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Abstract—In a multi-user multi-antenna interfering broadcast
channel (IBC) system, optimal linear receive and transmit beam-
formers are of the Maximum Signal-to-Interference-plus-Noise
(MaxSINR) type. These designs make an optimal compromise
between noise enhancement and interference suppression and re-
duce to matched filters at low SNR and zero-forcing at high SNR
. The novel beamformers are here optimized for the Expected
Weighted Sum Rate (EWSR) for the case of Partial Channel State
Information at the Transmitters (CSIT). We consider a Gaussian
partial CSIT model, combining channel estimates and covariance
information. We constrain the transceiver to either zero-force
or ignore each interference term. This leads to a reduced-order
zero-forcing (RO-ZF) design in which the number of interference
terms being zero-forced increases with SNR. We extend a recently
introduced large system analysis for optimized beamformers with
partial CSIT, by a stochastic geometry inspired randomization
of the channel covariance eigen spaces, leading to much simpler
analytical results which depend only on some essential channel
characteristics. RO-ZF designs lead to variable reductions of
computational complexity and CSI requirements.

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter
/transmission and Rx may denote receive/receiver/reception.
By deploying large number of antennas at the base station
(BS) [1], Massive MIMO (MaMIMO) can enhance the
network throughput. However, in order to fully exploit the
capabilities, it has precise requirements of CSIT. Optimal BF
design with limited feedback information or partial CSIT has
been proposed in [2].

Recently introduced large system analysis for MaMISO
systems [3] facilitate the analysis and design of wireless
systems in the massive MISO limit. E.g. it may allow to
evaluate beamforming performance without computing explicit
beamformers by obtaining deterministic (instead of channel
realization dependent) expressions for various scalar quanti-
ties. Few extensions can be found in [4]–[6]. [2] proposes a
large system analysis for optimized BF with partial CSIT as
considered here. Furthermore, the channel, channel estimate
and channel error covariances can be arbitrary and different
for all users. However, the resulting deterministic analysis is
quite cumbersome and does not allow much analytical insight.
In stochastic geometry based methods [7], the location of the
users is assumed to be random, their geographic distribution
then inducing a certain probability distribution for the channel
attenuations. Whereas most stochastic geometry work focuses

on the distribution of the attenuations, here we consider an
extension to multi-antenna systems. The multipath propagation
for the various users leads to randomized angles of arrival at
the BS which can be translated into spatial channel response
contributions that depend on the antenna array response. In the
massive MIMO regime in which the number of BS antennas
gets very large, it has been observed and exploited that despite
complex multipath propagation, the channel covariance matrix
tends to be low rank. Exploiting the randomized nature of
the user and scatterer positions and making abstraction of the
antenna array response, we proposed to model the user channel
subspaces as isotropically randomly oriented. This allows us
to assume the eigen vectors of the channel covariance matrix
to be Haar distributed, and this identically and independently
for all users.

A. Contributions of this paper

In this paper:
• We first review optimal zero forcing beamformer (ZF BF)

for the expected weighted sum rate (EWSR) criterion in
the MaMIMO limit.

• We extend the concept of reduced-order ZF BF [8] for
partial CSIT and propose a greedy approach to optimize
the reduced ZF orders.

• We evaluate the ergodic sum rate performance for Least-
Squares (LS), LMMSE and subspace projection chan-
nel estimators. Numerical results suggest that there is
substantial gain by exploiting the channel covariance
information compared to just using the LS estimates.

• New large system analysis for various cases of BF with
partial CSIT is proposed, with a randomized analysis of
the covariance subspaces, leading to much simpler results.
This constitutes a marriage between large system analysis
and multi-antenna stochastic geometry.

• Simulation results indicate that large system approxima-
tions are very accurate even for small system dimensions
and reveal the deterministic dependence of the system
performance on several important scalar parameters, such
as the channel attenuation, signal powers and SNR
(whereas [2] doesn’t lead to any tractable analytical
solutions).

Notation: In the following, boldface lower-case and upper-
case characters denote vectors and matrices respectively. The



operators E(·), tr(·) , (·)H , (·)T represents expectation, trace
, conjugate transpose and transpose respectively. diag(·) rep-
resents the diagonal matrix formed by the elements (·). (·)∗
represents conjugate of a complex scalar. A circularly complex
Gaussian random vector with mean µ and covariance matrix Θ
is distributed as x ∼ CN (µ,Θ). Vmax(A,B) or Vmax(A)
represents (normalized) dominant generalized eigenvector of
A and B or (normalized) dominant eigenvector of A respec-
tively and λmax(A) is the corresponding max eigen value.

II. IBC SIGNAL MODEL

We consider an IBC with C cells with a total of K single
antenna users. We shall consider a system-wide numbering of
the users. User k is served by BS bk. The received signal at
user k in cell bk is

yk=hHk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

hHk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

hHk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, hk,bi is the Mbk × 1 channel from BS bi to user k.
The Rx signal (and hence the channel) is assumed to be scaled
so that we get for the noise vk ∼ CN (0, 1). BS bk serves
Kbk =

∑
i:bi=bk

1 users. The Mbk × 1 spatial Tx filter or
beamformer (BF) is gk.

III. CHANNEL AND CSIT MODEL

For simplicity, we omit all the user indices k. We start from
a deterministic Least-Squares (LS) channel estimate

ĥLS = h + h̃, (2)

where h is the true MISO channel, and the error is modeled as
circularly symmetric white Gaussian noise h̃ ∼ CN (0, σ̃2I).
Now each MISO channel is modeled according to a correlation
structure (Karhunen-Loeve representation [9]) as follows,

h = C c, c = D1/2c′, (3)

where c′ ∼ CN (0, IL) and D is diagonal. Here C is the M×L
eigen vector matrix of the reduced rank channel covariance
Rhh = CDCH . The total sum rank across all users Np =
K∑
k=1

Lk,c is assumed to be less than Mc, where Lk,c is the

channel rank between user k and BS c. Assuming the channel
covariance subspace is known, the LMMSE channel estimate
can be written as ĥ = CDCH

(
CDCH + σ̃2I

)−1
ĥLS . Ap-

plying the matrix inversion lemma and exploiting CHC = IL,
this simplifies to

ĥ = C
(
σ̃2D−1 + I

)−1
CH ĥLS = CD̂1/2ĉ, (4)

where D̂ =
(
σ̃2D−1 + I

)−1
D and ĉ = D−1/2(σ2D−1 +

I)−1/2CH ĥLS . The posterior error covariance becomes

Rh̃h̃ = CDCH −CDCH
(
CDCH + σ̃2I

)−1
CDCH , (5)

which the matrix inversion lemma allows to simplify to,

Rh̃h̃ = C
[
D−

(
σ̃2D−1 + I

)−1
D
]

CH = CD̃CH . (6)

So we can write for S = Eh|ĥ
(
hhH

)
= ĥ ĥH + Rh̃h̃ =

CWCH , where W = D̂1/2ĉĉHD̂1/2 + D̃.

IV. PARTIAL CSIT BF BASED ON DIFFERENT CHANNEL
ESTIMATES

In the MaMIMO limit, BF design with partial CSIT will
depend on the quantities S = Eh|ĥ

(
hhH

)
= ĥ ĥH + Rh̃h̃.

We shall consider three possible channel estimates.
(i) LS Channel Estimate
We have ĥLS = h + h̃, where h and h̃ are independent. In
the LS case, Rh̃h̃ = σ̃2I.
(ii) LMMSE Channel Estimate
We have h = ĥ + h̃ in which ĥ and h̃ are decorrelated
and hence independent in the Gaussian case. In the LMMSE
case, Rh̃h̃ is the posterior covariance. The resulting S =

ĥĥH + Rh̃h̃ now forms an unbiased estimate of hhH :
EĥS = Rhh.
(iii) Subspace Projection based Channel Estimate
We also investigate the effect of limiting channel estimation
error to the covariance subspace (without the LMMSE weight-
ing, this is a simplification of the LMMSE estimate). The
subspace channel estimate is given as,

ĥS = PC ĥLS = h + PC h̃LS , Rh̃Sh̃S
= σ̃2PC , (7)

where PC = C(CHC)−1CH represents the projection onto
the covariance subspace. Here, S = ĥSĥHS + Rh̃S h̃S

=

C(ĉĉH + σ̃2I)CH .

A. BF with Partial CSIT

Three types of BF design with partial CSIT can be analyzed.
In the case of partial CSIT we get for the Rx signal,

yk = ĥHk,bk gk xk + h̃Hk,bk gk xk︸ ︷︷ ︸
sig. ch. error

+
K∑

i=1, 6=k
(ĥHk,bi gi xi + h̃Hk,bi gi xi︸ ︷︷ ︸

interf. ch. error

) + vk .
(8)

1) Naive BF EWSR: just replace h by ĥ in a perfect CSIT ap-
proach. Ignore h̃ everywhere. 2) Optimal BF EWSR: accounts
for covariance CSIT in the signal and interference terms.

B. Max EWSR ZF BF in the MaMISO limit (ESEI-WSR)

The scenario of interest here is to design optimal beam-
formers when there is only partial CSIT. Once the CSIT is
imperfect, various optimization criteria such as outage capacity
can be considered. Here the design is based on expected
weighted sum rate (EWSR) (and in a first instance with
LMMSE channel estimates). The actual EWSR represents two
rounds of averaging. In a first stage, the WSR is averaged
over the channels given the channel estimates and covariance
information (i.e. the partial CSIT), leading to a cost function



that can be optimized by the Tx. The optimized result then
needs to be averaged over the channel estimates to obtain
the final ergodic WSR. In the MaMISO limit, due to the
law of large numbers, a number of scalars converge to their
expected value, facilitating averaging the WSR. From the law
of total expectation and motivated from the ergodic capacity
formulations [10] (point to point MIMO systems), [11] (multi
user MISO systems),

EWSR = Eĥ maxg EWSR(g),

EWSR(g) = Eh|ĥWSR(g) =
K∑
k=1

uk Eh|ĥ ln(sk/sk)

(a)
=

K∑
k=1

uk ln((Eh|ĥsk)/(Eh|ĥsk)) =
K∑
k=1

uk ln(r−1
k
rk),

(9)
where transition (a) represents the MaMISO limit leading to
ESEI-WSR (Expected Signal Expected Interference WSR), uk
are the rate weights, g represents the collection of BFs gk.
sk is the (channel dependent) interference plus noise power
and sk is the signal plus interference plus noise power. Their
conditional expectations are

rk = 1 +
∑
i 6=k

Eh|ĥ|h
H
k,bi

gi|2 = 1 +
∑
i 6=k

gHi Sk,bigi,

rk = rk + gHk Sk,bkgk, Sk,bk = Ck,bkWk,bkCk,bk .
(10)

For optimal ZF BF, all the interfering powers gHi Sk,bigi =
0 and thus gk should belong to the orthogonal comple-
ment of the eigen vector subspace of all the interfering
users. For this purpose, we define Ck as the eigen vector
space of all the users (except k) channel from bk, Ck =
[C1,bk , ...,Ck−1,bk ,Ck+1,bk , ..,CK,bk ]. Further we split gk =

g′kp
1/2
k , where pk is the power allocated to user k, and

||g′k|| = 1. By adding the Lagrange terms for the BS power

constraints,
C∑
c=1

µc(Pc −
∑

k:bk=c

||gk||2), to the EWSR in (9),

we get the gradient (with αk = uk

rk
),

∂EWSR

∂g∗k
= αkSk,bk gk − µbkgk = 0, (11)

leading to gk ∝ Vmax(Sk,bk). Finally we obtain the
ZF BF as, g′k = P⊥Ck

Vmax(Sk,bk), where P⊥Ck
repre-

sents the projection onto the orthogonal complement of
Ck. To further simplify, consider the eigen decomposi-
tion of Wk,bk = Vk,bkΛk,bkVH

k,bk
. Then we can write

Sk,bk = Ck,bkVk,bkΛk,bkVH
k,bk

Ck,bk . Multiplication of the
semi-unitary matrix Ck,bk with the unitary matrix Vk,bk

results in a semi-unitary matrix itself and thus the eigen values
of Sk,bk are same as that of Wk,bk and the corresponding
eigen vectors become same as that of Wk,bk left multiplied
by Ck,bk . Finally we rewrite gk as,

g′k = P⊥Ck
Ck,bkVmax(Wk,bk) . (12)

Further optimizing w.r.t pk leads to the following water filling
solution for the power,

pk =

(
uk
µbk
− 1

g′Hk Sk,bkg′k

)+

, (13)

where (x)+ = max{0, x} and the Lagrange multipliers µc are
adjusted (e.g. by bisection) to satisfy the power constraints.

V. REDUCED ORDER ZF WITH PARTIAL CSIT

In this section, we consider the BF to be a reduced order ZF
(RO-ZF) which is introduced in [8]. This can be interpreted
as the number of interfering channels to be zero-forced for
a user k is much less than K. The RO-ZF BF gk can be

written as, gk =
P⊥

CIk
Ck,bk

Vmax(Wk,bk
)

||P⊥
CIk

Ck,bk
Vmax(Wk,bk

)|| . Here, PC =

C(CHC)#CH represent the projection onto the column space
of C, P⊥C = I − PC is the projection onto its orthogonal
complement (# represents the Moore-Penrose pseudo-inverse).
For the convenience of analysis, we define the following: Ik
denotes the set of user indices for which the ZF is done. CIk

represents the matrix of all the user eigen vector space in Ik.
Complexity in the RO-ZF case will be about half of that of
full ZF (multiplying the M×LK C by a triangular LK×LK
instead of a full LK × LK, computation of the LK × LK
inverse or triangular factor takes O((LK)3) operations, with
a smaller factor if only a triangular factor is needed and not
a full inverse).

VI. LARGE SYSTEM ANALYSIS FOR RO-ZF AND FULL
ORDER ZF

In this section we consider the large system analysis for the
RO-ZF scheme proposed in this paper and also the full order
ZF (full order means |Ik| = K − 1,∀k). We assume that the
LS channel estimation error σ̃2 remains finite with SNR. If for
instance the error variance on the channel estimate would be
inversely proportional to SNR, then at high SNR the channel
estimate becomes exact and the covariance information does
not bring any improvements. The channel estimation error
remaining finite can be representative of the UL power being
much less than the DL power (channel estimation from UL
pilots and using TDD reciprocity). The ESEINR (Expected
Signal to Expected Interference plus Noise Ratio) can be
written as,

γRO−ZFk =
PS,k

PI,k+1 =
pkg

′H
k Sk,bk

g′
k

K∑
i=1,i 6=k

pig′H
i Sk,bi

g′
i+1

,

=⇒ g′Hk Sk,bkg′k =
vH
k,bk

CH
k,bk

P⊥
C

k
Sk,bk

P⊥
C

k
Ck,bk

vk,bk∥∥∥∥P⊥
C

k
Ck,bk

vk,bk

∥∥∥∥2 .

(14)
Consider the eigen decomposition of Wk,bk =
Vk,bkΛk,bkVH

k,bk
and we denote Vmax(Wk,bk) = vk,bk ,

vHk,bkCH
k,bk

P⊥Ck
Sk,bkP

⊥
Ck

Ck,bkvk,bk
(a)
= 1

M2
bk

tr{P⊥Ck
}2

vHk,bkWk,bkvk,bk
(b)
= 1

M2
bk

tr{P⊥Ck
}2λmax(Wk,bk),

g′Hk Sk,bkg′k = 1
Mbk

(Mbk −
K∑

i=1,i∈Ik
Li,bk)λmax(Wk,bk),

(15)

where we substituted
∥∥∥P⊥Ck

Ck,bkvk,bk

∥∥∥2 =∥∥∥vHk,bkCH
k,bk

P⊥Ck
Ck,bkvk,bk

∥∥∥ using the property of



projection matrices, P⊥Ck
P⊥Ck

= P⊥Ck
. Also, (a) in (15)

follows from Lemma 4 in Appendix VI of [3], that
xHNANxN

N→∞−−−−→ (1/N)trAN when the elements of xN are
iid with variance 1/N and independent of AN , and similarly
when yN is independent of xN , that xHNANyN

N→∞−−−−→ 0.
Using this Lemma, CH

k,bk
P⊥Ck

Ck,bk = 1
Mbk

tr{P⊥Ck
} and

(b) follows from the fact that vk,bk (max eigen vector from
Vk,bk ) is orthogonal to all the other columns of Vk,bk except
the one corresponding to λmax(Wk,bk). Further, by the law
of large numbers, PS,k − PS,k

M→∞−−−−→
a.s

0, where,

PS,k = (1−

K∑
i=1,i∈Ik

Li,bk

Mbk

)λmax(Wk,bk)pk
(16)

Next, we consider the terms in PI,k,

g′Hi Sk,big
′
i =

vH
i,bi

CH
i,bi

P⊥
C

i
Sk,bi

P⊥
C

i
Ci,bi

vi,bi∥∥∥P⊥
C

i
Ci,bi

vi,bi

∥∥∥2 . (17)

If k ∈ Ii, then P⊥Ci
is orthogonal to the columns of

Ck,bi and thus gHi Sk,bigi = 0 else, using Lemma
4, we obtain vHi,biC

H
i,bi
P⊥Ci

Sk,biP
⊥
Ci

Ci,bivi,bi =
1

Li,bi
tr{CH

i,bi
P⊥Ci

Sk,biP
⊥
Ci

Ci,bi}.

1
Li,bi

tr{CH
i,bi
P⊥Ci

Sk,biP
⊥
Ci

Ci,bi}
(c)
= 1

Mbi
tr{P⊥Ci

Sk,biP
⊥
Ci
}

1
Mbi

tr{Wk,biC
H
k,bi
P⊥Ci

Ck,bi}
(d)
= 1

M2
bi

tr{P⊥Ci
}tr{Wk,bi}

= 1
Mbi

(1−

K∑
r=1,r∈Ii

Lr,bi

Mbi
)
Lk,bi∑
l=1

ζ
(l)
k,bi

,

(18)
where (c) and (d) are obtained by using Lemma 4 from [4].

Further we obtain g′Hi Sk,big
′
i = 1

Mbi

Lk,bi∑
l=1

ζ
(l)
k,bi

. Finally, we

obtain the ESEINR in the large system limit as, γRO−ZFk −
γRO−ZFk

M→∞−−−−→
a.s

0,

γRO−ZFk =
(1−

K∑
i=1,i∈Ik

Li,bk

Mbk
)λmax(Wk,bk

)pk

1
Mbi

K∑
i=1,k 6∈Ii

Lk,bi∑
l=1

ζ
(l)
k,bi

pi+1

(19)

For the full order ZF, the interference power vanishes from
the ESEINR terms,

γZFk = (1−

K∑
i=1,i6=k

Li,bk

Mbk

)λmax(Wk,bk)pk (20)

The power updates for the RO-ZF BF can be shown to be as
similar to the interference aware water filling as shown in [8]
and the simplified expressions directly follow from the above
equations as,

pk = ( uk

µbk
+σ

(2)
k

− 1

σ
(1)
k

)+, (21)

where, σ
(2)
k = 1

Mbk

K∑
i=1,i6∈Ik

βi

Li,bk∑
l=1

ζ
(l)
i,bk

, σ
(1)
k = (1 −

K∑
i=1,i∈Ik

Li,bk

Mbk

)λmax(Wk,bk), βi = uk( 1
rk
− 1

rk
).

Computation of eigen values ζ(r)k,bi
of Wk,bi : from Section III,

Wk,bi = c̆k,bi c̆
H
k,bi

+ D̃k,bi , c̆k,bi = D̂
1/2
k,bi

ĉk,bi ,∀i, k
(22)

In (3), we assume that all the eigen values are equal and
positive, i.e Dk,bi = ηk,biI, D̃k,bi = η̃k,biI. Thus the eigen
values of Wk,bi can be shown to be ζ(1)k,bi

= λmax(Wk,bi) =

‖c̆k,bi‖
2

+ η̃k,bi and ζ
(2)
k,bi

= .... = ζ
(Lk,bi

)

k,bi
= η̃k,bi , where

η̃k,bi =
σ̃2
k,bi

ηk,bi

σ̃2
k,bi

+ηk,bi

, using the definition of D̃k,bi from (6).

λmax(Wk,bi) is random since c̆k,bi is random. By the law of
large numbers (assuming Lk,bi is large but finite and << Nt)
we replace it by the expectation which can be computed as
follows. E(λmax(Wk,bi)) = E(ĉHk,biD̂k,bi ĉk,bi) + η̃k,bi . This
gets simplified as, E (λmax(Wk,bi)) = Lk,bi d̂k,bi + η̃k,bi ,

where d̂k,bi =
η2k,bi

ηk,bi
+σ̃2

k,bi

from (4) (D̂k,bi = d̂k,biI) and

E(ĉHk,bi ĉk,bi) = Lk,bi from (4).

VII. OPTIMIZATION OF THE ZF ORDER

In this section, we consider an alternating optimization
algorithm (Algorithm 1) which computes the reduced ZF order

for each user (Ik). We define here θi,bj =
Li,bj∑
l=1

ζ
(l)
i,bj

, as the

channel strength from BS bj to user i. Note that at finite

Algorithm 1 Reduced Zero-Forcing Order Determination
Given: K,M, σ2, θi,bj ,∀i, j, with ordering θ1,bj ≥ θ2,bj ≥
... ≥ θK,bj . Start with Ik = ∅,∀k, i.e. g

(0)
k = hk,bk .

for c = 1,..,C
Compute the interference powers received at all users
from BS c. Find the link causing the maximum inter
ference. Let it be BF gk to user l.
Add ZF for the corresponding maximum interference
causing channel link. i.e. Ik = Ik ∩ l.
Update g

(t)
k (gk corresponding to the updated Ik) , such

that bk = c.
Update the user powers pk using (21).
Compute the WSR. If the WSR is decreased, exit the
loop. Otherwise continue with next iteration (t+ 1).

end for

dimension MIMO, not only the channel strengths but also the
relative orientation of the channel vectors count. However, in
MaMIMO with multiple of identity covariances, there is no
orientation issue, only the channel strengths count. So the user
ordering is simple.

VIII. SIMULATION RESULTS

In this section, we present the Ergodic Sum Rate Evalua-
tions for BF design for the various channel estimates. Monte



Carlo evaluations of ergodic sum rates are done, where we con-
sider a path-wise or low rank channel model as in section III,
with number of paths = channel covariance rank L = 4. In
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Fig. 1. Sum Rates, M = 64,K = 10, L = 4, σ̃2 = 0.1.

the figures, “LSA” refers to large system approximation and
“Chnl Est” refers to channel estimate. In these simulations,
the deterministic channel estimation error (ie σ̃2) does not
go to zero as snr − > ∞ but remains constant. Otherwise,
at high snr it is the channel estimate that dominates, and
the partial csit at high snr will just become perfect csit.
The simulations in Figure 1 show that exploiting also the
channel error covariance information can lead to substantial
performance gains compared to just using LS channel estimate.
The naive channel estimate based partial CSIT BF approaches
are suboptimal. We also compare optimal BF and full and
reduced order ZF BF, based on LMMSE channel estimates
plus error covariance. Note that in the case of reduced-rank
channel covariances considered here, ZF BF may still be
possible, even with partial CSIT. At high SNR, ZF BF is
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optimal. At low and intermediate SNRs, RO-ZF is able to
outperform (full order) ZF and it is quite close to the optimal
BF [12]. Figure 2 are for increased dimensions. Further these
simulations suggest that the large system approximations for
ROZF and ZF are accurate even for finite values for M,K,L.

IX. CONCLUSIONS

In this paper, we extend the concept of reduced order ZF
BF to partial CSIT. Simulation results indicate that our RO-ZF
BF scheme has a performance very close to the optimal BFs,
but with much less complexity compared to the full order ZF.
We also propose an alternating optimization algorithm which
computes the optimal ZF order for each user. Moreover, we
show (elsewhere) the improvement in performance by using
an LMMSE channel estimate compared to just having LS es-
timates, and by furthermore properly exploiting all covariance
information. Further work will include the exploitation of the
large system analysis for the optimization of the reduced order
for lesser complexity in RO-ZF BF.
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