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ABSTRACT

Equalization for digital communications constitutes a very
particular blind deconvolution problem in that the received
signal is cyclostationary. Oversampling (OS) (w.r.t. the
symbol rate) of the cyclostationary received signal leads to
a stationary vector-valued signal (polyphase representation
(PR)). OS also leads to a fractionally-spaced channel model
and equalizer. In the PR, channel and equalizer can be con-
sidered as an analysis and synthesis filter bank. Zero-forcing
ZF) equalization corresponds to a perfect-reconstruction

Iter bank. We show that in the OS case FIR ZF equalizers
exist for a FIR channel. In the PR, the multichannel linear
prediction of the noiseless received signal becomes singular
eventually, reminiscens of the single-channel prediction of
a sum of sinusoids. As a result, the channel can be identi-
fied from the received signal second-order statistics by linear
prediction in the noise-free case, and by using the Pisarenko
method when there is additive noise. In the given data case,
Music (subspace) or ML techniques can be applied.

1. PREVIOUS WORK

Consider linear digital modulation over a linear channel
with additive Gaussian noise so that the received signal can
be written as

() =D ach(t—kT) + v(1) (1)

k

where the ax are the transmitted symbols, T'is the symbol
petiod, h(t) is the combined impulse response of channel
and transmitter and receiver filters, but is often called the
channel response for simplicity. Assuming the {ax} and
v(t}} to be (wide-sense) stationary, the process {y tzl} is
wide-sense) cyclostationary with period 7". If the chan-
nel would be known, then one could pass the received sig-
nal through a matched filter and sample the output at the
symbol rate. These samples would provide sufficient statis-
tics for the detection of the transmitted symbols. If {y(t)}
is sampled with periad 7', the sampled process is (wide-
sense) stationary and its second-order statistics contain no
information about the phase of the channel. Tong, Xu and
Kailath [1] have proposed to oversample the Teceived signal
with a period & = T/m, m > 1. In what follows, we as-
sume h(t) to have a finite duration. Tong ¢t al. have shown
that the channel can be identified from the second-order
statistics of the oversampled received signal. They intro-
duce an observation vector y{k) of received samples over a
certain time window and consider a matrix linear model of

the form
y(k) = Ha(k) +v(k). @
The drawback of their approach is that they need the sam-

pled channel matrix H to have full column rank. This leads
fo an unnecessary overparameterization of the channel as
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will become clear below (the matrix H could be param-
eterized in terms of the samples of the channel response,
but this parameterization is not exploited by Tong et al.
). Tong et al. found that the condition for identifiability of
the (oversampled) channel from the second-order statistics
of the received signal is that the ztransform of the over-
sampled channel should not have m equispaced zeros on a
circle centered in the origin. One should also remark that
the identification of the channel from the received signal
second-order statistics can only be done up to a multiplica-
tive constant (with magnitude one in certain cases), a not
unusual phenomenon in blind equalization. This constant
can be identified by other means. If the channel contains a
delay, then this delay can also not be identified blindly. We
shall consider here an oversampling factor m = 2, but the
results can be generalized [2].

2. FRACTIONALLY-SPACED CHANNELS
AND EQUALIZERS, AND FILTER BANKS

We assume the channel to be FIR with duration NT.
We consider the polyphase description of the received sig-
nal. With m = 2, let y1(k) and y2(k) denote the even
and odd samples of y(t) (y:(k) = y&u-x\—kT), (k) =
y(to+(k—%)7')), and similarly for the noise samples and
channel response. Then the oversampled received signal
can be represented in vector form at the symbol rate as

N—1
yk) = > h(ase +v(k) = HyAn(k) +v(k),

=0
s _ [ wilk) [ vk o | hak
=0 v =[] e = | ’”E’f} .
Hy =[h(0). h(N-1)]. Anv(k)= [of - af u,,]"
(3)
where superscript 7 denotes Hermitian transpose. We for-

malize the finite duration N7 (approximately assumption
of the channel as follows

(AFIR) : h(0)} #0, h(V—1) # 0, h(i) = 0 for i > N.

The ztransform of the channel response at the sampling
rate is H(z) = H\(z’) + 27 H2(z*). Similarly, consider a
{fractionally-spaced (—72:) equalizer of which the z-transform
can also be decomposed into its polyphase components:
Flz) = Fi(z%) + 27 Fa(2?), see Fig. 1. As will become
ciear below, a unique ZF and properly scaled equalizer can
be found (under certain conditions on the channel) when Fy
and F; are FIR filters of length N—1. However, in light of
the prediction and noise subspace parameterization consid-
erations to be discussed further, we take £y, F, to be FIR

of length N: Fi(z) = S0 fi(k)e ™ i=1,2.
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3. FIR ZERO-FORCING (ZF) EQUALIZATION

The condition for the equalizer to be ZF is Fi(z)Hi(z) +
Fy(z)Ha(z) = 1. If we introduce f(k) = [fi(k) f2(K)], F =
[f(0)- - -f(N —1)], then the ZF condition can be written as

Fy v (Hy) = [1 0---0] )

where T (x) is a (block) Toeplitz matrix with M (block)
rows and [x (]pX(M_l)} as first (block) row (p is the num-
ber of Tows in X). (4) is a system of 2N —1 equations in 2N
unknowns. The equalizer has one degree of freedom more
than necessary to be zero-forcing. Let us arbitrarily con-
strain f2(02 = 0. Furthermore, consider equalization with
removal of [S1, but up to a constant only and take f1(0) = 1.
Then the remaining equalizer coefficients can be found from
(1) f(N=1)] Ty-1(Hy) = (1) b (N-1)0---0
where Tn_, (Hx) is now a square matrix of size 2N —2.
Tw-1 (Hy) is a Sylvester matrix (up to a permutation)
which is known to be nonsingular if H(z) and Ha(z) have
1o zeros in common. This condition coincides with the iden-
tifiability condition of Tong et al. on H(z). Let us denote

the resulting equalizer coefficients as F?}. A set of equalizer
caefficients that satisfies (4} is Fy = F2 /h1(0) (assuming
h1{0) # 0). The unique ZF equalizer of length N—1 is

Fy_y=[10---01T5 (Hn) . (6)

Note that there exists a set of blocking equalizer coefficients

F%, for which no transmitted symbol has an influence on the
equalizer output:

FAWTn (Hy) = 0 (1)

(the nullspace of 73 (Hy) has dimension one).

Figure 1. Polyphase representation of the T/2 fractionally-
spaced channel and equalizer.

4. CHANNEL IDENTIFICATION FROM
SECOND-ORDER STATISTICS BY
MULTICHANNEL LINEAR PREDICTION
In this section, we consider the noiseless case: v(t) = 0.
Similarly to FP', we can introduce F> = [01 *-- 4] s0
that F?', F" satisfy

pi
[ e = [ Jooco @

Consider now the problem of predicting y (k) from Yy _1(k—
= [y”(k-—])...yH(k—-[\/+1)]H

. The prediction error
can be written as

YRy k) = YRV (R y o ooy = L2 —PyalYn(k).

9)
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Minimizing the prediction error variance leads to the fol-
lowing optimization problem

min [l —Pn_ 1Ry [z —Pya]? = 6%

N1 Y.N-1

(10)

where Ry, = E Am(k)A% (k) and

RY, = E Yn(k)YH(k) = Tn (Hy)REN . TR (Hy)
(11
Exploiting (11) in (10), and assuming that £,(z) and Ha(z
have no common zeros, one can show that Py, satisfies

[12 ——PN_l]‘TN (HN)[ Qs ] =0, (12)

Iy -2

where Q,,_, are the least-squares predictor coefficients for
’i(k)|.42,\,_2|k—1) = Quy_p Aonv—2(k-1}, (13)

a 2
b Gl R = [0 09

Since the orthogonal complement of the rightmost matrix
in (12) has dimension one, (12) leads to

[, =Py 7w (Hy) = h(0) 1 - Q,n_] (15)

which, by postmultiplication with Azy_i(k), can be trans-
lated to

YKy w1y = BO) a(k) o, peim1y - (186)
Using (16), one can show

2 _ 2 H
05 w1 = Taana h(0)h™(0) . (17)
By comparing (8) and (15), we see that when the transmit-
ted data are uncorrelated (R5y_; = o5lan—1, Qun—z =0),
we have

[ ?;’é } = [, -Pn~_1]. (18)

If the transmitted symbols are correlated however, the pre-
diction filter Pn_; is affected. Not completely however,
since

pl

[~h2(0) hi(ON[lz —Pnoa] = [~h2(0) £1(0)] [ g% ]
(19)
which is proportional to F% and only depends on Hy. Note
that [—h2(0) h1(0)] can be determined up to a scalar mul-
tiple from the variance expression in (17) so that F% can
be determined from Py, and the variance expression, and

hence from the prediction problem.

Let us introduce a block-componentwise transposition op-

erator ‘. viz.

Hy
Fiv

It

(o). -h(N=1)]' = [bT(0)-- - hT(N-1)]
[0 - - fIN-1))" = [£7(0) - £ (v -1)]

fi

(20)
where T is the usual transposition operator. Now the chan-
nel can be identified from the blocking equalizer. [ndeed,
(7) leads to 22 Fb(z) Hi(z) = 0 which is also

=1

Fo v (Hy) = 0 <= Hy Iv (F3) =0. (1)



This last equation allows one to determine the channel co-
efficients Hy up to a constant, if again H\(z) and H,(z)
have no zeros in_common (which is the same condition
as F\'(z) and FJ'(z) having no zeros in common since
F(2)[Fz2) = —H3(z)/ Hy(z)). A set of unique coefficients
can be obtained by introducing one extra constraint. Tra-
ditionally, two types of constraints have been considered for
this purpose. A quadratic constraint: ”Hﬁ, “ = 1. In this

case, HY is the 2N Jegt singular vector of Ty (F’}J). Or
a linear constraint: H% ¢ = 1. In this case H” is pro-
portional to the last column of the Q matrix in the unnor-
malized QR factorization of the matrix [‘TN (F‘,’V’) g]. The
first approach is numerically more reliable. If the symbol
variance o2 is known, then from the prediction error vari-
ance expression in (17), we can identify |hy(0)| (or |k2(0)|
if 1(0) = 0). So we have identified the channel from the

e : . - (0
received 51g.nal se(,o.nd-order statistics, uP .to a fa:ctor Wﬁﬁ%'

To recapitulate, in the absence of additive noise, we have
a singular prediction problem. From the multichannel pre-
diction error variance and the prediction coefficients, one
can identify the null space of the covariance matrix, the
blocking equalizer F%. From F%, one can identify the chan-
nel up to multiplicative constant as indicated above. From
(15), one can identify Q,,_, and via (14), this leads to
the identification of the (Toeplitz) symbol covariance ma-
trix RIy_; up to the multiplicative scalar o2 (which may be
known). If the transmitted symbols are uncorrelated, then
the prediction problem immediately provides ZF equalizers,
see (18%,#8). If the transmitted symbols are correlated, then
a FIR equalizer can still be found directly from the FIR
channel. The ZF equalizer with shortest length is given in

(6).
5. SIGNAL AND NOISE SUBSPACES

Suppose now that we have additive white noise v(t}) with

zero mean and unknown variance o2 (in the complex case,
real and imaginary parts are assumed to be uncorrelated,
colored noise could equally well be handled [2]). Then since

RY, = T (Ha) RSy T (Huy) + 02 Lon (22)

o can be identified as the smallest eigenvalue of R%, and
the corresponding eigenvector is F%,. This is the Pisarenko
method [3, page 500]. By replacing RY, by R{, — a2y, all
results of the prediction approach in the noiseless case still
hold.

Clonsider now a covariance matrix of size M > N. Given
R%, we have been able to identify all the desired quantities
in the case M = N. So given covariance information, there
cannot be anything to be gained from considering M > N.
However, this is not necessarily the case when the covari-
ance sequence is estimated from data. So consider the block
Toeplitz matrix Ty (Hy) of dimension 2M x (M+N-1).
The following lemma is easy to show.

Lemma 1 With assumption (AFIR) and assuming that
Hi(z) and Hy(z) are coprime,

rank (Ty (Hy)) = M+ N -1, M > N.

Hence, under the assumptions of the lemma, Ty (Hy) has
full coluran rank. The orthogonal complement of the space
spanned by the columns of T3y (Hx) therefore has dimen-
sion M—N+1. With the blacking equalizer F% satisfying
F% Tw (Hy) =0, it is casy to see that

Tw-nes (F) Tu{Hy) =0, M>N  (23)

where Ta_ny1 (F) is a (M~N+1) x 2M black Toeplitz
matrix in which the blocks are 1 x 2. Under the conditions
of the lemma above, Tpr_n4, (F’,’\,) has full (row) rank.
Hence, the columns of T]\?_NH (F'}\,) span the orthogonal

complement of the column space of Ty (Hy). Given the
structure of

RY = o (HN) Ry T8 (Hu) + 02 Lne, (24)

the column spaces of 7 (Hw~) and T;f_NH (F[,’\,) are
called the signal and noise subspaces respectively.

Consider the eigendecomposition of RY, of which the real
nonnegative eigenvalues are ordered in d\gscending order:

M4+ N-—-1 2M
RY = D0 AV e ST AT = VoAV fuv A vl
=] i=M4N

(25)
where Ax = o2 lp_nq1 (see (24)). Assuming Ta (Hy)
and Rjsy v_; to have full rank, the sets of eigenvectors Vs
and Vj are orthogonal: VfVN =0, and \i > o2, i =
I,...,M+N~1. We then have the following equivalent de-
scriptions of the signal and noise subspaces

Range {Vs} = Range {7y (Hn)) )
Range {Vy} = Range {TA;’_N“ (F‘;V)} ) (26)

In particular,
V¥ T (Hr) =0, Tuoni (FR) Ve=0.  (27)

6. CHANNEL ESTIMATION FROM AN
ESTIMATED COVARIANCE SEQUENCE
BY SUBSPACE FITTING

When the covariance matrix is estimated from data, it will
no longer satisfy exactly the properties we have elaborated
upon. A first (detection) problem then is to determine
the dimension of the signal subspace. A number of tech.
niques for doing this have been elaborated in the litera-
ture {typically based on an investigation of the eigenvalues)
and we shall assume that the correct dimension M+N-—1
(and hence the correct channel order ¥) has been detected.
We shall again order the eigenvalues and eigenvectors as in
(25). The signal subspace will now be defined as the space
spanned by the eigenvectors corresponding to the M+ N —1
largest eigenvalues, while the noise subspace corresponds
to the M —N+1 remaining eigenvectors (as in (25), except
that Ax is no longer a multiple of the identity matrix).
Consider now the following subspace fitting problem

min || 7o (Hpy) — Vs T, (28)
H,. 1

where the Frobenius norm of a matrix 7 can be defined
i terms of the trace operator: 1215 = tr {Z”Z}. The
problem considered in (28) is quadratic in both Hy and 7.
If Vs contains the signal subspace eigenvectors of the actual
covariance matrix Ril,, then the minimal value of the cost
function in (28) is zero. Indeed, if the column spaces of two
matrices with full column rank are identical (as in (26)),
then one of the matrices can be transformed into the other
one by postmultiplication with a unique nonsingular square
matrix. If RX! is estimated from a finite amount of data
however, then its eigenvectors agand cigenvalues) are per-
turbed w.r.t. their theoretical values. Therefore, in general
there will be no value for Hy for which the colummn space of
7w (Hy) coincides with the signal subspace Range {Vs}).
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But it is clearly meaningful to try to estimate Hy by taking
that Tas (H~) into which Vs can be transformed with mini-
mal cost. This leads to the subspace fitting problem in (28).
The optimization problem in (28} is separable. With Hy
fixed, the optimal matrix T can be found to be (assuming
VEVs =1)

T = Vi'Ty (Hy) . (29)
Using (29) and the commutativity of the convolution oper-
ator as in (21), one can show that (28) is equivalent to

2M
miln HY ( Z Ty (V,"‘) TH (V‘H :)) =Y
HN i=M+N
. M4N=1
= min | M||H ||, — Hj
g [ (3

(30)
where V.7 (like Fu) is considered a block vector with M
blocks of size 1 x 2. These optimization problems have to
be augmented with a nontriviality constraint on Hy. In
case we choose the quadratic constraint “H},“J =1, then
the last term in (30) leads equivalently to

M4N-1
H'N( 3 T (W) T (W“)) Hy

max
(R
(31)
the solution of which is the eigenvector corresponding to the
maximum eigenvalue of the matrix appearing between the
brackets. In the case of m = 2, the noise subspace always
has a lower dimension than the signal subspace. Hence it is
computationally more interesting to estimate Tu (Hy) by
optimizing its orthogonality to the noise subspace, rather
than by optimizing its fit to the signal subspace.
Alternatively, we may consider the following subspace fit-
ting problem

min ”TﬁMNH (F?\‘) - Vy T”F (32)
Fi.r

which leads again to either a minimization problem opti-
mizing the orthogonality to the signal subspace, or a max-
imization problem optimizing the fit to the noise subspace.
In this case, the latter will be computationally more inter-
esting. The channel Hy can then be identified from F% as
we discussed before.

When M = N, the subspace fitting problem in (28) leads
to the Pisarenko method discussed before. When M > N,
the Pisarenko method generalizes to the Music method [3,
page502] (corresponding to (30)]. When the exact covari-
ance matrix is given, any value of M > N will lead to the
same value for Hy. namely the true channel {up to a multi-
plicative scalar). When the covariance matrix is estimated
from data. the estimated covariance lags can be considered
as a noisy version of the true ones and hence a better es-
timate should be obtained as more data are incorporated,
as M increases. However, as M increases, the quality of
the covariance matrix estimate from a fixed finite amount
of data goes down. So there should be some optimal value
for M. compromising for these two opposite effects.

7. CHANNEL AND TRANSMITTED
SYMBOLS ESTIMATION FROM DATA
USING DETERMINISTIC ML

In the case of given data (samples of y(.)), the subspace

fitting approach of the previous section involves the data
through the sample covariance mattix. Though this leads to

E Tt (V‘H t)TAI,}I (V‘H z)!) HLNH]

computationally tractable optimization problems, this may
not lead to very efficient estimates from an estimation theo-
retic point of view. Therefore we consider here a determinis-
tic or conditional maximum likelihood (DML) method. The
likelihood is conditional on the transmitted symbols and the
channel parameters, which are hence treated as determin-
istic unknowns. The stochastic part only comes from the
additive noise, which we shall assume Gaussian and white
with zero mean and unknown variance o2 (R;M = Im,
though the generalization to any known R is straightfor-
ward). We assume the data Y p(k) to be available. The
maximization of the likelihood function boils down to the
following least-squares problem

min 1Y 2 (k) = Toar (Hn) Anean -1 (B3 -
NiAM4N-1(K)
(33)
The optimization problem in (33) is again separable. Elim-
inating Ap4n—1(k) in terms of Hy, we get
2
(34)

min
Hy

L

P7m(H~) Yuk) |
Now we can use the equivalent parameterization through
F% of the orthogonal complement of Range {Tm (Hn)} to
obtain

2 2

= m%n
2 FN

min
Hy

Py Yulk P k
7ot (Hn) m(k) TH e (F%)YM( ) .

(35)
Because of the commutativity of convolution, we can again

rewrite
Tuonsr (FY) Yu(k) = Haowar (Yir(k)) F (36)

where My, (x) is a block Hankel matrix with L block rows,

obtained by taking the block entries from the block vector

x and filling up a Hankel matrix starting from the top left

corner. (36) allows us to rewrite the criterion (35) as
min B4 Hfiess (Yo )

(37)

N
(TM—N+1 (FbN) TI\-{I{—N+I (F?“J))—l Har—n+ (Yﬂ\,,(k)) FII’VT

where F%' = F4T#. Again, this criterion has to be aug-
mented with a nontriviality constraint. The optimization
problem in (?’21 is nonlinear. [t can easily be solved it-
eratively in such a way that in each iteration, a quadratic
problem appears [4]. An initial estimate may be obtained
from the subspace fitting approach discussed above. See [2]
for a discrete stochastic ML approach.
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