
Buckle: Evaluating Fact Checking Algorithms Built on
Knowledge Bases

Viet-Phi Huynh
Eurecom

viet-phi.huynh@eurecom.fr

Paolo Papotti
Eurecom

papotti@eurecom.fr

ABSTRACT
Fact checking is the task of determining if a given claim
holds. Several algorithms have been developed to check facts
with reference information in the form of knowledge bases.
We demonstrate BUCKLE, an open-source benchmark for
comparing and evaluating fact checking algorithms in a level
playing field across a range of scenarios. The demo is cen-
tered around three main lessons. To start, we show how,
by changing the properties of the training and test facts, it
is possible to influence significantly the performance of the
algorithms. We then show the role of the reference data. Fi-
nally, we discuss the performance for algorithms designed on
different principles and assumptions, as well as approaches
that address the link prediction task in knowledge bases.

PVLDB Reference Format:
Huynh, Papotti. BUCKLE: Evaluating Fact Checking Algorithms
Built on Knowledge Bases. PVLDB, 12(12): 1798 - 1801, 2019.
DOI: https://doi.org/10.14778/3352063.3352069

1. INTRODUCTION
While fact checking has historically been an activity for

journalists, the increase of incorrect claims over the Web has
motivated the study of computational methods to identify
misleading claims. In fact, manual assessment of facts (as
done by journalists in websites such as politifact.com) can-
not scale with the proliferation of sources spreading false
information [9]. Different efforts tackle different types of
facts and domains. We focus on algorithms that test tex-
tual claims against trustful Knowledge Bases (KBs), such as
“Leo Tolstoy won the Nobel Prize”. We assume that entities
and predicates in “worth checking” facts have been identi-
fied [5], and study the step estimating the veracity of a fact
(expressed as structured data) w.r.t. trusted reference data.

A core issue for fact checking with KBs is that the refer-
ence information is incomplete (Open World Assumption),
i.e., a fact not in the KB can either be false or just miss-
ing [3]. Given a KB K and a fact f , our fact checking task

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352069

Figure 1: The benchmark architecture.

is to state if f is a valid missing fact in K, a problem that
can be seen as a special case of link prediction in graphs [2].

Automatic fact checking algorithms come from different
intuitions. Some of them rely on paths and sub-graphs in
the KB: they assume that training examples are available
and learn models to label new facts to be tested. Other
approaches assume that a set of constraints over the KB
have been discovered and can be exploited to validate or
invalidate a given fact. Others rely on embeddings to model
a candidate predicate between two entities as a translation
in the corresponding low dimensional vector space.

Due to the richness and diversity of algorithms, it is im-
portant to conduct fair experimental evaluations to assess
the potential of each proposal. Thorough evaluation of fact
checking algorithms requires systematic control over the train-
ing and test data, and the quality of the KBs used as refer-
ence information. To support rigorous empirical evaluations,
a fact generation system must be able to generate multiple
scenarios, composed of true and false claims, with low user
effort and clear evaluation results.

BUCKLE is the first scenario generator conceived to sup-
port empirical evaluations of fact checking algorithms as per
the above requirements. We show the major components
of the system in Figure 1. A user starts interacting with
BUCKLE by selecting a predicate from a KB (e.g., mar-
ried for DBpedia) and the complexity of the scenario. The
system creates a scenario with real data, according to the
given configuration, in terms of training, test, and reference
data [6]. The scenario is executed with multiple algorithms
and their results are exposed for comparison.

The demonstration will convey three primary insights about
benchmarking fact checking algorithms.

(1) We introduce data properties that characterize the diffi-
culty of a scenario. We will show how enforcing such prop-
erties on training and test data radically affects the results
of the fact checking step.

1798



(2) Then, we will discuss how the characteristics of the ref-
erence KBs may significantly influence the quality of the
results by an algorithm.
(3) Finally, we will demonstrate seven different algorithms
in action on scenarios generated by using BUCKLE, to reveal
new insights on their performance.

The control over the data features distinguishes the exper-
iments enabled by BUCKLE from previous efforts in evalu-
ating fact checking algorithms. The attendees will see how
the availability of a benchmark levels the field and raises the
bar for evaluation standards in this task. BUCKLE is open-
source (https://github.com/huynhvp/BUCKLE-Fact_checking),
so that it can be further extended by the community.

The paper is organized as follows. Section 2 introduces
the background for the benchmark. Section 3 provides an
overview of the system and the data properties at its core.
Finally, Section 4 discusses the organization of the demo.

2. FACT CHECKING ALGORITHMS
Background. A fact is defined as a triple that has the
form of (“subject” s, “predicate” p, “object” o). Natural
language processing techniques are used to convert a tex-
tual claim into a structured format. Facts can be classified
into categories, such as numerical, quote, and object prop-
erty. We focus on object properties, which are facts stating
a relationship between the subject and the object in a sen-
tence, e.g., Sacramento is the capital of California.

A Knowledge Base (KB) is a direct graph where nodes cor-
respond to entities (subject or object in a fact) and edges
model binary predicates among entities. We focus on algo-
rithms taking as input a KB and a fact that is not part of
it. Such algorithms assess if the fact belongs to the missing
part of the KB (therefore is “true”) or no (is “false”). Most
entities in a KB have a predicate defining their type (e.g.,
general as “thing”, or specific as “person” or “company”).

Fact checking algorithms. Algorithms assume that ei-
ther training examples (labelled facts) or reference infor-
mation (the KB itself) are available to build the internal
models for checking claims. A common assumption is that
the KB is trustable, and training examples are derived from
it. However, algorithms are very different in the way they
model the problem, as we describe next.

Structure Based Algorithms. Given a fact (s, p, o), this
group of algorithms makes a decision for it by exploiting the
topological structures identified in the KB by the p triples.
The KB triples are used to learn the alternative paths (differ-
ent from p) between their subjects and objects. Properties
of the paths are then modeled as features in a classifier that
decides if predicate p holds for the given s and o.

Knowledge Linker (KL) builds a weighted adjacency ma-
trix with edge weights computed as the in-degree of each
node in the KB [2]. The model ignores predicate labels and
evaluates the validity of a fact based on the proximity be-
tween its subject and object. Every path connecting a given
subject and object is then mapped to a score computed on
the frequency of the nodes in the KB.

Discriminate Predicate Path Mining (KG-Miner) exploits
frequent predicate paths between pair of entities in the KB [8].
Given a test fact (s, p, o) and examples P that satisfy p in
the KB, it collects the predicate paths for every node pair
in P having subject with the same type of s (denoted ϕ(s))
and object with type of o (ϕ(o)). From each u ∈ ϕ(s) and

corresponding v ∈ ϕ(o), predicate paths that alternatively
represent predicate p are extracted by traversing the graph
from u to v. The path information gain is computed based
on the number of occurrences. It then selects the most dis-
criminative paths as features and train a logistic regression
model to classify positive and negative examples. The model
is then used to compute the likelihood of a test fact.

Path Ranking Algorithm (PRA) extracts features from a
training triple with random walks starting at the source and
at the corresponding target node to retrieve the paths be-
tween them [4]. Top k paths for each instance are collected
in a feature matrix. A value in the matrix for a training
instance (s, p, o) is the probability of arriving at the tar-
get node o by a random walk starting at source node s by
following one of its top k paths. The feature matrix is then
used with a classifier to validate the input fact.

Sub-graph Feature Extraction (SFE) extends PRA by ex-
tracting features from KB sub-graphs [4]. The sub-graph of
depth m for each node n is the result of m breadth-first
search steps from it. A sequence of predicates connecting
source and target nodes is obtained by intersecting their
sub-graphs. SFE uses such sequences to identify binary fea-
tures that disregard the frequency (KG-Miner) or the prob-
ability (PRA) of feature paths. Features are then used in a
classifier trained on positive and negative examples.

Embedding Based Algorithms. Embeddings encode enti-
ties and predicates in the KB into a low-dimensional vector
space while preserving certain information of the graph and
minimizing a margin-based ranking loss. A predicate in the
graph is interpreted as a translation from subject entity to
object entity in such space. To check a fact (s, p, o), these
methods check the relevance of the embedding representa-
tions s of s and o of o w.r.t. embedding representation p of
predicate p though a specific score function.

Translating Embeddings (TransE) represents a predicate
p from triple (s, p, o) as a translation from subject s to
object o on the same low-dimensional embedding space, that
is s + p ≈ o if (s, p, o) is true [1]. Its score function is
defined as: f(s, p, o) = ‖s + p− o‖, where ‖.‖ can be either
L1 or L2 norm. As TransE uses the same embedding space
for both entities and predicates, a many-to-one predicate
can lead to identical embedding representations for different
subject entities in it. To address this issue, TransH enables
an entity to have different embedding representations w.r.t.
the different predicates it participates. For each predicate p,
it introduces a specific hyperplane wp (normal vector) and
defines embedding vector p on this hyperplane.

Rule based algorithms. A fact can be validated or invali-
dated by using a set of rules defined over the KB (Rules).
For example, a “positive” rule can state that for every city
that is the capital of a country, that city is also located in the
same country, or a “negative” rule can state that if someone
has a father relation with another person, it is unlikely that
they are married. Such rules Σ can be manually defined or
discovered from a KB [3, 7]. Given a set of rules Σ, a fact is
validated if it matches a positive rule and it is invalidated if
it matches at least one negative rule or has no match.

3. THE BENCHMARK
Fact checking scenario. Any benchmark has a set of stan-
dard application scenarios that can be tested against differ-
ent systems sharing similar functionalities. This implies that

1799

https://github.com/huynhvp/BUCKLE-Fact_checking


every scenario is correctly interpreted by the systems. Un-
like benchmarks for other data-centric applications, such as
query processing for DBMS, there is no definition or com-
mon practice for a fact checking scenario. In our benchmark,
a fact checking scenario is defined for a predicate p with a
triple (R, T , D), where R is the reference data (the KB), T
is the training data (true and false p facts w.r.t. R), and D
is the test data (true and false p facts, missing from R).

BUCKLE consists of three components, as depicted in Fig-
ure 1. A user interacts with BUCKLE by selecting any pred-
icate in a KB (1). For the input predicate, two system com-
ponents combine the real data to generate T and D accord-
ing to the configuration (2). A third component combines
and executes the scenario over the target algorithms (3).

Reference data. Our system can work with any RDF
knowledge base, but for the sake of simplicity we focus the
description on DBPedia, a KB with triples extracted from
Wikipedia. From these triples, we construct a graph by
assigning each unique entity to a graph node, and convert-
ing the triple into a directed edge with label “predicate”
from the entity “subject” to entity “object”. We obtain
a directed graph with ≈4M nodes, ≈27M edges, and 671
predicates. We treat the input KB as trusted (i.e., assumed
mostly correct) but incomplete (open world assumption).

The reference data R plays a crucial role in all algorithms.
Intuitively, the true fact that “Sacramento is the capital of
California” is easier to automatically check compared to the
true fact that “Kinshasa is the capital of Zaire”. In fact,
even if both facts are missing in the KB, the two entities
in capital(Sacramento,California) are more popular in most
KBs than the African city and country. This can be cap-
tured by analyzing R. We enforce this data quality in a
scenario by distinguishing facts based on their context infor-
mation. In particular, we characterize the entities based on
their structural properties. We define the popularity G(x) of
an entity x as the number of incoming and outcoming edges
for its node in the KB graph. For a given fact p(s, o), we
then compute the popularity of its pair of entities (s, o) by
computing the average of their popularity scores.

Table 1: Examples of claims (false ones in italic)
Dataset Example Facts

F
u

n
ct

io
n

a
l

Easy 1 Arizona, capital, Phoenix
Arizona, capital, Oregon

Easy 2 Massachusetts, capital, Boston
Massachusetts, capital, Worcester

Medium 1 Massachusetts, capital, Boston
Massachusetts, capital, Worcester

France, capital, Paris
Japan, capital, Osaka

N
o
n

fu
n

ct
io

n
a
l

Medium 2 Never Go Back, author, Lee Child
Personal (novel), author, Lee Child

Greater Journey, author, Michael Lewis
Hard 1 J. Kittinger, award, War Prisoner Medal

J. Kittinger, award, Bronze Star Medal
H. F. Davison, award, Military Cross
J. L. Morgan, award, Military Cross
Lothar Linke, award, 2009 RTHK

Training and test data. The training and test data gener-
ators take as input distinct parameters and produce distinct
sets, but are based on common methods. Each training T
and test D dataset includes both true and false facts for a
specific predicate, as reported in the examples shown in Ta-
ble 1. We distinguish three independent properties for the

data, and build scenarios that have different levels of diffi-
culty based on how such properties are set and combined.

We use predicate capital to illustrate the dataset proper-
ties. Capital is a one-to-one (functional) predicate, which
contains facts for cities and states: capital(city,state).

The first property is the transparency. Consider a sce-
nario with 50 US capitals as true facts either in training or
test data. From these 50 correct triples, we can generate
200 incorrect triples by random matching each capital to 4
other states, as shown for the dataset “Easy 1”. In this sce-
nario, true/false facts lead to clear internal representation
with any model because the entities in the negative exam-
ples have little in common in R. However, this changes with
more challenging false facts. Unlike “Easy 1”, in which false
instances are created by random matching capital cities to
states, example “Easy 2” contains as false facts triples from
another predicate among cities and states (largestCities).
For each state in the true capital-state triples, we can in-
clude its largest cities as false triples in the datasets. Since
the large cities and the capital cities share some properties in
R, they are “less transparent” and harder to distinguish by
the algorithms. For a predicate p, this property is controlled
by setting the percentage of false facts from type-compatible
pairs connected by any predicate different from p.

The second property is the homogeneity. We started
with a scenario with capital triples for 50 US states, as this
is a setting studied in several papers in the literature. But,
in such a well scoped scenario, all entities are semantically
close to each other. That is, to check whether a US city in
D is capital of a US state, the algorithms rely on the infor-
mation from other US capitals and cities in T . In reality,
data is oftentimes heterogeneous, e.g., covering both US and
European cities. To break homogeneity, we can use capitals
of world countries, so that the facts model a more general
concept of capital (example “Medium 1”). For a predicate p,
this property is controlled by clustering the pairs of entities
with the embedding methods presented in the previous sec-
tion. We then determine the difficulty of the scenario based
on the size of the selected cluster (the smaller, the easier).

The third property characterizes the functionality of the
predicate. A one-to-one predicate is easier to model than a
one-to-many predicate, such as persons in the author rela-
tionship with at least one book, but each book has at most
one author (example “Medium 2”). The hardest case are
many-to-many predicates, such as award, i.e., persons who
got a prize or a recognition. Notice also how in example
“Hard 1” the examples are not homogeneous, as people from
very different backgrounds got awards in different domains.

Our scenario generator has default configurations that
mix the properties above to obtain scenarios of different dif-
ficulties. For example, a functional predicate chosen by the
user needs higher percentage of non homogeneous and non
transparent examples to reach the Medium difficulty com-
pared to a non functional predicate. Users can change these
percentages from the GUI, as described in the next section.

4. DEMONSTRATION SCENARIO
The audience will interact with the system with two main

interfaces. The scenario generation is reported in Figure 2,
while the algorithm execution is reported in Figure 3.

Scenario generation. In the interface in Figure 2, the
users will be asked to select the KB and the predicate to

1800



Figure 2: The benchmark input screen.

test. The different settings for a scenario include the data
properties discussed in the previous section.

Algorithm execution. Once a scenario has been gener-
ated, we will ask the users to select the algorithms to be exe-
cuted (top part of Figure 3). The systems can be tuned with
the algorithm-specific parameters that dynamically appear
by interacting with the menus. For example, by selecting
algorithm KL, the choice between metric and ultra-metric
closure appears as an option. For quality evaluation of the
results, we use the Area Under the Receiver Operating Char-
acteristic curve (AUROC).

Demo outline. We will start by asking the users to gen-
erate scenarios with the default levels of difficulty, such as
Easy and Hard. The users will see the generated training
and test datasets obtained by combining the real data from
the KB at hand. Once a scenario has been generated, we
will ask the users to select one algorithm (with its default
parameters) and run it. The lesson here is about the role
of data. Users will see how, by changing our data proper-
ties only from an Easy to Hard scenario, the same algorithm
goes from good accuracy results to random guessing.

In a second interaction, we will ask the users to freely
change the parameters in both interfaces and observe how
results for the same algorithm change. The goal is to make
evident to the audience that a single data property has a
bigger impact on the qualitative results than any algorith-
mic choice. More specifically, while any method performs
well in a simple, functional predicate scenario, qualitative
differences in the results of all algorithms become evident
with datasets involving non functional predicates, more am-
biguous training and test datasets, and less popular entities.
Users will also be able to replicate experimental settings
from papers in the literature.

Finally, we will invite the users to execute two algorithms
on the same dataset, as shown in Figure 3. The goal is to
demonstrate how our benchmark can lead to useful insights
about advantages and limits of the different methods.

Users will be able to see differences across methods from
the same family and from different ones. For example, algo-
rithm KL is more robust to nonfunctional predicates than
other path-based methods, as it does not rely on the predi-
cate semantics expressed by the labels. On the other hand,
KL has issues in the classification of scenarios where false
instances are created from semantically close but different

Figure 3: Result screen for two algorithms executed
on the same scenario.

predicates. For example, Worcester is not capital of Mas-
sachusetts, but it is one of its largestCities. Due to the lack
of semantics, KL treats both Worcester and Boston as capi-
tal of Massachusetts because it finds good proximity between
the two cities and the state in the graph.

As an example of differences across families, users will be
able to see how path based methods, such as KG-Miner,
PRA, and SFE, can outperform TransE and TransH, but
also show a more significant drop in quality for medium and
hard scenarios. In these cases, increasing the default length
of predicate paths leads to more discriminative and informa-
tive features, thereby improving the performance but also
increasing the execution times. As another example, by
changing the Popularity parameter in the generator, users
can see how embedding and rule based methods (Rules) are
more sensible than path based algorithms to the quality of
the reference data.

5. REFERENCES
[1] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and

O. Yakhnenko. Translating embeddings for modeling
multi-relational data. In NIPS, 2013.

[2] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen,
F. Menczer, and A. Flammini. Computational fact checking
from knowledge networks. PloS one, 10(6):e0128193, 2015.

[3] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek.
Fast rule mining in ontological knowledge bases with
AMIE+. VLDB J., 24(6):707–730, 2015.

[4] M. Gardner and T. M. Mitchell. Efficient and expressive
knowledge base completion using subgraph feature
extraction. In EMNLP, pages 1488–1498, 2015.

[5] N. Hassan, F. Arslan, C. Li, and M. Tremayne. Toward
automated fact-checking: Detecting check-worthy factual
claims by claimbuster. In KDD, 2017.

[6] V. Huynh and P. Papotti. Towards a benchmark for fact
checking with knowledge bases. In Companion of the
TheWebConf (WWW), pages 1595–1598, 2018.

[7] S. Ortona, V. Meduri, and P. Papotti. Robust discovery of
positive and negative rules in KBs. In ICDE, 2018.

[8] B. Shi and T. Weninger. Discriminative predicate path
mining for fact checking in knowledge graphs.
Knowledge-Based Systems, 104:123–133, 2016.

[9] X. Wang, C. Yu, S. Baumgartner, and F. Korn. Relevant
document discovery for fact-checking articles. In Companion
of the TheWebConf (WWW), 2018.

1801


	Introduction
	Fact Checking Algorithms
	The Benchmark
	Demonstration Scenario
	References

