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ABSTRACT

Approximating kernel functions with random features (RFs)
has been a successful application of random projections for
nonparametric estimation. However, performing random pro-
jections presents computational challenges for large-scale
problems. Recently, a new optical hardware called Opti-
cal Processing Unit (OPU) has been developed for fast and
energy-efficient computation of large-scale RFs in the analog
domain. More specifically, the OPU performs the multiplica-
tion of input vectors by a large random matrix with complex-
valued i.i.d. Gaussian entries, followed by the application of
an element-wise squared absolute value operation – this last
nonlinearity being intrinsic to the sensing process. In this
paper, we show that this operation results in a dot-product
kernel that has connections to the polynomial kernel, and we
extend this computation to arbitrary powers of the feature
map. Experiments demonstrate that the OPU kernel and its
RF approximation achieve competitive performance in appli-
cations using kernel ridge regression and transfer learning for
image classification. Crucially, thanks to the use of the OPU,
these results are obtained with time and energy savings.

Index Terms— Kernel methods, nonparametric estimation,
optical computing, random features, kernel ridge regression.

1. INTRODUCTION

Kernel methods represent a successful class of Machine
Learning models, achieving state-of-the-art performance on a
variety of tasks with theoretical guarantees [1, 2, 3]. Apply-
ing kernel methods to large-scale problems, however, poses
computational challenges, and this has motivated a variety of
contributions to develop them at scale; see, e.g., [2, 4, 5, 6, 7].

Consider a supervised learning task, and let {x1, . . . ,xn}
be a set of n inputs with xi ∈ Rd associated with a set of
labels {t1, . . . , tn}. In kernel methods, it is possible to estab-

lish a mapping between inputs and labels by first mapping the
inputs to a high-dimensional (possibly infinite dimensional)
Hilbert space H using a nonlinear feature map ϕ : Rd → H,
and then to apply the model to the transformed data. What
characterizes these methods is that the mapping ϕ(·) does not
need to be specified and can be implicitly defined by choos-
ing a kernel function k(·, ·). While kernel methods offer a
flexible class of models, they do not scale well with the num-
ber n of data points in the training set, as one needs to store
and perform algebraic operations with the kernel matrix K,
whose entries are Kij = k(xi,xj), and which require O(n2)
storage and O(n3) operations.

In a series of celebrated papers [8, 9], Rahimi and Recht
have proposed approximation techniques of the kernel func-
tion using random features (RFs), which are based on ran-
dom projections of the original features followed by the ap-
plication of a nonlinear transformation. In practice, the kernel
function is approximated by means of the scalar product be-
tween finite-dimensional random maps φ : Rd → RD:

k(xi,xj) = 〈ϕ(xi), ϕ(xj)〉H ≈ φ(xi)
>φ(xj) (1)

The RF-based approximation turns a kernel-based model into
a linear model with a new set of nonlinear features φ(x); as a
result, the computational complexity is reduced from O(n3)
to O(ndD) to construct the random features and O(nD2 +
D3) to optimize the linear model, where D is the RF dimen-
sion and n the number of data points. Furthermore, there is no
need to allocate the kernel matrix, reducing the storage from
O(n2) to O(nD + D2). Unless approximation strategies to
compute random features are used, e.g., [10], computing RFs
is one of the main computational bottlenecks.

A completely different approach was pioneered in Saade
et al. [11], where the random projections are instead made
via an analog optical device – the Optical Processing Unit
(OPU) – that performs these random projections literally at
the speed of light and without having to store the random



Fig. 1: Experimental setup of the Optical Processing Unit (modified
with permission from [11]). The data vector is encoded in the co-
herent light from a laser using a DMD. Light then goes through a
scattering medium and a speckle pattern is measured by a camera.

matrix in memory. Their results demonstrate that the OPU
makes a significant contribution towards making kernel meth-
ods more practical for large-scale applications with the po-
tential to drastically decrease computation time and memory,
as well as power consumption. The OPU has also been ap-
plied to other frameworks like reservoir computing [12, 13]
and anomaly detection [14].

Building on the milestone work of [11], the goal of the
present contribution is threefold: a) we derive in full general-
ity the kernel to which the dot product computed by the OPU
RFs converges, generalizing the earlier computation of [11]
to a larger class of kernels; b) we present new examples and a
benchmark of applications for the kernel of the OPU; and c)
we give a detailed comparison of the running time and energy
consumption between the OPU and a last generation GPU.

2. THE OPTICAL PROCESSING UNIT

The principle of the random projections performed by the Op-
tical Processing Unit (OPU) is based on the use of a het-
erogeneous material that scatters the light that goes through
it, see Fig. 1 for the experimental setup. The data vector
x ∈ Rd is encoded into light using a digital micromirror
device (DMD). This encoded light then passes through the
heterogeneous medium, performing the random matrix mul-
tiplication. As discussed in [15], light going through the scat-
tering medium follows many extremely complex paths, that
depend on refractive index inhomogeneities at random posi-
tions. For a fixed scattering medium, the resulting process is
still linear, deterministic, and reproducible. Reproducibility
is important as all our data vectors need to be multiplied by
the same realisation of the random matrix.

After going through the ”random” medium, we observe a
speckle figure on the camera, where the light intensity at each
point is modelled by a sum of the components of x weighted
by random coefficients. Measuring the intensity of light in-
duces a non-linear transformation of this sum, leading to:

Proposition 1. Given a data vector x ∈ Rd, the random fea-
ture map performed by the Optical Processing Unit is:

φ(x) =
1√
D
|Ux|2 (2)

where U ∈ CD×d is a complex Gaussian random matrix
whose elements Ui,j ∼ CN (0, 1), the variance being set to
one without loss of generality, and depends on a multiplica-
tive factor combining laser power and attenuation of the opti-
cal system. We will name these RFs optical random features.

3. COMPUTING THE KERNEL

When we map two data points x,y ∈ Rd into a feature space
of dimension D using the optical RFs of Eq. 2, we have to
compute the following to obtain the associated kernel k2:

k2(x,y) ≈ φ(x)>φ(y) =
1

D

D∑
j=1

|x>u(j)|2|y>u(j)|2 (3)

D→+∞
=

∫
|x>u|2|y>u|2µ(u)du (4)

with U = [u(1), . . . ,u(D)]> and u(j) ∈ Rd,∀j ∈ {1, .., D}.

Theorem 1. The kernel k2 approximated by the dot product
of optical random features of Eq. 2 is given by:

k2(x,y) = ‖x‖2 ‖y‖2 +
(
x>y

)2
(5)

where the norm is the l2 norm.

Proof. By rotational invariance of the complex Gaussian dis-
tribution, we can fix x = ‖x‖ e1 and y = ‖y‖ (e1 cos θ +
e2 sin θ), with θ being the angle between x and y, e1 and
e2 being two orthonormal vectors. Letting ei

>u = ui ∼
CN (0, 1), i = 1, 2 and u∗1 be the complex conjugate of u1,
we obtain:

k2(x,y) = ‖x‖2 ‖y‖2
∫
|u1|2|u1 cos θ + u2 sin θ|2dµ(u)

= ‖x‖2 ‖y‖2
∫ (
|u1|4 cos2 θ + |u1|2|u2|2 sin2 θ

+ 2|u1|2Re(u∗1u2) cos θ sin θ
)

dµ(u1)dµ(u2)

By a parity argument, the third term in the integral vanishes,
and the remaining ones can be explicitly computed, yielding:

k2(x,y) = ‖x‖2 ‖y‖2 (1 + cos2 θ) = ‖x‖2 ‖y‖2 +
(
x>y

)2
Numerically, one can change the exponent of the feature map
to m ∈ R+, which, using notations of Eq. 2, becomes:

φ(x) =
1√
D
|Ux|m (6)



Theorem 2. When the exponent m is even, i.e. m = 2s,
∀s ∈ N, the dot product of feature maps of Eq. 6 tends to the
kernel k2s (for D →∞):

k2s(x,y) = ‖x‖m ‖y‖m
s∑

i=0

(s!)2
(
s

i

)2 (
x>y

)2i
‖x‖2i ‖y‖2i

(7)

Moreover, a generalization ∀m ∈ R+ can be established.

Eq. 7 is connected to the polynomial kernel [1] defined as:

(ν + x>y)p =

p∑
i=0

(
p

i

)
νp−i

(
x>y

)i
(8)

with ν ≥ 0 and p ∈ N the order of the kernel. For ν = 0 the
kernel is called homogeneous. For ν > 0 the polynomial ker-
nel consists of a sum of lower order homogeneous polynomial
kernels up to order p. It can be seen as having richer feature
vectors including all lower-order kernel features. For optical
RFs raised to the power of s ∈ N we have a sum of homoge-
neous polynomial kernels taken to even orders up to m = 2s.

Since x>y = ‖x‖ ‖y‖ cos θ, the kernel scales with
‖x‖i ‖y‖i, which is characteristic to any homogeneous poly-
nomial kernel. It is easy to extend this relation to the inhomo-
geneous polynomial kernel by appending a bias to the input
vectors, i.e. x′>y′ = ν + x>y when x′ = (

√
ν,x1, ...,xd)

>

and y′ = (
√
ν,y1, ...,yd)

>. A practical drawback of this
approach is that increasing the power of the optical RFs also
increases their variance. Thus, convergence requires higher
projection dimensions. Although high dimensional projec-
tions can be computed easily using the OPU, solving models
on top of them poses other challenges that require special
treatment [2] (e.g. Ridge Regression scales cubically with
D). Therefore, we did not include these cases in the experi-
ments in the next section and leave them for future research.

4. EXPERIMENTS

In this section, we assess the usefulness of optical RFs for
different settings and datasets. The model of our choice in
each case is Ridge Regression. OPU experiments were per-
formed remotely on the OPU prototype ”Vulcain”, running in
the LightOn Cloud with library LightOnOPU v1.0.2. Since
the current version only supports binary input data we decide
to binarize inputs for all experiments using a threshold bina-
rizer. The code of the experiments is publicly available1.

4.1. Optical random features for Fashion MNIST

We compare optical RFs (simulated as well as physical) to an
RBF Fourier Features baseline for different projection dimen-
sions D on Fashion MNIST. We use individually optimized
hyperparameters for all RFs that are found for D = 5000
using an extensive grid search on a held-out validation set.

1 https://github.com/joneswack/opu-kernel-experiments
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Fig. 2: Test error on Fashion MNIST for different RFs and projec-
tion dimensions. Horizontal lines show the test error using the true
kernel. Standard deviations for different seeds are negligibly small
and not shown in the plot. Optical RFs for m = 4 perform slightly
worse than the ones in the plot (m = 2) due to slower convergence.
We did not include them for better readability.

The same hyperparameters are also used for the precise ker-
nel limit. Fig. 2 shows that the overall classification error
decreases as D increases. The RBF and synthetic optical
RFs perform similarly well although the RBF features have a
slight gain (roughly 0.24% for D = 5000). This gain is more
noticeable when looking at the kernel limit. Using a higher
degree OPU kernel (m = 4), results can be further improved
but they are not shown due to slower convergence.

The real OPU loses around 0.6% accuracy forD = 5000,
which is due to experimental noise (vibrations, electronic
noise) and deviations from the theoretical model (finite pixel
size, camera quantization).

4.2. Transfer learning on CIFAR-10

An interesting use case for the OPU is transfer learning
for image classification. For this purpose we extract a di-
verse set of features from the CIFAR-10 image classification
dataset using three different convolutional neural networks
(ResNet34 [16], AlexNet [17] and VGG16 [18]). The net-
works were pretrained on the well-known ImageNet classifi-
cation benchmark [19]. For transfer learning, we can either
fine-tune these networks and therefore the convolutional fea-
tures to the data at hand, or we can directly apply a classifier
on them assuming that they generalize well enough to the
data. The latter case requires much less computational re-
sources while still producing considerable performance gains
over the use of the original features. This light-weight ap-
proach can be carried out on a CPU in a short amount of time
where the classification error can be improved with RFs.

We compare Optical RFs and Fourier RFs for the RBF
kernel to a simple baseline that directly works with the pro-
vided convolutional features (no RFs). Table 1 shows the test
errors achieved on CIFAR-10. Each column corresponds to



Architecture ResNet34 AlexNet VGG16
Layer L1 L2 L3 Final MP1 MP2 Final MP2 MP3 MP4 MP5 Final

Dimension d 4 096 2 048 1 024 512 576 192 9 216 8 192 4 096 2 048 512 25 088
Sim. Opt. RFs 30.4 24.7 28.9 11.6 38.1 41.9 19.6 28.2 20.5 20.7 29.8 15.2 (12.9)

Optical RFs 31.1 25.7 29.7 12.3 39.2 42.6 20.8 30.9 23.3 21.5 30.2 16.4
RBF Four. RFs 30.1 25.2 30.0 12.3 39.4 41.9 19.1 28.0 20.7 20.7 30.1 14.8 (13.0)

No RFs 31.3 26.7 33.5 14.7 44.6 48.8 19.6 27.1 21.0 22.5 34.8 13.3

Table 1: Test errors (in %) on CIFAR-10 using D = 104 RFs for each kernel (except linear). Features were extracted from intermediate
layers when using the original input size (32x32). Final convolutional layers were used with upscaled inputs (224x224). L(i) refers to the ith
ResNet34 layer and MP(i) to the ith MaxPool layer of VGG16/AlexNet. Values for the kernel limit are shown in parenthesis (last column).

convolutional features extracted from a specific layer of one
of the three networks.

Since the projection dimension D = 104 was left con-
stant throughout the experiments, it can be observed that RFs
perform particularly well compared to a linear kernel when
D � d where d is the input dimension. For the opposite case
D � d the lower dimensional projection leads to an increas-
ing test error. This effect can be observed in particular in the
last column where the test error of the RF approximation is
higher than without RFs. The contrary can be achieved with
large enough D as indicated by the values for the true kernel
in parenthesis. In general, the simulated as well as the physi-
cal optical RFs yield similar performances as the RBF Fourier
RFs on the provided convolutional data.

4.3. Projection time and energy consumption

The main advantage of the OPU compared to a traditional
CPU/GPU setup is that the OPU takes a constant time for
computing RFs of arbitrary dimension D (up to D = 106

on current hardware) for a single input. Moreover, its power
consumption stays below 30 W independently of the work-
load. Fig. 3 shows the computation time and the energy con-
sumption over time for GPU and OPU for different projection
dimensionsD. In both cases, the time and energy spending do
not include matrix building and loading. For the GPU, only
the calls to the PyTorch function torch.matmul are mea-
sured and energy consumption is the integration over time of
power values given by the command nvidia-smi.

For the OPU, the energy consumption is constant w.r.t. D
and equal to 45 Joules (30 W multiplied by 1.5 seconds). The
GPU computation time and energy consumption are mono-
tonically increasing except for an irregular energy develop-
ment between D = 45 000 and D = 56 000. This exact
irregularity was observed throughout all simulations we per-
formed and can most likely be attributed to an optimization
routine that the GPU carries out internally. The OPU is up to
7 times more energy efficient than the GPU for large random
projections. The GPU starts to use more energy than the OPU
from D = 18 000 and runs out of memory for D = 58 000.
The exact crossover points may change in future hardware
versions. The relevant point we make here is that the OPU
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Fig. 3: Time and energy spent for computing a matrix multiplication
(n,D)× (D,D). The batchsize n is 3000 (solid line) or 1000 (dot-
ted). The curves cross each other at the same D independent from
n. We verified more precisely that time and energy are linear with n
for both OPU and GPU (experiments were run on a NVIDIA P100).

has a better scalability in D with respect to computation time
and energy consumption.

Conclusion and perspectives

The increasing size of available data and the benefit of work-
ing in high-dimensional spaces led to an emerging need for
dedicated hardware. GPUs have been used with great success
to accelerate algebraic computations for kernel methods and
deep learning. Yet, they rely on finite memory, consume large
amounts of energy and are very expensive.

In contrast, the OPU is a scalable memory-less hardware
with reduced power consumption. In this paper, we showed
that optical RFs are useful in their natural form and can be
modified to yield more flexible kernels. In the future, algo-
rithms should be developed to deal with large-scale RFs, and
other classes of kernels and applications should be obtained
using optical RFs.

Acknowledgements

RO acknowledges support by grants from Région Ile-de-
France. MF acknowledges support from the AXA Research
Fund and the Agence Nationale de la Recherche (grant ANR-
18-CE46-0002). FK acknowledges support from ANR-17-
CE23-0023 and the Chaire CFM-ENS. The authors thank
LightOn for the access to the OPU and their kind support.



5. REFERENCES

[1] Bernhard Schölkopf, Alexander J Smola, Francis Bach,
et al., Learning with kernels: support vector machines,
regularization, optimization, and beyond, MIT press,
2002.

[2] Alessandro Rudi, Luigi Carratino, and Lorenzo
Rosasco, “Falkon: An optimal large scale kernel
method,” in Advances in Neural Information Process-
ing Systems, 2017, pp. 3888–3898.

[3] Andrea Caponnetto and Ernesto De Vito, “Optimal rates
for the regularized least-squares algorithm,” Founda-
tions of Computational Mathematics, vol. 7, no. 3, pp.
331–368, 2007.

[4] Alex J Smola and Bernhard Schölkopf, “Sparse greedy
matrix approximation for machine learning,” 2000.

[5] Yuchen Zhang, John Duchi, and Martin Wainwright,
“Divide and conquer kernel ridge regression,” in Con-
ference on Learning Theory, 2013, pp. 592–617.

[6] Alessandro Rudi, Raffaello Camoriano, and Lorenzo
Rosasco, “Less is more: Nyström computational reg-
ularization,” in Advances in Neural Information Pro-
cessing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds., pp. 1657–
1665. Curran Associates, Inc., 2015.

[7] Kurt Cutajar, Edwin Bonilla, Pietro Michiardi, and
Maurizio Filippone, “Random feature expansions for
deep Gaussian processes,” in ICML 2017, 34th Inter-
national Conference on Machine Learning, 6-11 Au-
gust 2017, Sydney, Australia, Sydney, AUSTRALIA, 08
2017.

[8] Ali Rahimi and Benjamin Recht, “Random features for
large-scale kernel machines,” in Advances in neural in-
formation processing systems, 2008, pp. 1177–1184.

[9] Ali Rahimi and Benjamin Recht, “Weighted sums of
random kitchen sinks: Replacing minimization with
randomization in learning,” in Advances in neural in-
formation processing systems, 2009, pp. 1313–1320.

[10] Quoc Le, Tamás Sarlós, and Alex Smola, “Fastfood-
approximating kernel expansions in loglinear time,” in
Proceedings of the international conference on machine
learning, 2013, vol. 85.

[11] A. Saade, F. Caltagirone, I. Carron, L. Daudet,
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