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Abstract—In this paper1, we analyze a Network MIMO chan-
nel with 2 Transmitters (TXs) jointly serving 2 users, where
each TX has a different multi-user Channel State Information
(CSI), potentially with a different accuracy. Recently it was
shown the surprising result that this decentralized setting can
attain the same Degrees-of-Freedom (DoF) as its genie-aided
centralized counterpart in which both TXs share the best-quality
CSI. However, the DoF derivation alone does not characterize the
actual rate and the question was left open as to how big the rate
gap between the centralized and the decentralized settings was
going to be. In this paper, we considerably strengthen the previous
intriguing DoF result by showing that it is possible to achieve
asymptotically the same sum rate as that attained by Zero-
Forcing (ZF) precoding in a centralized setting endowed with the
best-quality CSI. This result involves a novel precoding scheme
which is tailored to the decentralized case. The key intuition
behind this scheme lies in the striking of an asymptotically
optimal compromise between i) realizing high enough precision
ZF precoding while ii) maintaining consistent-enough precoding
decisions across the non-communicating cooperating TXs.

I. INTRODUCTION

Joint transmission in wireless networks is known to bring
multiplicative improvements in network rates only under the
assumption of perfect CSI [1]. The study of how imperfect or
quantized CSI at the TXs (CSIT) affects the performance has
focused on the assumption that the imperfect information is
perfectly shared between the non-colocated transmitting anten-
nas [1], [2]. However, this assumption may not be adapted to
many applications within the upcoming wireless networks use
cases, such as Ultra-Reliable Low-Latency Communication
(URLLC) or heterogeneous backhaul deployments. As a result,
there is a clear interest in looking at the scenario in which
each TX may have a different information about the channel,
denoted as Distributed CSIT setting [3].

We focus in this paper on a particular sub-case of the Dis-
tributed CSIT setting, so-called Distributed Network MIMO,
wherein the TXs have access to all the information symbols
of the users (RXs), yet do not share the same CSIT [4]. This
model arises in presence of caching [5] and Cloud-RAN with
high mobility [6], in which latency constraints impede efficient
CSIT sharing within the channel coherence time. The DoF of
this scenario has been studied in previous works. Specifically,
it was shown that conventional ZF performs very poorly and
several schemes were proposed to improve the robustness of
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the transmission with respect to CSIT inconsistencies [4], [7],
[8]. One of the main successes has been obtained for the 2-user
setting where the DoF was shown to be equal to the DoF of the
centralized setting [7] by means of an asymmetric precoding
where some TX deliberately throws away instantaneous CSIT.

Yet, these works suffer from the limitations of the metric
used, as DoF only provides the asymptotic rate slope with
respect to the SNR. Since it does not provide any information
about the beamforming gain or the efficient power use at
the TXs, schemes resulting in the same DoF may need a
considerably different power to achieve the same rate [9].
Hence, the natural next step towards capacity characterization
is to study the rate offset, which is the constant term in the
linear approximation of the sum rate at high SNR, i.e.,

R(P ) = DoF log2(SNR)− L∞ + o(1) (1)

where L∞ represents the rate offset (vertical offset). Our main
contributions read as follows:
• We provide a novel precoding scheme that achieves accurate

ZF of the interference and, at the same time, high beamform-
ing gain through consistent transmission at the TXs.

• Through a new lower bound, we show that the proposed
scheme achieves a vanishing rate loss at high SNR when
compared to the centralized setting with perfect CSI sharing.

Notations: We use the Landau notation, i.e., f(x) = o(x)

implies than limx→∞
f(x)
x = 0. R+ stands for {x ∈ R : x > 0},

E|A denotes the conditional expectation given an event A, and
Pr(A) denotes the probability of an event A.

II. PROBLEM FORMULATION

A. Transmission Model

We consider a setting with 2 single-antenna TXs jointly
serving 2 single-antenna RXs over a Network MIMO setting
–also known as Distributed Broadcast Channel (BC)–. The
extension to multiple-antenna TXs but single-antenna RXs is
more challenging and is relegated to the journal version of this
work. The signal received at RX i is

yi = hH
i x + zi, (2)

where hH
i ∈ C1×2 is the channel coefficients vector towards

RX i, x ∈ C2×1 is the transmitted multi-user signal, and
zi ∈ C is the Additive White Gaussian Noise (AWGN) at
RX i, being independent of the channel and the transmitted
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signal, and drawn from a circularly symmetric complex Gaus-
sian distribution (NC(0, 1)). We further define the channel
matrix H ∈ C2×2 as

H ,

[
hH

1

hH
2

]
, (3)

with its (i, k)-th element representing the channel coefficient
from TX k to RX i and being denoted as hik. The channel
coefficients are assumed to be i.i.d. as NC(0, 1) such that all
the channel sub-matrices are full rank with probability one.

The transmitted multi-user signal x ∈ C2×1, is obtained
from the precoding of the symbol vector s , [s1 s2]T. The
symbols si are i.i.d. as NC(0, 1) and si denotes the symbol
intended by RX i such that

x ,

√
P

2

[
t1 t2

] [s1

s2

]
, (4)

where P is the transmit power per TX. The vector ti ∈ C2×1

denotes the precoding vector towards RX i. For further refer-
ence, we define T ,

[
t1 t2

]
as the multi-user precoder, and

the precoder of TX j as tTX j ,
[
{t1}j {t1}2

]
T. We assume

a per-TX instantaneous power constraint for the precoder, i.e.,
‖tTX j‖ ≤ 1, ∀j ∈ {1, 2}, such that E

[
‖x‖2

]
≤ P .

B. Distributed CSIT Model

We consider in this work that the RXs have perfect channel
knowledge to focus on the challenges of CSI feedback and
limited CSI sharing among TXs. As previously mentioned,
we consider here a Distributed CSIT configuration in which
each TX receives a different imperfect estimate of the multi-
user channel [4]. For sake of exposition, we consider that the
CSI accuracy available at TX j is homogeneous across RXs.
Note that our results are not restricted by this assumption and
they extend to the case with different accuracy for each RX.

It is known that, in order to avoid the collapse of DoF in
the Centralized CSIT setting, the CSIT error variance has to
scale as P−α, with α> 0, [1], [2], where α is called the CSIT
scaling coefficient. Based on that result, we extend the model
to the distributed setting by assuming that the error variance
at TX j scales as P−α

(j)

, with α(j) > 0 and α(1) 6= α(2).
Specifically, we consider that RX i feeds back to TX j a

quantized version of his normalized vector h̃i , hi/‖hi‖ ∈
C2 using B(j) bits, denoted as ĥ

(j)
i . After receiving the

feedback from both RXs, TX j obtains a multi-user channel
estimate Ĥ(j) = [ĥ

(j)
1 , ĥ

(j)
2 ]H ∈ C2×2. Similar to [2], we

assume that RX i uses random vector quantization codebooks
of 2B

(j)

codewords and that the number of quantization bits
grows linearly with log2(P ) as

B(j) = α(j) log2(P ). (5)

This implies that the CSIT error variance at TX j scales as
P−α

(j)

(since P−α
(j)

= 2−B
(j)

[2]). In order to avoid degen-
erate conditions, we assume that the codebooks of different
RXs do not share any codeword. Moreover, we can order the
TXs w.l.o.g. such that

1 ≥ α(1) ≥ α(2) > 0. (6)

C. Figure-of-Merit

Our figure-of-merit is the expected sum rate over both the
fading realizations and the random codebooks. Let us define
the expected rate of RX i as Ri , E[ri], where ri is the
instantaneous rate of RX i. In our setting, ri writes as

ri , log2

(
1 +

P
2 |h

H
i ti|2

1 + P
2 |h

H
i tī|2

)
, (7)

where we have introduced the notation ī , i (mod 2) + 1.
Then, the expected sum rate is given by R , R1 +R2.

D. Centralized ZF Precoding

We restrict this work to ZF precoding schemes, which are
known to achieve the optimal DoF in the centralized CSIT
setting [1], [2] and that allow for analytical tractability. In
this “ideal” centralized setting, all the TXs have access to the
same channel estimate Ĥ. We consequently define ĥi, α, as
the centralized counterparts of ĥ

(j)
i , α(j), respectively. Let v?i

denote a unit-norm ZF precoder for RX i, computed on the
basis of the estimate Ĥ. We can then write the centralized ZF
precoding matrix as TZF ,

[
µ1v

?
1 µ2v

?
2

]
, where µi ∈ R is a

parameter that ensures that the instantaneous power constraint
‖tTX j‖ ≤ 1 is fulfilled. From the ZF precoding definition, v?i
is a vector satisfying that

ĥH
ī v?i = 0. (8)

Given that multiplying the beamformer v?i by a phase-
shift eıφi does not impact the rate [10], we can select w.l.o.g.,
among all the possible v?i , the vector vi = e−ıφ

v
i [ĥī2, −ĥī1]T,

where φvi is the phase of the second coefficient (ĥī1). Thus,

TZF =

[
ĥ−1

21 ĥ22 ĥ−1
11 ĥ12

−1 −1

]
︸ ︷︷ ︸

,V?

[
λ?1 0
0 λ?2

]
︸ ︷︷ ︸

,Λ?

, (9)

where we have introduced the notation λ?i , µi|vi,2|. From the
unitary power constraint it holds that 0 ≤ λ?i ≤ 1. Expression
in (9) is just a rewriting of the conventional ZF matrix used
in the literature [2], introduced to make the analogy with the
distributed approach more explicit, such that we detach the
interference-nulling part (V?) and the power control (Λ?).

Regarding the power normalization coefficient µi, it is
obtained from an arbitrary algorithm satisfying the per-TX
precoder power constraint ‖tTX j‖ ≤ 1, ∀j ∈ {1, 2}, and such
that the probability density function of λi, denoted by fΛi , is
bounded away from infinity such that

max
x

fΛi(x) ≤ fmax
Λi <∞. (10)

A more detailed discussion of µi can be found in the extended
version [11].

III. MAIN RESULTS

Although ZF precoding schemes as the one described in
Section II-D perform properly with centralized CSIT, their
performance shrinks considerably on the distributed CSIT
setting. This comes from the fact that the zero-forcing accuracy
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is proportional to the worst quality among the TXs (α(2)

in our setting). Thus, conventional ZF does not achieve the
centralized DoF. Furthermore, if TX 1 tries to estimate TX 2’s
CSI based on its own estimate it will incur in an estimation
error proportional to α(2). The solution proposed in DoF-
achieving schemes [4], [7], [8] –i.e., that TX 2 precodes with
a vector independent of its instantaneous CSI– also succumbs
to the assumption of instantaneous power constraint for the
precoding vector (‖tTX j‖ ≤ 1), since a less practical average
power constraint was considered. The only scheme achieving
the optimal DoF is obtained from [4] where the transmit power
scales in P/log(P ). This leads to a very inefficient power
normalization, and hence to a very poor rate offset (L∞).

We present a distributed precoding scheme, coined Hybrid
Active-Passive ZF Precoding (HAP), that precludes TX 2 from
harming the performance. The key for attaining such result is
an asymmetric ZF scheme and the quantization of the power
control, that allows the TXs to be consistent.

A. Proposed Hybrid Active-Passive ZF Precoding

Let Q(·) represent the output of an arbitrary quantizer Q
satisfying that Q(x) ≤ x. The HAP precoder, denoted by
THAP ∈ C2×2, is given by

THAP,

[(
ĥ

(1)
21

)−1
ĥ

(1)
22

(
ĥ

(1)
11

)−1
ĥ

(1)
12

−1 −1

]
�

[
Q(λ

(1)
1 ) Q(λ

(1)
2 )

Q(λ
(2)
1 ) Q(λ

(2)
2 )

]
(11)

where � denotes the Hadamard (element-wise) product and
λ

(j)
i is the distributed counterpart of λ?i estimated at TX j. We

observe that the first matrix is equal to the interference-nulling
matrix V? in (9) based on the imperfect channel estimate Ĥ(1),
and hence it is independent of the CSI of TX 2. Conversely,
the second matrix needs to be computed at both TXs, and thus
it differs from the centralized power normalization matrix Λ?.
The idea behind this separation is that the interference-nulling
has to be extremely accurate, but it can be performed by a
single TX, whereas the power normalization has to be done
by both TXs, but it can be computed with a reduced precision,
allowing the TXs to be consistent.

Since λ(j)
i ∈ [0, 1], we have that Q(λ

(j)
i ) ∈ [0, 1]. Moreover,

we assume that it exists MQ <∞ such that∣∣E|Q(x)>0

[
log2

(
Q(x)

)]∣∣ ≤MQ, (P0)

which is a technical assumption that is satisfied by any non-
degenerate quantizer. The role of Q is to trade-off the accuracy
of the power control with the consistency of the decision at the
TXs, as the ZF orthogonality of (8) is preserved only if both
TXs obtain the same quantized value –if Q

(
λ

(1)
i

)
=Q

(
λ

(2)
i

)
–.

In order to emphasize the relevance of the quantizer, we define
Ω as the set of estimates (Ĥ(1), Ĥ(2)) that ensure that the ZF
orthogonality is not violated, excluding degenerate cases, i.e.,

Ω ,
{
(Ĥ(1), Ĥ(2))

∣∣∀i∈{1, 2}, Q(λ(1)
i

)
=Q

(
λ

(2)
i

)
∈R+

}
. (12)

In simple words, Ω encloses the cases when the TXs agree on
the power normalization coefficients for both RXs and they are
strictly positive. We further denote the complementary event

of Ω as Ωc (the inconsistent cases). We proceed by introducing
two important properties for the quantizers.

Definition 1 (Asymptotically Accurate Quantizers): A quan-
tizer Q is said to be asymptotically accurate if

lim
P→∞

Q(λ
(j)
i ) = λ

(1)
i a.s. ∀i, j ∈ {1, 2}, (P1)

where a.s. stands for almost surely.
Definition 2 (Asymptotically Consistent Quantizers): A

quantizer Q is said to be asymptotically consistent if

Pr (Ωc) = o

(
1

log2(P )

)
. (P2)

Property (P2) implies that inconsistent precoding events are
negligible in terms of asymptotic rate. In the following lemma,
we exhibit one particular quantizer satisfying (P1)-(P2). Opti-
mizing further this quantizer is crucial to good performance at
finite SNR and its optimization is an ongoing research topic.

Lemma 1: Let Qu be a uniform quantizer in the inter-
val [0, 1] with a step size of P−α

(2)/4, such that

Qu(x) , P
−α(2)

4

⌊
P
α(2)

4 x
⌋
. (13)

Then, Qu satisfies properties (P0), (P1) and (P2).
Proof: The proof is lengthy and it is hence relegated to

the extended version [11] due to space constraints.

B. Main Results

Let us denote by RHAP(α(1), α(2)) the expected sum rate
achieved using HAP precoding in the Distributed CSIT setting
with CSIT scaling quality (α(1), α(2)). Similarly, we denote
as RZF(α(1)) the expected sum rate attained by the centralized
ZF precoder of Section II-D on the basis of the estimate Ĥ(1),
i.e., RZF(α(1)) is the rate achieved on an ideal centralized
setting where TX 2 is provided with a more accurate estimate.
Accordingly, the rate gap between those settings is defined as

∆R , RZF(α(1))−RHAP(α(1), α(2)). (14)

We can now state our main results.
Theorem 1: The rate gap of ZF precoding with Distributed

CSIT is upper bounded by

∆R ≤ 2E|Ω[log2 (Γ1)]+ Pr (Ωc)RZF
|Ωc(α(1)), (15)

where Ω is defined in (12), Γ1 ,
∣∣λ(1)

1 /Q(λ
(1)
1 )
∣∣2, and it holds

that RZF
|Ωc(α(1)) ≤ 2 log2 (1 + P ).

The proof is detailed in Section IV. This bound depends on
the set Ω and thus on the quantizer selected. Intuitively, a
“good” quantizer has to ensure a probability of inconsistency –
Pr (Ωc)– small. This can be done by enlarging the quantization
step, what will make the first term bigger, as Q(λ

(1)
1 ) needs

to be as close to λ(1)
1 as possible. This shows why finding the

optimal quantizer is a challenging research topic. Nevertheless,
there exist quantizers that behave asymptotically optimal, as
stated in the following theorem.

Theorem 2: Let Q be an arbitrary quantizer satisfying
(P0), (P1) and (P2). Then, taking the limit in Theorem 1 yields

lim
P→∞

∆R ≤ 0. (16)
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Proof: The proof follows from Theorem 1. First, note
that the sum rate RZF

|Ωc(α(1)) is trivially bounded by twice the
interference-free single-user rate to obtain

RZF
|Ωc(α(1)) ≤ 2 log2 (1 + P ) , (17)

what together with property (P2) implies that

Pr (Ωc)RZF
|Ωc(α(1)) = o(1). (18)

Thus, it only remains to show that limP→∞ E|Ω[log2(Γ1)]= 0.
From the definition of Γ1 in Theorem 1, it holds that

E|Ω[log2 (Γ1)]=E|Ω
[
log2

(
λ

(1)
1

)]
− E|Ω

[
log2

(
Q(λ

(1)
1 )
)]
. (19)

Note that, for any variable x such that 0 ≤ x ≤ 1, and for any
two events A,B, such that 0 < Pr(B | A) < 1, it holds that

E|A[log2(x)] = Pr(B | A)E|A∩B [log2(x)]

+ Pr(Bc | A)E|A∩Bc [log2(x)]. (20)

Since 0 ≤ x ≤ 1, E|A∩Bc [log2(x)] ≤ 0 and hence

E|A∩B [log2(x)] ≥ 1

Pr(B | A)
E|A[log2(x)]. (21)

Therefore, if E|A[log2(x)] exists, also E|A∩B [log2(x)] exists
and it is bounded below by (21) and above by 0. Let A and B
be A = {Q(λ

(1)
i ) > 0,∀i} and B =

{
Q
(
λ

(1)
i

)
=Q

(
λ

(2)
i

)
,∀i}.

Thus, Ω = A ∩B. It follows from (21) and (P0) that

E|Ω[log2

(
Q(λ

(1)
1 )
)
] ≥ −Pr(Q(λ

(1)
i ) > 0,∀i)

Pr(Ω)
MQ, (22)

where we have applied the fact that Pr(B|A) = Pr(A∩B)
Pr(A) .

Hence, E|Ω[log2(Q(λ
(1)
1 ))] is bounded. The same result fol-

lows for E|Ω[log2

(
λ

(1)
1

)
] from the bounded density assump-

tion of (10). Moreover, from the continuity of the log function
and (P1), log2(Q(λ

(1)
1 )) converges a.s. to log2(λ

(1)
1 ). From all

these facts, we can apply Lebesgue’s Dominated Convergence
Theorem [12, Theorem 16.4] to show that

lim
P→∞

E|Ω
[
log2

(
Q(λ

(1)
1 )
)]

= E|Ω
[
log2

(
λ

(1)
1

)]
, (23)

and thus limP→∞ E|Ω[log2(Γ1)] = 0, which concludes the
proof.

Corollary 1 (Rate Offset with HAP precoder): It holds from
Theorem 2 that the rate offset L∞ –defined in (1)– of ZF with
distributed CSIT is the same as for the genie-aided centralized
setting, whose rate offset was shown in [2] to be constant
with respect to Perfect CSIT ZF (and thus with respect to the
capacity-achieving Dirty Paper Coding) for α = 1.

The key for attaining such surprising performance is the
trade-off between consistency and accuracy that is ruled by the
quantizer. Interestingly, Lemma 1 illustrates that simple quan-
tizers –as the uniform one– satisfy the sufficient conditions of
convergence if we select the correct number of quantization
levels. Moreover, since this quantizer is applied locally and no
information exchange is done, the granularity of the quantizer
does not increase the complexity of the scheme.

Let us consider that there is agreement between the TXs,
i.e., that Q(λ

(1)
i ) = Q(λ

(2)
i ),∀i ∈ {1, 2}, such that we define

λQi , Q
(
λ

(j)
i

)
, ∀i, j ∈ {1, 2}, (24)

what (P2) ensures that occurs with a probability high enough
such that the disagreement is asymptotically negligible. In this
case we can rewrite (11) as

THAP,

[(
ĥ

(1)
21

)−1
ĥ

(1)
22

(
ĥ

(1)
11

)−1
ĥ

(1)
12

−1 −1

] [
λQ1 0

0 λQ2

]
. (25)

It becomes then clear that the orthogonality (i.e., the interfer-
ence attenuation) is ensured by the first matrix in (25) while
the second diagonal matrix is only used to satisfy the power
constraint. Regarding the quantizer Q, note that letting Q have
a single quantization point leads to a statistical power control,
whereas letting Q have infinite points leads to the unquantized
version. In both cases, part of the DoF is lost.

IV. PROOF OF THEOREM 1

We consider w.l.o.g. the rate difference at RX 1, denoted
as ∆R1, since the proof for RX 2 is obtained after switching
the indices of the RXs. ∆R1 can be split as

∆R1 = Pr (Ω) ∆R1|Ω + Pr (Ωc) ∆R1|Ωc . (26)

First, we focus on ∆R1|Ω, which encloses the consistent
precoding cases. Conditioned on Ω it holds that Q

(
λ

(1)
i

)
=

Q
(
λ

(2)
i

)
, ∀i ∈ {1, 2}, and hence we can use the notation λQi

introduced in (24). Moreover, it can be observed from (9) and
(25) that, conditioned on Ω, the HAP precoder satisfies

tHAP
i =

λQi
λ?i

tZF
i , ∀i ∈ {1, 2}. (27)

Since we assume that in the centralized ZF setting both TXs
share the channel estimate of TX 1 (Ĥ(1)), we have that λ?i =

λ
(1)
i . Thus, since Q(x) ≤ x, it follows that λQi /λ

?
i ≤ 1, ∀i ∈

{1, 2}. Let us recall that Γi is defined as

Γi ,

∣∣∣∣λ(1)
i

λQi

∣∣∣∣2. (28)

Conditioned on Ω, we can write that the SINR obtained
through HAP precoding satisfies

1 +
P
2

∣∣hH
1 tHAP

1

∣∣2
1 + P

2

∣∣hH
1 tHAP

2

∣∣2 = 1 +
1

Γ1

P
2

∣∣hH
1 tZF

1

∣∣2
1 + 1

Γ2

P
2

∣∣hH
1 tZF

2

∣∣2 (29)

≥ 1

Γ1

(
1 +

P
2

∣∣hH
1 tZF

1

∣∣2
1 + P

2

∣∣hH
1 tZF

2

∣∣2
)
, (30)

where (29) follows from (27)-(28) whereas (30) comes from
the fact that 1/Γi ≤ 1, ∀i. We can recognize in (30) the SINR
at RX 1 for the centralized ZF scheme such that it holds

RHAP
1|Ω (α(1), α(2)) = E|Ω

[
log2

(
1 +

P
2 |h

H
1 tHAP

1 |2

1 + P
2 |h

H
1 tHAP

2 |2

)]
(31)

≥ −E|Ω[log2 (Γ1)]+RZF
1|Ω(α(1)). (32)
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Fig. 1: Expected sum rate for the setting with CSIT scaling
parameters α(1) = 1, α(2) = 0.6, using the quantizer of
Lemma 1.

Since ∆R1|Ω =RZF
1|Ω(α(1))−RHAP

1|Ω (α(1), α(2)), it follows that

∆R1|Ω ≤ E|Ω[log2 (Γ1)]. (33)

Focusing on the inconsistent precoding cases, the rate gap can
be bounded by the centralized rate as ∆R1|Ωc ≤ RZF

1|Ωc(α(1)).
Putting these results together in (26) yields

∆R1 ≤ E|Ω
[
2 log2

(
λ

(1)
i

λQi

)]
+ Pr (Ωc)RZF

1|Ωc(α(1)), (34)

where we have applied the fact that Pr (Ω) ≤ 1. Thus, since Γ1

and Γ2 are identically distributed, it holds that ∆R ≤ 2∆R1,
which concludes the proof.

V. NUMERICAL RESULTS

We illustrate in the following the performance for the uni-
form quantizerQu introduced in Lemma 1. For sake of exposi-
tion, we assume a simple power normalization that ensures the
per-TX power constraint. Let us introduce the precoding vector
of TX j before normalization as vTX j = [v1,j ,v2,j ]

T, such
that the final precoder of TX j is tTX j = [µ1v1,j , µ2v2,j ]

T.
Then, µi is chosen as

µi ,
1

max(‖vTX 1‖, ‖vTX 2‖)
∀i ∈ {1, 2}. (35)

In Fig. 1, we simulate the expected sum rate of the proposed
scheme using Monte-Carlo runs and averaging over 1000
random codebooks and 1000 channel realizations, for the CSIT
configuration α(1) = 1 and α(2) = 0.6. We can see that
the proposed scheme leads to a vanishing loss with respect
to the centralized case (where both TXs are provided with
the best CSIT), and that the lower-bound of Theorem 1 is
considerably close to the actual rate. Furthermore, the scheme
given in [4] using a scaled power normalization of P/ log2(P )

–so as to guarantee a full DoF and an instantaneous power
constraint for the precoder tTX j– can be seen to achieve
also the optimal DoF although at the cost of a strong loss
in rate offset. Finally, we can see how using an unquantized
coefficient at TX 2 leads to a loss in terms of DoF. This
occurs because, as aforementioned, the mismatches between
the precoding coefficients of each TX break the orthogonality
needed for the interference nulling. Thus, this scheme only
achieves a DoF proportional to α(2) instead of α(1). At
intermediate SNR, this unquantized scheme outperforms the
proposed HAP scheme. Yet, it is a consequence of our focus
in this work towards analytical tractability and asymptotic
analysis. Optimizing the precoder for finite SNR performance
will allow to bridge the gap between the two schemes to obtain
a scheme outperforming both of them.

VI. CONCLUSION

Considering a decentralized scenario where each TX has
a CSI with different SNR scaling accuracy, we have shown
that there exists a linear precoding scheme that asymptotically
recovers the rate of ZF precoding in the ideal centralized
setting in which the best estimate is shared. Going beyond the
setting considered, we have shown how using a low rate quan-
tization of some parameters (here the power normalization) in
combination with a higher-accuracy distributed decision allows
to reach coordination without loosing precision. The extension
of the results to more antennas and more users, as well as
the optimization at finite SNR, are interesting and challenging
research problems currently under investigation.
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Press, 2018.

[4] P. de Kerret and D. Gesbert, “Degrees of freedom of the network MIMO
channel with distributed CSI,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6806–6824, Nov. 2012.

[5] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of Caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[6] M. Peng, C. Wang, V. Lau, and H. V. Poor, “Fronthaul-constrained
cloud radio access networks: Insights and challenges,” IEEE Wireless
Commun., vol. 22, no. 2, pp. 152–160, Apr. 2015.

[7] A. Bazco-Nogueras, P. de Kerret, D. Gesbert, and N. Gresset, “Dis-
tributed CSIT Does Not Reduce the Generalized DoF of the 2-user
MISO Broadcast Channel,” IEEE Wireless Commun. Lett., 2018.

[8] ——, “On the Degrees-of-Freedom of the K-user Distributed Broadcast
Channel,” 2018, submitted to IEEE Trans. Inf. Theory.

[9] A. Lozano, A. M. Tulino, and S. Verdu, “High-SNR power offset in
multiantenna communication,” IEEE Trans. Inf. Theory, vol. 51, no. 12,
pp. 4134–4151, Dec 2005.

[10] A. Wiesel, Y. C. Eldar, and S. Shamai (Shitz), “Zero-forcing precoding
and generalized inverses,” IEEE Trans. Signal Process., vol. 56, no. 9,
pp. 4409–4418, 2008.

[11] A. Bazco-Nogueras, L. Miretti, P. de Kerret, D. Gesbert, and N. Gresset,
“Achieving Vanishing Rate Loss in Decentralized Network MIMO,”
2019. [Online]. Available: https://arxiv.org/abs/1901.06849

[12] P. Billingsley, Probability and Measure, ser. Wiley Series in Probability
and Statistics. Wiley, 1995.

1461


