding of NDN traffic
among cache, server and hosts. In addition, we evaluate the
performance of the whole S/N-DN node considering relevant
metrics such as latency, memory occupancy in the switch and
control traffic.

The work most similar to ours is [28], which studies the
feasibility of “breadcrumb” forwarding in OpenState switches.
Such forwarding is a reverse path forwarding scheme, which
maintains states for the opposite direction of a flow. The paper
concentrates on a hardware proof-of-concept implementation
based on FPGA. Moreover, the authors discuss few applica-
tions (e.g., CCN node, MPLS switching) which can be imple-
mented by “breadcrumb” forwarding. In particular, the work
describes the implementation of the PIT. The XFSM discussed
in [28] for the PIT is very similar to our XFSM 1, proposed
in Sec. IV-C, and thus suffers the same scalability limitations
since the flow entries in the flow table grows as O(U2U ).
However, it does not support explicitly the content storage,
and thus it does not provide the additional functionalities (as
CLT, content eviction, automatic forwarding to cache or to the
server, integration with the MAC learning/forwarding) that we
support to fully enable the S/N-DN node.

Finally, in our work we do not investigate the effect of the
specific caching policy adopted in NDN networks. We just
consider a basic user-driven approach in which the content
requests from the users dictate the contents stored in the cache
and the eviction is managed with a traditional LRU policy.
More advanced policies can be devised to optimize the effi-
ciency of the caching scheme. In this context, [29] discusses
the challenges for content caching and routing to provide
video streaming service in ICN mobile wireless networks.
The proposed video streaming solution takes into account
content popularity to devise an efficient content caching strat-
egy. Moreover, it provides a mechanism to improve content
delivery by considering mobility of the nodes and selecting
optimal content providers. In our work, we do not investigate
the possible implementation of such schemes through a stateful
approach, even if we expect that some of them could be easily
implemented.

VIII. CONCLUSIONS

We proposed a novel solution to implement NDN leveraging
the programmability of stateful SDN switches. Our archi-
tecture comprises stateful SDN switches, each of which is
attached to a local cache. This combination of stateful switch
and cache can successfully replicate the behavior of an NDN
node, and we therefore referred to it as stateful S/N-DN node.
We implemented the stateful S/N-DN node using OpenState,
and a system testbed using Mininet, OpenState and Ryu SDN
controller so as to evaluate the performance of our solution. We
also benchmarked our stateful approach with a stateless data
plane implementation of the S/N-DN node. We highlighted
that, in a traditional stateless approach, the OpenFlow switch
must rely on the communication with the controller in order to
implement the functionality of the NDN node, thus resulting
in large overhead and large end-to-end delays. On the contrary,
our stateful approach does not need to involve the controller
after the initial configuration of the OpenState switch, hence
it yields zero control traffic and short latency.
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