EURECOM submission to the Albayzin 2016 Speaker Diarization Evaluation

EURECOM Sophia Antipolis

Jose Patino¹, Héctor Delgado¹, Nicholas Evans¹, Xavier Anguera²
¹EURECOM, Sophia-Antipolis, France

²ELSA Corp., Portugal

{patino,delgado,evans}@eurecom.fr, xavier@elsanow.io

Introduction

Speaker diarization is the task of segmenting an audio document into speaker-homogeneous segments and clustering those segments according to speaker identities

Applications:

- Enabling speaker adaptation in ASR systems
- Enabling speaker recognition in multi-speaker data
- Spoken document indexing and retrieval

Albayzin Evaluation: Segmenting broadcast audio documents according to different speakers and attributing those segments to the speaker who uttered them, without any prior information about the speaker identities nor their number

EURECOM submission:

- Infinite impulse response constant Q, Mel-frequency cepstral coefficients (ICMC) [1]
- Speaker diarization system based on the binary key modelling [2], an efficient and compact speech and speaker representation
- External training data is not required: the test data itself is used for training

Binary key speaker diarization system

• System does not perform overlapping speech detection

Database

Database: 100 hours split into two parts:

- 87 hours for **training** from the **Catalan broadcast news database**
- 4 and 16 hours for development and test respectively from the Corporación Aragonesa de Radio y Televisión (CARTV)

Acoustic classes annotations provided

- Speech
- Music
- Background noise

Evaluation metric

Diarization error time for each segment *n*

$$E(n) = T(n)[\max(N_{ref}(n), N_{sys}(n)) - N_{correct}(n)]$$

T(n): Duration of segment n

 $N_{ref}(n)$: Number of speakers that are present in segment n

 $N_{svs}(n)$: Number of system speakers present in segment n

 $N_{correct}(n)$: Number of reference speakers in segment n which are correctly assigned by the diarization system

Diarization Error Rate (DER)

$$DER = \frac{\sum_{n \in \Omega} E(n)}{\sum_{n \in \Omega} (T(n)N_{ref}(n))}$$

DER may be decomposed as:

- Speaker error: time wrongfully assigned to a speaker
- *Missed speech*: time where speech is present but is not labelled by the system
- False alarm: amount of time that has been assigned to speech which is not present

Initial clustering Initial clusters • 19-order ICMC 25ms window • 10ms rate Repeat until getting N Gaussians • 20-channel filterbank Liftering Select Gaussian Select 1st Gaussian Update With the biggest Initialize Clusters' training cosine distances cosine distances cosine distance $\operatorname{argmax} Lkld(x_i, \theta_i)$ Closest cluster pair $v_{cos}[i] = \min(v_{cos}[i], D_{cos}(\mu', \mu_i))$ merging¹ and new $v_{cos}[i] = D_{cos}(\mu_i, \mu_{1st})$ cluster training Binary processing Acoustic processing cluster? Reached Agglomerative Best clustering clustering 1 cluster KBM **Feature** selection training extraction Best speaker clustering Resegmentation Cluster Feature Best clustering ¹Decided through the cosine distance initialization binarization Resegmentation selection x[1] x[2]x[M]• Within-class sum of squares $Lkld(x[i]|\lambda_1)$ $Lkld(\mathbf{x}[i]|\boldsymbol{\lambda}_{2})$ (WCSS) using the cosine distance is computed for all မ္တိ 120 clustering solutions N Gauss istance to the $W(C_k) = \sum \sum (D_{cos}(x, \mu_i))^2$ straght line Lkld(x[i] $|\lambda_{M}|$ • A trade off between the WCSS and the number of 1 8 15 26 3 19 3 2 ... 17 clusters is reached through Vector (CV) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 141516 17 18 19 2021 22 23 the elbow criterion Binary Key 0 0 1 1 0 0 1

Results

System results Develo

DER trend for different KBM sizes on the development set

- KBM size as a percentage of the initial number of Gaussian components, which is related to the length of the speech content
- Exploration of relative KBM size led to two working points, submitted as primary and contrastive system

Primary Contrastive DER of submitted systems on the development and test data (with 0.5% and 0.05% false alarm rates, respectively) Primary system with a bigger relative

- Primary system, with a bigger relative KBM, outperforms contrastive system on development and test
- DER on test data is an approx. absolute 8% worse than on the development set for both primary and contrastive systems

Execution time

	Primary system		Contrastive system	
Task	Time	xRT	Time	xRT
Feature extraction	00:49:11	0.046	00:49:11	0.046
Speaker diarization	00:39:59	0.044	00:32:01	0.035
Overall	01:29:10	0.045	01:21:12	0.0405

Execution time taken by primary and contrastive systems when processing the test data (around 16 hours of audio).

Real time factor (xRT) is also provided

- Very low execution times, suitable for processing big amounts of data and for online operation with low latencies
- Contrastive system provides a faster alternative at the cost of decreased performance

All participants results

EURECOM AHOLAB GTM-UVIGO ATVS-UAM

All participants primary systems results

(with 0.05% and 0.06% false alarm rates for systems 1 and 2)

- The top two systems performed very similarly with only an absolute 0.16% difference
- Systems 3 and 4 exhibited higher missed speech and false alarm error rates, possibly influencing speaker error rates

Conclusions

- Speaker diarization system based on the ICMC features and binary key modelling
- Data from the training set was not employed. System tuned on the development set only
- Two different working points were chosen in order to compose the KBM in the primary and contrastive systems
- Best result of experiments on development data is 11.93% DER
- Official result on the Albayzin Speaker Diarization Evaluation is 18.16% DER
- System was the 1^{st} ranked among the submissions, with a slight difference over the 2^{nd} system and an approximate absolute 7% over the 3^{rd} ranked

Acknowledgments

This work was partially supported with funding from the French Agence Nationale de la Recherche Project ODESSA (ANR-15-CE39-0010)

References

- [1] Delgado, H., Todisco, M., Sahidullah, M., Sarkar, A. K., Evans, N., Kinnunen, T., & Tan, Z. H. (2016). Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification. In IEEE Spoken Language Technology (SLT) Workshop
- [2] Delgado, H., Anguera, X., Fredouille, C., & Serrano, J. (2015). Fast single-and cross-show speaker diarization using binary key speaker modeling. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 23(12), 2286-2297