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Abstract

Over-parameterized models, such as DeepNets and ConvNets, form a class of
models that are routinely adopted in a wide variety of applications, and for which
Bayesian inference is desirable but extremely challenging. Variational inference
offers the tools to tackle this challenge in a scalable way and with some degree of
flexibility on the approximation, but for over-parameterized models this is challeng-
ing due to the over-regularization property of the variational objective. Inspired
by the literature on kernel methods, and in particular on structured approxima-
tions of distributions of random matrices, this paper proposes Walsh-Hadamard
Variational Inference (WHVI), which uses Walsh-Hadamard-based factorization
strategies to reduce the parameterization and accelerate computations, thus avoid-
ing over-regularization issues with the variational objective. Extensive theoretical
and empirical analyses demonstrate that WHVI yields considerable speedups and
model reductions compared to other techniques to carry out approximate inference
for over-parameterized models, and ultimately show how advances in kernel meth-
ods can be translated into advances in approximate Bayesian inference for Deep
Learning.

1 Introduction

Since its inception, Variational Inference (VI, [25]) has continuously gained popularity as a scalable
and flexible approximate inference scheme for a variety of models for which exact Bayesian inference
is intractable. Bayesian neural networks [35, 38] represent a good example of models for which
inference is intractable, and for which VI– and approximate inference in general – is challenging
due to the nontrivial form of the posterior distribution and the large dimensionality of the parameter
space [17, 14]. Recent advances in VI allow one to effectively deal with these issues in various ways.
For instance, a flexible class of posterior approximations can be constructed using, e.g., normalizing
flows [46], whereas the need to operate with large parameter spaces has pushed the research in the
direction of Bayesian compression [34, 36].

Employing VI is notoriously challenging for over-parameterized statistical models. In this paper, we
focus in particular on Bayesian Deep Neural Networks (DNNs) and Bayesian Convolutional Neural
Networks (CNNs) as typical examples of over-parameterized models. Let’s consider a supervised
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learning task with N input vectors and corresponding labels collected in X = {x1, . . . ,xN}
and Y = {y1, . . . ,yN}, respectively; furthermore, let’s consider DNNs with weight matrices
W =

{
W (1), . . . ,W (L)

}
, likelihood p(Y |X,W), and prior p(W). Following standard variational

arguments, after introducing an approximation q(W) to the posterior p(W|X,Y ) it is possible to
obtain a lower bound to the log-marginal likelihood log [p(Y |X)] as follows:

log [p(Y |X)] ≥ Eq(W)[log p(Y |X,W)]− KL{q(W)‖p(W)} . (1)

The first term acts as a model fitting term, whereas the second one acts as a regularizer, penalizing
solutions where the posterior is far away from the prior. It is easy to verify that the KL term can be
the dominant one in the objective for over-parameterized models. For example, a mean field posterior
approximation turns the KL term into a sum of as many KL terms as the number of model parameters,
say Q, which can dominate the overall objective when Q� N . As a result, the optimization focuses
on keeping the approximate posterior close to the prior, disregarding the rather important model
fitting term. This issue has been observed in a variety of deep models [3], where it was proposed
to gradually include the KL term throughout the optimization [3, 50] to scale up the model fitting
term [58, 57] or to improve the initialization of variational parameters [47]. Alternatively, other
approximate inference methods for deep models with connections to VI have been proposed, notably
Monte Carlo Dropout [MCD; 14] and Noisy Natural Gradients [NNG; 62].

In this paper, we propose a novel strategy to cope with model over-parameterization when using
variational inference, which is inspired by the literature on kernel methods. Our proposal is to repa-
rameterize the variational posterior over model parameters by means of a structured decomposition
based on random matrix theory [54], which has inspired a number of fundamental contributions in the
literature on approximations for kernel methods, such as FASTFOOD [31] and Orthogonal Random
Features (ORF, [60]). The key operation within our proposal is the Walsh-Hadamard transform, and
this is why we name our proposal Walsh-Hadamard Variational Inference (WHVI).

Without loss of generality, consider Bayesian DNNs with weight matrices W (l) of size D × D.
Compared with mean field VI, WHVI has a number of attractive properties. The number of parameters
is reduced from O(D2) to O(D), thus reducing the over-regularization effect of the KL term in the
variational objective. We derive expressions for the reparameterization and the local reparameteri-
zation tricks, showing that, the computational complexity is reduced from O(D2) to O(D logD).
Finally, unlike mean field VI, WHVI induces a matrix-variate distribution to approximate the posterior
over the weights, thus increasing flexibility at a log-linear cost in D instead of linear.

We can think of our proposal as a specific factorization of the weight matrix, so we can speculate
that other tensor factorizations [42] of the weight matrix could equally yield such benefits. Our
comparison against various matrix factorization alternatives, however, shows that WHVI is superior to
other parameterizations that have the same complexity. Furthermore, while matrix-variate posterior
approximations have been proposed in the literature of VI [32], this comes at the expense of increasing
the complexity, while our proposal keeps the complexity to log-linear in D.

Through a wide range of experiments on DNNs and CNNs, we demonstrate that our approach enables
the possibility to run variational inference on complex over-parameterized models, while being
competitive with state-of-the-art alternatives. Ultimately, our proposal shows how advances in kernel
methods can be instrumental in improving VI, much like previous works showed how kernel methods
can improve, e.g., Markov chain Monte Carlo sampling [48, 52] and statistical testing [18, 19, 61].

2 Walsh-Hadamard Variational Inference

2.1 Background on Structured Approximations of Kernel Matrices

WHVI is inspired by a line of works that developed from random feature expansions for kernel
machines [45], which we briefly review here. A positive-definite kernel function κ(xi,xj) induces
a mapping φ(x), which can be infinite dimensional depending on the choice of κ(·, ·). Among the
large literature of scalable kernel machines, random feature expansion techniques aim at constructing
a finite approximation to φ(·). For many kernel functions [45, 6], this approximation is built by
applying a nonlinear transformation to a random projectionXΩ, where Ω has entries N (ωij |0, 1).
If the matrix of training pointsX is N ×D and we are aiming to construct D random features, that
is Ω is D ×D, this requires N times O(D2) time, which can be prohibitive when D is large.
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Figure 1: Normalized covariance of g and vect(W ).

Table 1: Complexity of various approaches to VI

COMPLEXITY
SPACE TIME

MEAN FIELD GAUSSIAN O(D2) O(D2)

GAUSSIAN MATRIX VARIATE O(D2) O(D2 + M3)

TENSOR FACTORIZATION O(KR2) O(R2)
WHVI O(D) O(D logD)

Note: D is the dimensionality of the feature map, K is the number
of tensor cores, R is the rank of tensor cores and M is the number
of pseudo-data used to sample from a matrix Gaussian distribution
(see [32]).

FASTFOOD [31] tackles the issue of large dimensional problems by replacing the matrix Ω with a
random matrix for which the space complexity is reduced fromO(D2) to O(D) and time complexity
of performing products with input vectors is reduced from O(D2) to O(D logD). In FASTFOOD,
the matrix Ω is replaced by Ω ≈ SHGΠHB, where Π is a permutation matrix,H is the Walsh-
Hadamard matrix, whereas G and B are diagonal random matrices with standard Normal and
Rademacher ({±1}) distributions, respectively. The Walsh-Hadamard matrix is defined recursively
starting from H2 =

[
1 1
1 −1

]
and then H2D =

[
HD HD
HD −HD

]
, possibly scaled by D−1/2 to make

it orthonormal. The product Hx can be computed in O(D logD) time and O(1) space using
the in-place version of the Fast Walsh-Hadamard Transform [FWHT, 12]. S is also diagonal with
i.i.d. entries, and it is chosen such that the elements of Ω obtained by this series of operations are
approximately independent and follow a standard Normal (see [54] for more details). FASTFOOD
inspired a series of other works on kernel approximations , whereby Gaussian random matrices are
approximated by a series of products between diagonal Rademacher and Walsh-Hadamard matrices
[60, 2].

2.2 From FASTFOOD to Walsh-Hadamard Variational Inference

FASTFOOD and its variants yield cheap approximations to Gaussian random matrices with pseudo-
independent entries, and zero mean and unit variance. The question we address in this paper is
whether we can use these types of approximations as cheap approximating distributions for VI. By
considering a prior for the elements of the diagonal matrixG = diag(g) and a variational posterior
q(g) = N (µ,Σ), we can actually obtain a class of approximate posterior with some desirable
properties as discussed next. Let W =W (l) ∈ RD×D be the weight matrix of a DNN at layer (l),
and consider

W̃ ∼ q(W ) s.t. W̃ = S1Hdiag(g̃)HS2 with g̃ ∼ q(g). (2)

The choice of a Gaussian q(g) and the linearity of the operations induce a parameterization of a
matrix-variate Gaussian distribution forW , which is controlled by S1 and S2 if we assume that we
can optimize these diagonal matrices. Note that we have dropped the permutation matrix Π and we
will show later that this is not critical for performance, while it speeds up computations.

For a generic D1 ×D2 matrix-variate Gaussian distribution, we have

W ∼MN (M ,U ,V ) if and only if vect(W ) ∼ N (vect(M),V ⊗U), (3)

where M ∈ RD1×D2 is the mean matrix and U ∈ RD1×D1 and V ∈ RD2×D2 are two positive
definite covariance matrices among rows and columns, and ⊗ denotes the Kronecker product. In
WHVI, as S2 is diagonal,HS2 = [v1, . . . ,vD] with vi = (S2)i,i(H):,i, soW can be rewritten in
terms ofA ∈ RD2×D and g as follows

vect(W ) = Ag where A> =
[
(S1Hdiag(v1))

> . . . (S1Hdiag(vD))>
]
. (4)

This rewriting, shows that the choice of q(g) yields q(vect(W )) = N (Aµ,AΣA>), proving that
WHVI assumes a matrix-variate distribution q(W ), see Fig. 1 for an illustration of this.
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We report the expression forM , U , and V and leave the full derivation to the Supplement. For the
mean, we haveM = S1Hdiag(µ)HS2, whereas for U and V , we have:

U1/2 = S1HT2 and V 1/2 =
1√

Tr(U)
S2HT1, (5)

where each row i of T1 ∈ RD×D2

is the column-wise vectorization of (Σ1/2
i,j (HS1)i,j′)j,j′≤D, the

matrix T2 is defined similarly with S2 instead of S1, and Tr(·) denotes the trace operator.

The mean of the structured matrix-variate posterior assumed by WHVI can span a D-dimensional
linear subspace within the whole D2-dimensional parameter space, and the orientation is controlled
by the matrices S1 and S2; more details on this geometric interpretation of WHVI can be found in the
Supplement.

Matrix-variate Gaussian posteriors for variational inference have been introduced in [32]; however,
assuming full covariance matrices U and V is memory and computationally intensive (quadratic
and cubic in D, respectively). WHVI captures covariances across weights (see Fig. 1), while keeping
memory requirements linear in D and complexity log-linear in D.

2.3 Reparameterizations in WHVI for Stochastic Optimization

The so-called reparameterization trick [26] is a standard way to make the variational lower bound in
Eq. 1 a deterministic function of the variational parameters, so as to be able to carry out gradient-
based optimization despite the stochasticity of the objective. Considering input vectors hi to a given
layer, an improvement over this approach is to consider the distribution of the productWhi. This
is also known as the local reparameterization trick [27], and it reduces the variance of stochastic
gradients in the optimization, thus improving convergence. The productWhi follows the distribution
N (m,AA>) [20], with

m = S1Hdiag(µ)HS2hi, and A = S1Hdiag(HS2hi)Σ
1/2. (6)

A sample from this distribution can be efficiently computed thanks to the Walsh-Hadamard transform
as: W (µ)hi+W (Σ1/2ε)hi, withW a linear matrix-valued functionW (u) = S1Hdiag(u)HS2.

2.4 Alternative Structures and Comparison with Tensor Factorization

The choice of the parameterization ofW in WHVI leaves space to several possible alternatives, which
we compare in Table 2. For all of them,G is learned variationally and the remaining diagonal Si (if
any) are either optimized or treated variationally (Gaussian mean-field). Fig. 2 shows the behavior
of these alternatives when applied to a 2× 64 network with ReLU activations. With the exception
of the simple and highly constrained alternative GH , all parameterizations are converging quite
easily and the comparison with MCD shows that indeed the proposed WHVI performs better both
in terms of ERROR RATE and MNLL. WHVI is effectively imposing a factorization of W , where
parameters are either optimized or treated variationally. Tensor decompositions for DNNs and CNNs
have been proposed in [42]; hereW is decomposed into k small matrices (tensor cores), such that
W = W1W2 · · ·Wk , where each Wi has dimensions ri−1 × ri (with r1 = rk = D). We adapt
this idea to make a comparison with WHVI. In order to match the space and time complexity of
WHVI, assuming {ri = R|∀i = 2, . . . , k − 1}, we set: R ∝ log2D and K ∝ D

(log2 D)2 . Also, to
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Figure 2: Ablation study of different structures for the parameter-
ization of the weights distribution. Metric: test ERROR RATE and
test MNLL with different structures for the weights. Benchmark on
DRIVE with a 2× 64 network.

Table 2: List of alternative structures and
test performance on DRIVE dataset.

TEST
ERROR MNLL

MODEL

MCD 0.097 0.249
GH 0.226 0.773
SvarHGH 0.043 0.159
S1,varHGHS2,varH 0.061 0.190
SoptHGH 0.054 0.199
S1,optHGHS2,optH 0.031 0.146
S1,optHGHS2,opt (WHVI) 0.026 0.094

Colors are coded to match the ones used in the adjacent Figure
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Figure 3: Comparison between Hadamard factorization in
WHVI and tensor factorization. The number in the parenthesis
is the hidden dimension. Plot is w.r.t. iterations rather then
time to avoid implementation artifacts. The dataset used is
DRIVE.

Algorithm 1: Setup dimensions for
non-squared matrix
Function SetupDimensions(Din, Dout):

next power← 2dlog2 Dine;
if next power == 2Din then

padding← 0;
else

padding = next power−Din;
Din ← next power;

stack, remainder = divmod(Dout, Din);
if remainder != 0 then

stack← stack + 1;
Dout ← Din × stack;

return Din, Dout, padding, stack

match the number of variational parameters, all internal cores (i = 2, . . . , k − 1) are learned with
fully factorized Gaussian posterior, while the remaining are optimized (see Table 1). Given the same
asymptotic complexity, Fig. 3 reports the results of this comparison again on a 2 hidden layer network.
Not only WHVI can reach better solutions in terms of test performance, but optimization is also faster.
We speculate that this is attributed to the redundant variational parameterization induced by the tensor
cores, which makes the optimization landscapes highly multi-modal, leading to slow convergence.

2.5 Extensions

Concatenating or Reshaping Parameters for WHVI For the sake of presentation, so far we have
assumed W ∈ RD×D with D = 2d, but we can easily extend WHVI to handle parameters of any
shape W ∈ RDout×Din . One possibility is to use WHVI with a large D ×D matrix with D = 2d,
such that a subset of its elements representW . Alternatively, a suitable value of d can be chosen so
thatW is a concatenation by row/column of square matrices of size D = 2d, padding if necessary
(Algorithm 1 shows this case).

When one of the dimensions is equal to one so that the parameter matrix is a vector (W = w ∈ RD),
this latter approach is not ideal, as WHVI would fall back on mean-field VI. WHVI can be extended to
handle these cases efficiently by reshaping the parameter vector into a matrix of size 2d with suitable
d, again by padding if necessary. Thanks to the reshaping, WHVI uses

√
D parameters to model a

posterior over D, and allows for computations in O(
√
D logD) rather than D. This is possible by

reshaping the vector that multiplies the weights in a similar way. In the Supplement, we explore this
idea to infer parameters of Gaussian processes linearized using large numbers of random features.

Normalizing Flows Normalizing flows [NF, 46] are a family of parameterized distributions that
allow for flexible approximations. In the general setting, consider a set of invertible, continuous and
differentiable functions fk : RD → RD with parameters λk. Given z0 ∼ q0(z0), z0 is transformed
with a chain of K flows to zK = (fK ◦ · · · ◦ f1)(z0). The variational lower bound slightly differs
from Eq. 1 to take into account the determinant of the Jacobian of the transformation, yielding a new
variational objective as follows:

Eq0 [log p(Y |X,W )]− KL{q0(z0)||p(zK)}+ Eq0(z0)

[∑K

k=1
log

∣∣∣∣det ∂fk(zk−1;λk)

∂zk−1

∣∣∣∣] . (7)

Setting the initial distribution q0 to a fully factorized GaussianN (z0|µ,σI) and assuming a Gaussian
prior on the generated zK , the KL term is analytically tractable. The tranformation f is generally
chosen to allow for fast computation of the determinant of the Jacobian. The parameters of the initial
density q0 as well as the flow parameters λ are optimized. In our case, we consider qK as a distribution
over the elements of g. This approach increases the flexibility of the form of the variational posterior
in WHVI, which is no longer Gaussian, while still capturing covariances across weights. This is
obtained at the expense of losing the possibility of employing the local reparameterization trick. In
the following Section, we will use planar flows [46]. Although this is a simple flow parameterization,
a planar flow requires only O(D) parameters and thus it does not increase the time/space complexity
of WHVI. More complex alternatives can be found in [55, 28, 33].
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Figure 4: Regression example trained using WHVI with Gaussian vector (1541 param.) and with planar
normalizing flow (10 flows for a total of 4141 param.), MFG (35k param.) and Monte Carlo dropout (MCD) (17k
param.). The two shaded areas represent the 95th and the 75th percentile of the predictions. As “ground truth”,
we also show the predictive posterior obtained by running SGHMC on the same model (R < 1.05, [16]).

3 Experiments

In this Section we will provide experimental evaluations of our proposal, with experiments ranging
from regression on classic benchmark datasets to image classification with large-scale convolutional
neural networks. We will also comment on the computational efficiency and some potential limitation
of our proposal.

3.1 Toy example

We begin our experimental validation with a 1D-regression problem. We generated a 1D toy regression
problem with 128 inputs sampled from U [−1, 2], and removed 20% inputs on a predefined interval;
targets are noisy realizations of a random function (noise variance σ2 = exp(−3)). We model
these data using a DNN with 2 hidden layers of 128 features and cosine activations. We test four
models: mean-field Gaussian VI (MFG), Monte Carlo dropout [MCD, 14] with dropout rate 0.4 and
two variants of WHVI – G-WHVI with Gaussian posterior and NF-WHVI with planar flows (10 planar
flows). We also show the free form posterior obtained by running a MCMC algorithm, SGHMC in this
case [5, 51], for several thousands steps. As Fig. 4 shows, WHVI offers a sensible modeling of the
uncertainty on the input domain, whereas MFG and MCD seem to be slightly over-confident.

3.2 Bayesian Neural Networks

We conduct a series of comparisons with state-of-the-art VI schemes for Bayesian DNNs; see the
Supplement for the list of data sets used in the experiments. We compare WHVI with MCD and NNG
[NOISY-KFAC, 62]. MCD draws on a formal connection between dropout and VI with Bernoulli-like
posteriors, while the more recent NOISY-KFAC yields a matrix-variate Gaussian distribution using
noisy natural gradients. To these baselines, we also add the comparison with mean field Gaussian
(MFG). In WHVI, the last layer assumes a fully factorized Gaussian posterior.

Data is randomly divided into 90%/10% splits for training and testing eight times. We standardize
the input features x while keeping the targets y unnormalized. Differently from the experimental
setup in [32, 62, 22], we use the same architecture regardless of the size of the dataset. Futhermore,
to test the efficiency of WHVI in case of over-parameterized models, we set the network to have two
hidden layers and 128 features with ReLU activations (as a reference, these models are ∼20 times
bigger than the usual setup, which uses a single hidden layer with 50/100 units).

We report the test RMSE and the average predictive test negative log-likelihood (MNLL) in Table 3.
On the majority of the datasets, WHVI outperforms MCD and NOISY-KFAC.

Table 3: Test RMSE and test MNLL for regression datasets. Results in the format “mean (std)”
TEST ERROR TEST MNLL

MODEL MCD MFG NNG WHVI MCD MFG NNG WHVI
DATASET

BOSTON 3.91 (0.86) 4.47 (0.85) 3.56 (0.43) 3.14 (0.71) 6.90 (2.93) 2.99 (0.41) 2.72 (0.09) 4.33 (1.80)

CONCRETE 5.12 (0.79) 8.01 (0.41) 8.21 (0.55) 4.70 (0.72) 3.20 (0.36) 3.41 (0.05) 3.56 (0.08) 3.17 (0.37)

ENERGY 2.07 (0.11) 3.10 (0.14) 1.96 (0.28) 0.58 (0.07) 4.15 (0.15) 4.91 (0.09) 2.11 (0.12) 2.00 (0.60)

KIN8NM 0.09 (0.00) 0.12 (0.00) 0.07 (0.00) 0.08 (0.00) −0.87 (0.02) −0.83 (0.02) −1.19 (0.04) −1.19 (0.04)

NAVAL 0.30 (0.30) 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) −1.00 (2.27) −6.23 (0.01) −6.52 (0.09) −6.25 (0.01)

POWERPLANT 3.97 (0.14) 4.52 (0.13) 4.23 (0.09) 4.00 (0.12) 2.74 (0.05) 2.83 (0.03) 2.86 (0.02) 2.71 (0.03)

PROTEIN 4.23 (0.10) 4.93 (0.11) 4.57 (0.47) 4.36 (0.11) 2.76 (0.02) 2.92 (0.01) 2.95 (0.12) 2.79 (0.01)

YACHT 1.90 (0.54) 7.01 (1.22) 5.16 (1.48) 0.69 (0.16) 2.95 (1.27) 3.38 (0.29) 3.06 (0.27) 1.80 (1.01)
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Futhermore, we study how the test MNLL varies
with the number of hidden units in a 2-layered net-
work. As Fig. 5 shows, WHVI behaves well while
competitive methods struggle. Empirically, these
results demonstrate the value of WHVI, which
offers a competitive parameterization of a matrix-
variate Gaussian posterior while requiring log-
linear time in D. We refer the Reader to the Sup-
plement for additional details on the experimental
setup and for the benchmark with the classic ar-
chitectures.
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Figure 5: Comparison of the test MNLL as a function
of the number of hidden units for MCD ( ), MFG ( ),
NNG ( ) and WHVI ( ). The dataset used is YACHT.

3.3 Bayesian Convolutional Neural Networks

We continue the experimental evaluation of WHVI by analyzing its performance on CNNs. For
this experiment, we replace all fully-connected layers in the CNN with the WHVI parameterization,
while the convolutional filters are treated variationally using MCD. In this setup, we fit VGG16 [49],
ALEXNET [29] and RESNET-18 [21] on CIFAR10. Using WHVI, we can reduce the number of
parameters in the linear layers without affecting neither test performance nor calibration properties
of the resulting model, as shown in Fig. 6 and Table 4. For ALEXNET and RESNET we also try our
variant of WHVI with NF. Even though we lose the benefits of the local reparameterization, the higher
flexibility of normalizing flows allows the model to obtain better test performance with respect to the
Gaussian posterior. This can be improved even further using more complex families of normalizing
flows [46, 55, 28, 33]. With WHVI, ALEXNET and its original ∼23.3M parameters is reduced to just
∼2.3M (9.9%) when using G-WHVI and to ∼2.4M (10.2%) with WHVI and 3 planar flows.

WHVI for convolutional filters By observing that the convolution can be written as matrix multi-
plication (once filters are reshaped in 2D), we also extended WHVI for convolutional layers.

We observe though that in this case
resulting models had too few param-
eters to obtain any interesting results.
For ALEXNET, we obtained a model
with just 189K parameters, which cor-
responds to a sparsity of 99.2% with
respect of the original model. As a
reference, Wen et al. [56] was able to
reach sparsity only up to 60% in the
convolutional layers without impact-
ing performance.
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Wconv with MCD – Wlin with WHVI Error = 0.281, MNLL = 0.882
Wconv with WHVI – Wlin with WHVI Error = 0.427, MNLL = 1.223
Wconv low-rank with MCD – Wlin with WHVI Error = 0.469, MNLL = 1.434

Figure 7: Inference of convolutional filters (dataset: CIFAR10).

To study this behavior in details, we take a simple CNN with two convolutional layers and one
linear layer (Fig. 7). We see that the combination of MCD and WHVI performs very well in terms
of convergence and test performance, while the use of WHVI on the convolutional filters brings an
overall degradation of the performance. Interestingly, though, we also observe that MCD with the
same number of parameters as for WHVI (referred to as low-rank MCD) performs even worse than the
baseline: this once again confirms the parameterization of WHVI as an efficient alternative.

Table 4: Test performance of different Bayesian CNNs.

CIFAR10 TEST ERROR TEST MNLL

VGG16 MFG 16.82% 0.6443
MCD 21.47% 0.8213
NNG 15.21% 0.6374
WHVI 12.85% 0.6995

ALEXNET MCD 13.30% 0.9590
NNG 20.36% –
WHVI 13.56% 0.6164
NF-WHVI 12.72% 0.6596

RESNET18 MCD 10.71% 0.8468
NNG – –
WHVI 11.46% 0.5513
NF-WHVI 11.42% 0.4908
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Figure 6: Reliability diagram and expected calibration
error (ECE) of VGG16, ALEXNET and RESNET with
WHVI [9, 41, 37].
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3.4 Comments on computational efficiency

WHVI builds his computational efficiency on the Fast Walsh-Hadamard Transform (FWHT), which
allows one to cut the complexity of a D-dimensional matrix-vector multiplication from a naive
O(D2) toO(D logD). To empirically validate this claim, we extended PYTORCH [44] with a custom
C++/CUDA kernel which implements a batched-version of the FWHT. The workstation used is
equipped with two Intel Xeon CPUs, four NVIDIA Tesla P100 and 512 GB of RAM. Each experiment
is carried out on a GPU fully dedicated to it. The NNG algorithm is implemented in TENSORFLOW2

while the others are written in PYTORCH.
We made sure to fully exploit all parallelization
opportunities in the competiting methods and
ours; we believe that the timings are not severely
affected by external factors other than the actual
implementation of the algorithms. The box-plots
in Fig. 8 report the time required to sample and
infer the carry out inference on the test set on two
regression datasets as a function of the number of
hidden units in a two-layer DNN. We speculate
that the poor performance of NNG is due to the in-
version of the approximation to the Fisher matrix,
which scales cubically in the number of units.
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Figure 8: Inference time on the test set with 128 batch
size and 64 Monte Carlo samples. Experiment repeated
100 times. Additional datasets available in the Supple-
ment.

Similar behavior can also be observed for
Bayesian CNNs. In Fig. 9, we analyze the en-
ergy consumption required to sample from the
converged model and predict on the test set of
CIFAR10 with ALEXNET using WHVI and MCD.
The regularity of the algorithm for computing the
FWHT and its reduced memory footprint result
on an overall higher utilization of the GPU, 85%
for WHVI versus ∼ 70% for MCD. This translates
into an increase of energy efficiency up to 33%
w.r.t MCD, despite being 51% faster.

Additional results and insights We refer the
reader to the Supplement for an extended version
of the results, including new applications of WHVI
to GPs.
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Figure 9: Power profiling during inference on the test
set of CIFAR10 with ALEXNET and WHVI ( ), MCD ( )
and NNG ( ). The task is repeated 16 consecutive times
and profiling is carried out using the nvidia-smi tool.

Related Work
In the early sections of the paper, we have already briefly reviewed some of the literature on VI and
Bayesian DNNs and CNNs; here we complement the literature by including other relevant works that
have connections with WHVI.

Our work takes inspiration from the works on random features for kernel approximation [45] and
FASTFOOD [31]. Random feature expansions have had a wide impact on the literature on kernel
methods. Such approximations have been successfully used to scale a variety of models, such as
Support Vector Machines [45], Gaussian processes [30] and Deep Gaussian processes [7, 14]. This
has contributed to bridging the gap between Deep GPs and Bayesian DNNs and CNNs [38, 11, 7, 13],
which is an active area of research which aims to gain a better understanding of deep learning models
through the use of kernel methods [8, 10, 15]. Structured random features [31, 60, 2] have been also
applied to the problem of handling large dimensional convolutional features [59] and Convolutional
GPs [53].

Bayesian inference on DNNs and CNNs has been research topic of several seminar works [see e.g. 17,
22, 1, 14, 13]. Recent advances in DNNs have investigated the effect of over-parameterization and
how model compression can be used during or after training [24, 34, 63]. Our current understanding
shows that model performance is affected by the network size with bigger and wider neural networks

1github.com/gd-zhang/noisy-K-FAC — github.com/pomonam/NoisyNaturalGradient
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being more resilient to overfit [39, 40]. For variational inference, and Bayesian inference in general,
over-parameterization is reflected on over-regularization of the objective, leading the optimization to
converge to trivial solutions (posterior equal to prior). Several works have encountered and proposed
solutions to such issue [23, 4, 3, 50, 47]. The problem of how to run accurate Bayesian inference on
over-parametrized models like BNN is still an ongoing open question [58, 57]

4 Conclusions

Inspired by the literature on scalable kernel methods, this paper proposed Walsh-Hadamard Variational
Inference (WHVI). WHVI offers a novel parameterization of the variational posterior, which is
particularly attractive for over-parameterized models, such as modern DNNs and CNNs. WHVI assumes
a matrix-variate posterior distribution, which therefore captures covariances across weights. Crucially,
unlike previous work on matrix-variate posteriors for VI, this is achieved with a light parameterization
and fast computations, bypassing the over-regularization issues of VI for over-parameterized models.
The large experimental campaign, demonstrates that WHVI is a strong competitor of other variational
approaches for such models, while offering considerable speedups.

We are currently investigating other extensions where we capture the covariance between weights
across layers, by either sharing the matrix G across, or by concatenating all weights into a single
matrix which is then treated using WHVI, with the necessary adaptations to handle the sequential
nature of computations. Finally, we are looking into deriving error bounds when using WHVI to
approximate a generic matrix distribution; as preliminary work, in a numerical study in the supplement
we show that the weights induced by WHVI can approximate reasonably well any arbitrary weight
matrix, showing a consistent behavior w.r.t. increasing dimensions D.

Broader Impact

Bayesian inference for Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs)
offers attractive solutions to many problems where one needs to combine the flexibility of these deep
models with the possibility to accurately quantify uncertainty in predictions and model parameters.
This is of fundamental importance in an increasingly large number of applications of machine
learning in society where uncertainty matters, and where calibration of the predictions and resilience
to adversarial attacks are desirable.

Due to the intractability of Bayesian inference for such models, one needs to resort to approximations.
Variational inference (VI) gained popularity long before the deep learning revolution, which has seen
a considerable interest in the application of VI to DNNs and CNNs in the last decade. However, VI is
still under appreciated in the deep learning community because it comes with a higher computational
cost for optimization, sampling, storage and inference. With this work, we offer a novel solution to
this problem to make VI truly scalable in each of its parts (parameterization, sampling and inference).

Our approach is inspired by the literature on kernel methods, and we believe that this cross-fertilization
will enable further contributions in both communities. In the long term, our work will make it possible
to accelerate training/inference of Bayesian deep models, while reducing their storage requirements.
This will complement Bayesian compression techniques to facilitate the deployment of Bayesian
deep models onto FPGA, ASIC and embedded processors.
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