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Purpose: To design a multiscale descriptor capable of capturing complex local-regional
unfolding patterns to support quantification and diagnosis of Autism Spectrum Disorders
(ASD) using T1-weighted structural magnetic resonance images (MRI) with voxel size of
1× 1× 1 mm.
Methods: The proposed image descriptor uses an adapted multiscale representation, the
Curvelet transform, interpretable in terms of texture (local) and shape (regional) to char-
acterize brain regions, and a Generalized Gaussian Distribution (GGD) to reduce feature
dimensionality. In this approach, each MRI is first parcelled into 3D anatomical regions.
Each resultant region is represented by a single 2D image where slices are placed next to
each other. Each 2D image is characterized by mapping it to the Curvelet space and each
of the different Curvelet sub-bands is described by the set of GGD parameters. To assess
the discriminant power of the proposed descriptor, a classification model per brain region
was built to differentiate ASD patients from control subjects. Models were constructed with
support vector machines and evaluated using two samples from heterogeneous databases,
namely Autism Brain Imaging Data Exchange - ABIDE I (34 ASD and 34 controls, mean
age 11.46±2.03 and 11.53±1.79 years respectively, male population) and ABIDE II (42 ASD
and 41 controls, mean age 10.09±1.37 and 10.52±1.27 years respectively, male population),
for a total of 151 individuals.
Results: When the model was trained with ABIDE II sample and tested with ABIDE I on
a hold-out validation, an area under receiver operator curve (AUC) of 0.69 was computed.
When each sample was independently used under a cross-validation scheme, the estimated
AUC was 0.75± 0.02 for ABIDE I and 0.77± 0.01 for ABIDE II. This analysis determined
a set of discriminant regions widely reported in the literature as characteristic of ASD.
Conclusions: The presented image descriptor demonstrated differences at local and re-
gional level when high differences were observed in the Curvelet sub-bands. The method is
simple in conceptual terms, robust to several sources of noise and has a very low computa-
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tional cost.

Keywords: MR Quantitative imaging, Texture analysis, Computer-aided decision support
systems

I. Introduction

Autism Spectrum Disorders (ASD) are complex neuro-developmental conditions that man-

ifest during the first three years of life1. Commonly, affected children exhibit repetitive

patterns, limitations in social interaction and communication skills2,3. In 2014, an average

of 1 out of 59 children in the United States was identified as having this disorder (only at

age eight)4.

Post-mortem brain studies have shed some light on the physiopathology of this disorder.

Histochemical, autoradiographic and biochemical tests have established differences between

ASD patients and control individuals5. These tests demonstrate pathological differences

at local (cellular) and global (region or whole brain) levels, i.e., reduced neuronal size and

cell density loss in some brain regions like hippocampus6, cerebellum7, amygdala8, as well

as age related changes that produce increased gray/white matter and increased cortical

thickness as a result of dysregulated pruning9, or atypical sulcal anatomy in young children

with ASD10. In addition, other studies have described morphometric cortical abnormalities

in people with autism, specifically shape changes at the level of the corpus callosum, the

central, intraparietal and frontal medial sulci10,11. Unfortunately, these findings have no

relevance in clinical practice and are completely ignored in radiological examinations, even

though Magnetic Resonance Imaging (MRI) has been reported as the most used technique

to understand ASD1. The main bottleneck consists in the lack of quantitative features that

can provide evidence of the state of the disease.

Different studies have attempted to determine brain changes mainly using morphome-

try12,13,14,15 and texture feature analysis16,17. Morphometry is applied under the hypothesis

that there exists a significant variation in terms of shape, contour and volume of certain

brain regions12,14,15. For instance, Sato et al.15 proposed a voxel-based morphometry strat-

egy that revealed reduced gray matter volume in a particular set of regions in adults with

ASD, most of these regions constituting the social brain network. Interestingly, classification
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performance was better when using this set of regions. Similarly, Retico et al.14 computed

morphometric features such as volume, curvature, regional width and depth to perform a

classification task for differentiating between ASD and control subjects using Support Vector

Machines (SVM), while Giulianoa et al.12 used five surface-based features to morphologically

describe brain regions. Likewise, texture features have been commonly used to describe brain

regions by considering the variability of gray and white matter between ASD and control

individuals16,17. As an example, Chaddad et al.16 described brain regions by extracting mul-

tiscale texture features (entropy, mean and standard deviation) using Laplacian of Gaussian

(LoG) filters, and performed a statistical analysis to identify the regions that show higher

differences between ASD patients and control subjects.

The main contributions of this work are:

• Use of Curvelet transform to characterize regions with Generalized Gaussian Distribu-

tion to reduce feature dimensionality.

• Quantification of local-regional changes in anatomic brain regions by a 2D multislice

image, aiming to capture relationships of a region in the Curvelet space that describe

atypical brain folding.

• Evaluation in heterogeneous datasets which proves the method can be generalized.

Recent evidence has demonstrated ASD patients may exhibit atypical brain folding pat-

terns as an early manifestation of the altered neurodevelopmental process10. This resultant

cortex wrapping should be thought of as not only a change of the volumetric shape but

rather as an alteration of the topological regional relationships. Highlighting such patterns

is not an evident task since differences need not necessarily be determined at the level of

first-order relationships (typical 3D analysis). The approach herein proposed is basically a

2D analysis by mapping the set of 2D slices of a 3D region to the same plane (a 2D multislice

image) and capturing their different relationships by a general transformation. Therefore,

this investigation introduces a multiscale descriptor that characterizes 3D brain regions and

highlights those ones with differences between ASD patients and control subjects in MRI

studies. Characterization of a brain region is performed by applying the Curvelet trans-

form to the 2D multislice image, the base of the multiscale analysis, where information is

frequency-decomposed into a set of sub-bands along different scales and orientations. The
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coefficient distribution of each Curvelet sub-band is approximated by a parametric function,

characterizing any sub-band with only three parameters, an important dimensionality reduc-

tion. The proposed approach was validated by automatically classifying ASD and control

children populations belonging to heterogeneous datasets from the Autism Brain Imaging

Data Exchange (ABIDE)18,19, which could help towards generalization.

II. Materials and Methods

The main goal of this work was to devise an image descriptor that captures local and regional

brain changes, aiming thereby to estimate both regional shape alterations and possible cel-

lularity losses7,8,20,21. The resultant descriptor was validated by a conventional classification

task, which tests the representation aptness to discriminate between control and ASD cases.

II.A. Data

Data for this investigation are part of the Autism Brain Imaging Data Exchange (ABIDE)18,

an open project including cases collected from 17 institutions, with patients aged between

5 and 64 years: a total of 1112 cases from ABIDE I18 and 1114 cases from ABIDE II19.

This study only considered cases corresponding to children between 6 and 13 years, and the

purpose of this partition is to analyze and identify pathologic patterns (from ASD children

population) that differ from the normal brain growth (represented by control population),

and therefore allows early diagnosis. This study includes cases with structural T1-MRI scans

with a voxel size of 1× 1× 1 mm.

The ABIDE I sample consists of 34 ASD patients and 34 control subjects between 5

and 13 years (mean age 11.46 ± 2.03 and 11.53 ± 1.79 years respectively). In addition,

all the children in this sample correspond to male individuals. These cases were collected

from six different centers (see Table 1). The use of data from multiple centers implies that

the available set of images is different in terms of number of slices per volume, inter-slice

distance, image resolution and scanner protocol. The ABIDE II sample is composed of 42

ASD patients and 41 control subjects with ages between 7 and 12 years (mean age 10.09±1.37

and 10.52± 1.27 years respectively). In addition, all children in this sample also correspond

to male individuals collected from four different centers (see Table 1). Note two of the
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four centers for the ABIDE II sample are different from the ones in the ABIDE I sample.

In addition, the population distribution is quite different. Finally, Table 1 also shows the

scanner model used in each of the centers where the structural magnetic resonance images

were acquired, demonstrating data heterogeneity.

II.B. Methods

The pipeline of the proposed strategy is shown in Figure 1. The principle behind this char-

acterization strategy is that differences between local brain patterns should be observable

among different scales. Overall, pre-processing aims to normalize image intensities, remove

the skull and segment each case into a set of brain regions. In a second phase, each seg-

mented region (a volume) is mapped to a 2D image by orderly placing upon it each of the

volume slices. This 2D image with the collection of slices is analyzed using the Curvelet

transform, and the coefficient distribution per Curvelet sub-band is approximated by a Gen-

eralized Gaussian Distribution. Therefore, each sub-band ends up by being represented by

three parameters. Finally, to evaluate the ability of the constructed multiscale descriptor to

differentiate the two classes, a conventional SVM performs a binary classification per region

and those regions related with ASD are identified.

II.B.1. Preprocessing

The preprocessing phase is carried out per brain magnetic resonance imaging using FSL

software and involves the following steps: a) intensity normalisation (FSLMATHS tool22), b)

skull removal (Brain Extraction Tool (BET)23), c) rigid-elastic registration from the MNI152

template to each brain in the dataset (FLIRT-FNIRT tools24,25), and d) the Harvard Oxford

atlas26 is registered to each brain using the previously computed elastic transformation

matrix, and thereby providing a segmentation mask with 117 regions (96 cortical and 21

sub-cortical).

II.B.2. Multiscale descriptor

The construction of the multiscale descriptor per region is illustrated in Figure 1.B and

herein explained.
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Volume representation: For each segmented brain region, the 3D image is mapped to

a 2D mosaic, called the 2D multislice image. This new image corresponds to the 3D region

mapped to a 2D plane, as illustrated in Figure 1.B.1, independently of the number of slices

or the size of the region. The obtained mosaic is then zero-padded to fit a squared shape,

necessary for the Curvelet characterization. This representation captures main topological

relationships of a region in the Curvelet space and can describe structural changes like

atypical brain folding without losing of the relevant 3D information. From this point of

view, features in this space are not necessarily correlated with measures like surface area,

thickness or folding27,28, since the object basic relationships in the Curvelet space do not have

the usual Euclidean geometric meaning. Several studies have reported differences with these

measures, but the approach herein presented rather attempts to capture subtle anatomic

changes manifested by loss of the global shape which are hardly detected as size or volume

alterations. Note each 2D multislice image size is variable to conserve original information

and depends on: i) the particular brain region of analysis, ii) the number of slices such region

contains, and iii) the image resolution provided by the scanner.

Multiscale Analysis: The multiscale analysis is performed by transforming the 2D mul-

tislice image to the Curvelet space (as shown in Figure 1.B.2), a transformation introduced

by its well demonstrated aptness to approximate textures and complex geometrical struc-

tures29. The Curvelet transformation is a multiscale geometric mapping that preserves the

same good decomposition advantages reported with the Wavelet transform30, but introduc-

ing a compact representation of curved geometric structures. In fact, Curvelet functions

are known for giving sparse representations of smooth objects with discontinuities along

curves29. In this work, the Curvelet representation allows to describe brain regions in terms

of their local/regional differences between ASD patients and control subjects.

A Curvelet frequency space is defined by the convolution between radial R(ω) and

angular Φ(ω) windows, being R(ω) the scale and Φ(ω) the phase along the radial direction31.

The object proportion between different scales is ensured by the special scaling law width ≈
length2, i.e., anisotropy increases as long as scales decrease. In terms of a dyadic spatial

decomposition, a Curvelet is characterized by two levels of location: a coarse location in

the usual dyadic spatial square and a finer one which anisotropically places the Curvelet

within such coarse dyadic square. The term micro-location refers to this finer placement.
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In addition, the anisotropy property rises two relations, the number of directions and the

number of micro-locations are both proportional to the inverse of the scale. This anisotropic

characterization of curves was the main motivation to select this representation since we seek

to capture distortions of the regional and local shapes. In addition, the proportionality of

number of micro-locations with respect to the scale, results crucial to characterize particular

texture patterns which are herein supposed to describe tissular arrangements that correlate

with the neuropathology. In the Curvelet frequency representation, the scaling law amounts

to refine directions every two scales, and the wedge (sub-band) coefficients represent the

parabolic relationship for a given scale

This work characterizes brain regions by using the Fast Discrete Curvelet Transform

(FDCT), configured by defining the optimal number of scales and angles to perform the

experiments. Since the scale is a resolution-dependent parameter and the smallest resolution

of the 2D mustislice images in the dataset is 96× 96 pixels, the maximum number of scales

to be used is 4. Regarding the number of angles, 16 has been reported to achieve the

best results for this particular representation32. Therefore, the FDCT representation is split

along 4 scales in 16 different angles, i.e., due to the dyadic decomposition a set of 81 Curvelet

sub-bands are provided.

Dimensionality Reduction: Each sub-band (wedge) contains a set of coefficients that

describes a specific range of frequencies at a particular scale and a determined orientation.

Note that the number of coefficients per sub-band varies according to: i) size of the 2D multi-

slice image and ii) the particular scale and orientation of analysis. Therefore, the Generalized

Gaussian Distribution (GGD) is used in this investigation to approximate each coefficient

distribution with three parameters, achieving an important dimensionality reduction as well

as unifying the size of the feature vector that describes each brain region. This parametric

approximation meets each set of coefficients as either a Laplacian, normal or flat distribu-

tions (see Figure 2). This distribution has demonstrated to give accurate descriptions of

the Wavelet or Curvelet coefficients for a given sub-band30,33. In a GGD, µ stands for the

mean of the distribution, β models the decay rate from the peak, ρ models the peak width

(like the standard deviation σ in a Gaussian distribution) and Γ corresponds to the gamma

function34. Therefore, the GGD is used in this work to approximate the set of coefficients

per Curvelet sub-band by 3 parameters (as shown in Figure 1.B.3). Since 81 sub-bands are
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computed, a feature vector of 243 components characterizes each brain region.

II.B.3. Classification

Support Vector Machines (SVM), a discriminant binary classifier35, is used to build a model

for each brain region. SVM provides a mapping of each element onto a space, which may

establish a linear or non-linear boundary between two classes, as wide as possible. The

underlying strategy, the kernel trick, consists in mapping data by a kernel function. A

kernel is a function k : X × X → R associated to a mapping 1, . . . , φ : X → F such that

∀ x, y ∈ X, k(x, y) = 〈ψ1(x), ψ1(y)〉F , i.e., k calculates the dot product in F . Intuitively, a

kernel may be thought of as a function that measures similarity between two objects of the

input space. In this work, a binary SVM model per region is trained using the a matrix of

f×n size, where f corresponds to 243 features computed in the previous phase (the proposed

multiscale descriptor) and n stands for the total of cases (ASD patients and control subjects).

Each region is independently analyzed to quantify how discriminative is to separate the two

classes based on the proposed multiscale representation. The SVM is configured using two

parameters, box-constraint and sigma. The box-constraint controls the penalty imposed to

observations with large residuals while the sigma parameter defines how linear is the SVM

decision boundary. For setting SVM parameters, a Bayesian optimization36 is run over to

find the best possible values for sigma and box-constraint. In addition, SVM models are

tested with two different kernels, specifically a linear function and a radial basis function

(RBF).

II.C. Evaluation

The set of experiments are hereafter described. The aim of these experiments is not to

provide a final classification per subject but rather to find out a set of anatomical brain

regions with pathological patterns, in terms of texture features, that describe and quantify

this disorder.

Experiment 1: The aim of this experiment is to evaluate the ability of the proposed

multiscale descriptor to differentiate ASD patients from control subjects with a data set never

seen by the trained model. For so doing, ABIDE II sample (83 cases) is used for training
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the classification model which is then tested with the sample of ABIDE I (68 cases) under

a hold-one-out validation scheme (cases are individually tested). Classification performance

is assessed by computing the area under the receiver operating characteristic curve (AUC),

since most of state-of-the-art methods report such metric.

Experiment 2: The aim of this experiment is to identify the most discriminant regions in

the classification task (ASD patients vs. control subjects), defined as the ability of a region

to separate both classes. For each of the 117 regions, 10 iterations of 10-fold (one fold is

held-out for testing) cross validation are carried out. Then, for each of the ten iterations,

the 117 regions are sorted out by their AUCs, following a descendent order. The first ten

regions are chosen for the 10 iterations: a region is then discriminant if this is present at

least in 7 out of the 10 iterations. Test 2.a is performed for identifying discriminant regions

using ABIDE I sample, while Test 2.b does the same using ABIDE II sample.

Experiment 3: The aim of this experiment is to illustrate the ability of the proposed

representation to highlight differences between ASD patients and control subjects under

certain conditions. Test 3.a seeks to visualize global shape differences or local textural

patterns by using information from one sub-band (Curvelet coefficients), and Test 3.b seeks

illustrates how the Curvelet sub-band distribution is independent of the particular age or

scanner. For this evaluation, the highest scoring regions from Experiment 2 are selected as

well as the associated Curvelet sub-bands showing significant differences between the two

groups.

Experiment 4: The aim of this experiment is to compare the proposed representation

with three classic measures (normalized volume, thickness and curvature), which have been

broadly used for identifying brain regions that exhibit differences between ASD and control

individuals27,28. Test 4.a presents classification performance using separately four descriptors

(the proposed one and each classic measure), and Test 4.b computes and illustrates the

correlation between the Curvelet descriptor and the three classic measures.
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III. Results

III.A. Experiment 1

Figure 3 shows the classification results when the model is trained with the ABIDE II sample

and tested with the ABIDE I under a hold-one-out validation scheme (cases individually

tested), obtaining AUC scores of 0.69 (right parahippocampal gyrus) and 0.65 (left inferior

frontal gyrus) with an RBF and a linear kernel, respectively. In addition, sensitivity of

0.77 and specificity of 0.59 were obtained when using an RBF kernel. The RBF kernel

model outperformed the linear one. In addition, regions with the highest AUC scores are

illustrated within each brain. Interestingly, an AUC score of 0.69 demonstrates this model

is quite robust to different sources of variability since ABIDE is a non-homogeneous data

set, i.e., this is multicentric data collection.

III.B. Experiment 2

Test 2.a: Figure 4 illustrates the resultant discriminant brain regions when using the

ABIDE I sample: the upper two brains illustrate regions obtained with an RBF kernel, while

the bottom ones show regions obtained with a linear kernel. This test provided regions widely

reported as related with ASD, like caudate, inferior frontal gyrus, temporal occipital fusiform

cortex and angular gyrus37,38,39, the three latter regions also showed up in Experiment 1.

Interestingly, the set of discriminant regions and estimated AUC scores are quite similar

independently of the particular used kernel, i.e., the proposed descriptor yields an average

AUC of 0.75± 0.03 (95% confidence interval: 0.74− 0.78) for the right supramarginal gyrus

(anterior division) with an RBF kernel, and an average AUC of 0.75± 0.02 (95% confidence

interval: 0.74 − 0.77) with a linear kernel for the same region, as shown in Figure 4. In

addition, sensitivity/specificity scores of 0.68/0.71 and 0.76/0.82 were obtained for this top

region when using an RBF and a linear kernel, respectively.

Test 2.b: Similarly, Figure 5 shows the resultant discriminant regions when using the

ABIDE II sample. The brains represent results obtained when the SVM model is trained with

an RBF or a linear kernel. Some of the resultant regions have been reported as being related

to ASD, such as superior temporal gyrus and temporal fusiform cortex40,41, the latter also
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showed up in Experiment 1. AUC scores and the associated standard deviations are shown at

the bottom of the figure. Note the proposed multiscale descriptor provided an average AUC

of 0.77 ± 0.04 (95% confidence interval: 0.75 − 0.80) for the left superior temporal gyrus

(anterior division) when using an RBF kernel, and 0.77 ± 0.04 (95% confidence interval:

0.74 − 0.80) for the same region with a linear kernel, as shown in Figure 5. In addition,

sensitivity/specificity scores of 0.73/0.80 and 0.74/0.71 were obtained for this top region

when using an RBF and a linear kernel, respectively.

III.C. Experiment 3

Test 3.a: Figure 6 shows the visual differences when using two brain regions, the right

supramarginal gyrus (A) and the left superior temporal gyrus (B), specifically using a sub-

band located at the 4th scale and 9π
8

of orientation. For each block, the first row corresponds

to ASD patients while the second one stands for control subjects. The first two columns

illustrate the selected region and the third column shows the reconstructed region volume

after using only the relevant Curvelet sub-band. The Curvelet is by nature a multiscale

representation, and therefore it naturally separates spatial information at different levels of

resolution or scales. The aim of this analysis is then to highlight differences at several scale

levels and characterize this disorder in terms of global shape differences or local textural

patterns. The purpose of this figure is not an interpretation of the differences, but rather an

illustration of the larger visual differences between the two reconstructed versions of analysis

in the third column than between the two figures in the second column.

Test 3.b: Figure 7 illustrates the spread parameter for 3 Curvelet sub-bands (the ones with

p−value < 0.01) from the left superior temporal gyrus. In this figure, each column represents

one of the three sub-bands (the standard deviation of the GGD) as follows: first row displays

the two groups, ASD (green) and control (orange) subjects, while second and third rows

represents the same groups (same color convention) but distributed by age and scanner

(center), respectively. This test demonstrates the same curved characteristic is shifted for

the two groups, in this case subtle shape differences. Specifically, first and second rows

demonstrate separability between ASD and control individuals independently of their age

following a particular trend, i.e., ASD overall show lower values w.r.t. controls. Regarding
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scanner, similar values are observed between the group of controls, yet the third and fourth

centers report only two and one individuals, respectively. This analysis was extended by

performing an ANOVA test, restricted by the differences in the number of subjects among

centers, i.e., three rounds of ANOVA evaluations were performed between the two centers

with at least ten individuals as follows: 11 cases from GU vs three random sets of 11 cases

from KKI. All computed p-values demonstrate there are no significant differences between

scanners: p-values were higher than 0.05 (0.98, 0.49 and 0.99).

III.D. Experiment 4

Test 4.a: Normalized volume was computed with the same parcellation used in the pro-

posed approach, the Harvard-Oxford atlas (HO)26, while thickness and curvature were com-

puted with a different parcellation, the Desikan Killiany atlas (DKT)42 since FreeSurfer43,

a widely used software, has already implemented a standard pipeline for computing these

measures. Because of the use of two atlas, an approximated relation between them was

established. A SVM model was separately trained per descriptor. Table 2 shows the com-

parison between the proposed Curvelet approach and each computed measure. In this table,

first column stands for the relevant regions with HO atlas (obtained in Test 2.b) while the

fourth one stands for the approximated regions in the DKT atlas. The remaining columns

presents AUC scores when using: Curvelet approach (second), normalized volume (third),

thickness (fifth), and curvature (sixth). As expected, the classification performance between

the Curvelet approach and each classic measure was quite different, suggesting the proposed

representation captures different brain features and patterns, probably local-global discon-

tinuities of the curves outlining the region, not only geometric global estimations like the

curvature or the thickness.

Test 4.b: All the Curvelet sub-bands from the left superior temporal gyrus were analyzed

by computing the Pearson correlation coefficient between each sub-band and each classic

measure. Figure 8 illustrates these results for 3 Curvelet sub-bands (p < 0.01, t-test), evi-

dencing nonlinear correlation between the Curvelet representation and each of the traditional

measures. This analysis confirmed the Curvelet approach and the computed measures are

describing brain regions in different ways, i.e., while the normalized volume is capturing
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differences in terms of the region size without any information about shape or the curva-

ture characterizes a region by approximating a global folding of the surface, the Curvelet

approach instead is describing local and regional curves and their edges and discontinuities

at different neighboring levels.

III.E. Computational performance

All the experiments were implemented in MATLAB R18a (Mathworks Inc.), running on a

Centos Server with 2 Intel Xeon CPU at 2.2 GHz and 256 GB of RAM. Computational

performance was separately assessed by the two processes required to compute the proposed

descriptor, namely the multiscale analysis and the dimensionality reduction. Brain regions

were described using the 2D Fast Discrete Curvelet Transform (FDCT) implementation

(approximately 195.7 ms per case) while the dimensionality reduction was performed using

the Generalized Gaussian Distribution (about 52 ms per case). Therefore, computational

time for running the proposed descriptor per case is approximately 0, 25 s, a quite low

computational cost.

IV. Discussion

This work introduces a multiscale descriptor that characterizes anatomical brain regions in

terms of their very basic geometric properties and highlights those ones with differences

between ASD and control subjects. This descriptor has shown to be useful in terms of:

1. It uses the Curvelet transform to characterize brain regions and the Generalized Gaus-

sian Distribution to reduce dimensionality.

2. It quantifies local-regional changes in brain regions by using a 2D multislice image,

aiming to capture local-regional edges and other singularities along brain curves in the

Curvelet space and hence it sparsely describes atypical brain folding.

3. It is evaluated in heterogeneous sets of data which proves generalization.

In addition, at analyzing a 3D region by placing together each of the 3D slices in a

plane, regional geometric 3D dependencies are characterized and quantified. Most of these
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changes are usually masked in pathology conditions by conventional 3D measures like the

volume or the equivalent curvature. This approach instead captures such relationships and

express them in terms of local-regional geometric features which in addition are multiscale

by nature. The rest of the discussion is organized in two parts: the relation between the

identified relevant regions and the ASD, and a comparison between the obtained results and

state-of-the-art strategies (including deep learning approaches).

The proposed Curvelet approach identified a set of relevant regions, most of them widely

reported in the literature as relevant in ASD. Some studies have suggested Broca’s and

Wernicke’s areas are commonly affected in ASD individuals, i.e., brain regions involved in

producing and understanding language44,45. Parcelled regions within the Broca’s area are

revealed by the proposed descriptor, they are the parahippocampal gyrus, the inferior frontal

gyrus, the fusiform cortex and the superior temporal gyrus, while those ones contained in the

Wernicke’s area are also identified with the Curvelet descriptor, they are the inferior frontal

gyrus, the supramarginal gyrus and the angular gyrus. In addition, the proposed approach

also distinguished the juxtapositional lobule cortex region, a part of the supplementary motor

area, which has been reported to correlate with ASD46.

Table 3 compares the results obtained using the proposed Curvelet approach against

state-of-the-art methods (studies using ABIDE I). In this table, each row shows results for

a particular method as follows: the first part (columns 2-4) presents information about the

dataset and the last part (column 5) shows the computed AUC score per method. The

proposed approach demonstrates to be competitive with state-of-the-art methods, yet this

comparison is not completely fair since the validation sample is in general different. In

consequence, for comparison purposes, most approaches took different cases, i.e., some of

them built homogeneous samples (containing cases from a single center, a reduced number

of centers or using the same scanner) or non-homogeneous samples (when the capturing

conditions or centers are otherwise), being the latter our case.

Regarding homogeneous datasets, Retico et al.14 collected a number of cases with their

own scanner and characterized ASD using surface-based features, achieving AUC scores of

0.74 (male) and 0.68 (female), not shown in Table 3 since ABIDE is not used. Wang et al.17

built a dataset by selecting subjects from a single center of ABIDE I (the NYU Langone Med-

ical Center) and used a canonical correlation analysis over gray and white matter, obtaining
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the best reported result, an AUC of 0.80±0.02. Sato et al.15 collected samples captured with

the same scanner technology (Siemens 3T TimTrio). In this study, voxel-based morphometry

methods were used for characterization and two classification tests were performed: using the

whole brain and per region. The first test provided sensitivity of 0.58 and specificity of 0.72,

while the second one reported sensitivity of 0.81 and specificity of 0.81 (using a set of regions

reported to be part of the Social Network), not shown in Table 3 since ABIDE is not used.

The task performed by these investigations is certainly much less difficult than ours since

they decreased some variability sources yet the herein obtained classification performance

is competitive with respect to the strategies aforementioned. Moreover, an additional test

was performed using the proposed multiscale descriptor and a small set of data from ABIDE

II (24 cases from a single center, the Kennedy Krieger Institute - KKI, 12 ASD patients

and 12 control subjects) to carry out the binary classification under a 3-fold cross validation

scheme, obtaining a maximum AUC of 0.88. This expected result was reached under similar

experimentation conditions to whom have reported similar figures and, although under such

restricted setup classification results do improve, such model may be hardly generalizable.

In terms of non-homogeneous datasets, Katuwal et al.13 assessed a morphometry-based

method by using an heterogeneous dataset, exhibiting low performance, an AUC of 0.60.

Katuwal et al.47 proposed a method that correlates morphometry features and patient data

(e.g. age and verbal intelligence quotient), obtaining an AUC of 0.68. Interestingly, these

works provide evidence about the influence of using heterogeneous dataset (high data vari-

ability). The proposed strategy can be included within this category since it was assessed

using heterogeneous children samples from ABIDE, providing AUC scores of 0.75 and 0.77

for ABIDE I and II respectively, and 0.69 when training with ABIDE II and testing with

ABIDE I. Following the same approach of using non-homogeneous data, a final test was

performed by combining ABIDE I and ABIDE II samples into a single one and carrying

out a 10-fold cross validation, obtaining an AUC of 0.75 and a set of relevant regions (most

of them exactly the same described in Experiments 1 and 2). These results demonstrated

the proposed approach is competitive w.r.t. baseline methods when using non-homogeneous

datasets.

This last part of the discussion is devoted to the use of deep learning strategies, re-

gardless of whether it is evaluated with homogeneous or non-homogeneous data. Note the

following studies use other information sources and the T1-MRI. Parisot et al.48 used a
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Graph Convolutional Network framework to detect anomalies associated to ASD by combin-

ing MRI and phenotypic data, reporting an AUC of 0.75. Akhavan et al.49 trained a deep

belief network with structural and functional MRI data of 185 individuals (between 5 to 10

years) from ABIDE, obtaining an accuracy of 0.65 (not shown in Table 3 since AUC score is

not reported). Li et al.50 used a deep transfer learning neural network with functional MRI

data from 4 centers of ABIDE, obtaining a maximum AUC of 0.74. These studies basically

demonstrated data availability (e.g. functional MRI, phenotypic data) plays a crucial role for

ASD characterization since rather than a disease, this set of symptoms and signs is consid-

ered a disorder with a huge variability. The present analysis is nevertheless focused only in

structural images, while most studies have mainly used brain representations from selected

regions of interest (e.g. brain parcellations defined by anatomical atlases built by experts) to

characterize the disease. Some deep learning approaches have aimed to find out anatomical

landmarks to reduce the variability introduced by such particular brain parcellations51,52.

Yet this might help to improve the automatic classification, its utility might be limited since

these landmarks could hardly correlate with a functional meaning that helps out clinicians

to improve their disease understanding and therefore patient management.

V. Conclusions

This paper introduced a multiscale descriptor that uses a 2D representation and the Curvelet

transform to characterize brain regions and identify those ones with differences between

groups which ended up in the present investigation by being widely reported in the literature

as characteristic of ASD, a side effect that may facilitate any ASD quantification. This work

demonstrated the presented multiscale descriptor highlights different features and patterns

when comparing with classic measures, probably local-global edges and discontinuities of

spatial curves within the region. In addition, it also demonstrated to be competitive with

respect to state-of-the-art strategies, including those based on the deep learning, evaluated

with heterogeneous databases containing magnetic resonance images with differences in the

number of slices per volume, in the inter-slice distance, in the image resolution and in the

scanner protocol, i.e., robust to inter-center variability. Finally, the multiscale descriptor

is simple in conceptual terms and shows a low computational cost when characterizing a

MRI scan, approximately a quarter of a second. As a future work, a complete pipeline that
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allows to perform a subject-wise classification is planned, as well as the inclusion of other

sources of information to characterize ASD like neuropsychological tests, phenotypic data,

and functional MRI examinations.
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anomaĺıas estructurales en trastornos del espectro autista a partir de imágenes de RM”,
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List of Figure legends:

• Figure 1. The proposed strategy consists in three phases. In (A) each case is pre-

processed to normalize image intensities, remove the skull and segment the brain into a

set of anatomical regions. In (B) the multiscale descriptor is computed by transforming

each segmented region into a 2D multislice image, applying a multiscale analysis with

the Curvelet transform and approximating each Curvelet sub-band coefficient distri-

bution by a Generalized Gaussian Distribution to reduce dimensionality. Finally in

(C) a conventional classification is performed per region to assess the robustness of the

feature descriptor in differentiating ASD patients from control subjects.

• Figure 2. Description of a brain region given the 2D multislice image representation.

From top to bottom, the mosaic (2D multiscale image) is taken as an input for comput-

ing the Curvelet transform, whose coefficients are displayed at the center panel, and

at the bottom, histograms of three sub-bands are shown as well as their distribution

estimations.

• Figure 3. Classification results when the model is trained using the ABIDE II sample

and tested using the ABIDE I. At the top, each brain illustrates regions with the

highest AUC scores obtained with an RBF and a linear kernel, respectively. At the

bottom, the corresponding AUC scores are presented with the color code associated

to each brain region. Abbreviations: right (R), left (L), cortex (C), anterior division

(AD), posterior division (PD), pars triangularis (PT).

• Figure 4. Discriminant regions when evaluating the proposed multiscale descriptor

with the ABIDE I sample: the upper two brains stand for an RBF kernel while the

bottom ones represent a linear kernel. The corresponding AUC scores and the associ-

ated standard deviations are displayed in the legend. The color code associated to the

set of relevant regions is also displayed. Abbreviations: right (R), left (L), cortex (C),

temporal (T), anterior division (AD), pars triangularis (PT).

• Figure 5. Discriminant regions when evaluating the proposed approach with the

ABIDE II sample: the same set of brain region was obtained using an RBF or a linear

kernel. Color code is in this case different since the identified regions are not exactly

the same as the ones resulting when evaluating with the ABIDE I sample. Notice just
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one discriminant sub-cortical region was obtained. Abbreviations: right (R), left (L),

cortex (C), anterior division (AD), posterior division (PD).

• Figure 6. A: the right supramarginal gyrus (anterior division) while B: the left supe-

rior temporal gyrus (anterior division). For each block, first two columns illustrate the

original volume of the selected region and the third column shows the reconstructed

region volume after using a particular sub-band. Each volume represents a subject of

a particular class, i.e., ASD patients (orange) or control subjects (blue).

• Figure 7. Curvelet-based feature analysis. Each column represents a Curvelet sub-

band, while the rows stand for: control and autism groups (first), the control and

autism groups distributed by age ranges (second), and the control and autism groups

distributed by scanner/center (third). Green color corresponds to autism spectrum

disorder patients (ASD) while orange corresponds to controls subjects (CNT).

• Figure 8. Relationship between three Curvelet sub-bands (each column) and classical

measures like normalized volume (first row), thickness (second row) and curvature

(third row).

• Table 1. Data description: ABIDE I and II samples.

• Table 2. From left to right, relevant regions with the HO atlas obtained with Curvelet

approach (first), AUC scores when using the Curvelet approach (second) and the nor-

malized volume (third), approximated regions from the DKT atlas that correlate with

the HO atlas (forth), AUC scores when using the thickness (fifth) and the curvature

(sixth). Abbreviations: left (L), right (R), gyrus (G), cortex (C).

• Table 3. Comparison between results obtained with the proposed approach and state

of the art methods assessed with ABIDE dataset. Abbreviations: control (CRT),

autism spectrum disorders (ASD), area under the receiver operator curve (AUC).
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Figure 1: The proposed strategy consists in three phases. In (A) each
case is pre-processed to normalize image intensities, remove the skull
and segment the brain into a set of anatomical regions. In (B) the
multiscale descriptor is computed by transforming each segmented re-
gion into a 2D multislice image, applying a multiscale analysis with
the Curvelet transform and approximating each Curvelet sub-band co-
efficient distribution by a Generalized Gaussian Distribution to reduce
dimensionality. Finally in (C) a conventional classification is performed
per region to assess the robustness of the feature descriptor in differ-
entiating ASD patients from control subjects.

Table 1: Data description: ABIDE I and II samples

Site
ABIDE I ABIDE II Scanner

Tech.ASD CNT Tot. ASD CNT Tot.

Max
Mun

8 5 13
Siemens
Magnetom
Verio

Olin 2 2 4
Siemens
Magnetom
Allegra

SDSU 5 6 11 10 1 11
GE 3T
MR750

Trinity 6 6 12
Philips 3T
Achieva

Yale 13 14 27
Siemens
Magnetom
Trio

KKI 0 1 1 12 27 39
Philips 3T
Achieva

GU 17 11 28
Siemens
3T Trio

UCD 3 2 5
Siemens
3T Trio

Total 34 34 68 42 41 83
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Figure 2: Description of a brain region given the 2D multislice image
representation. From top to bottom, the mosaic (2D multiscale image)
is taken as an input for computing the Curvelet transform, whose coeffi-
cients are displayed at the center panel, and at the bottom, histograms
of three sub-bands are shown as well as their distribution estimations.

Last edited Date : October 30, 2019

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Characterization of ASD brain changes: Printed October 30, 2019 page 26

Proposed: RBF Kernel

01 R. Parahippocampal Gyrus (PD)

02 L. Inferior Frontal Gyrus (PT)

03 R. Temporal Occipital Fusiform C.

04 L. Middle Temporal Gyrus (AD)

05 R. Central Opercular C.

06 R. Occipital Fusiform Gyrus

07 R. Inferior Temporal Gyrus (PD)

08 R. Occipital Pole

09 R. Angular Gyrus

0.69

0.67

0.67

0.66

0.66

0.63

0.63

0.63

0.62

0.59

0.65

0.60

0.53

0.64

0.63

0.53

0.62

0.61

Color Legend AUC
RBF Linear

Cortical Area

08

02

03
04

05

06
07

08

09

Proposed: Linear Kernel
Cortical Area

02

02

05

06

09

08

Figure 3: Classification results when the model is trained using the
ABIDE II sample and tested using the ABIDE I. At the top, each brain
illustrates regions with the highest AUC scores obtained with an RBF
and a linear kernel, respectively. At the bottom, the corresponding
AUC scores are presented with the color code associated to each brain
region. Abbreviations: right (R), left (L), cortex (C), anterior division
(AD), posterior division (PD), pars triangularis (PT).
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Figure 4: Discriminant regions when evaluating the proposed multi-
scale descriptor with the ABIDE I sample: the upper two brains stand
for an RBF kernel while the bottom ones represent a linear kernel. The
corresponding AUC scores and the associated standard deviations are
displayed in the legend. The color code associated to the set of rele-
vant regions is also displayed. Abbreviations: right (R), left (L), cortex
(C), temporal (T), anterior division (AD), pars triangularis (PT).
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Figure 5: Discriminant regions when evaluating the proposed approach
with the ABIDE II sample: the same set of brain region was obtained
using an RBF or a linear kernel. Color code is in this case different since
the identified regions are not exactly the same as the ones resulting
when evaluating with the ABIDE I sample. Notice just one discriminant
sub-cortical region was obtained. Abbreviations: right (R), left (L),
cortex (C), anterior division (AD), posterior division (PD).
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Figure 6: A: the right supramarginal gyrus (anterior division) while B:
the left superior temporal gyrus (anterior division). For each block, first
two columns illustrate the original volume of the selected region and
the third column shows the reconstructed region volume after using a
particular sub-band. Each volume represents a subject of a particular
class, i.e., ASD patients (orange) or control subjects (blue).
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Figure 7: Curvelet-based feature analysis. Each column represents a
Curvelet sub-band, while the rows stand for: control and autism groups
(first), the control and autism groups distributed by age ranges (sec-
ond), and the control and autism groups distributed by scanner/center
(third). Green color corresponds to autism spectrum disorder patients
(ASD) while orange corresponds to controls subjects (CNT).
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Figure 8: Relationship between three Curvelet sub-bands (each col-
umn) and classical measures like normalized volume (first row), thick-
ness (second row) and curvature (third row).

Last edited Date : October 30, 2019

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Characterization of ASD brain changes: Printed October 30, 2019 page 32

Table 2: From left to right, relevant regions with the Harvard Oxford (HO) atlas obtained
with Curvelet approach (first), AUC scores when using the Curvelet approach (second) and
the normalized volume (third), approximated regions from the Desikan Killiany (DKT) atlas
that correlate with the HO atlas (forth), AUC scores when using the thickness (fifth) and
the curvature (sixth). Abbreviations: proposed strategy (Prop), normalize volume (Vol),
thickness (Thick), curvature (Curv), left (L), right (R), gyrus (G), cortex (C).

Regions

HO Atlas

AUC

Prop

AUC

Vol

Regions

DKT Atlas

AUC

Thick

AUC

Curv

L. Superior

Temporal G.
0.77 0.61

L. Superior

Temporal
0.51 0.55

L. Supra

calcarine C.
0.75 0.51

L. Peri

calcarine
0.65 0.49

L. Middle

Temporal G.
0.71 0.52

L. Middle

Temporal
0.53 0.66

R. Temporal

Fusiform C.
0.71 0.49 R. Fusiform 0.34 0.55

L. Inferior

Temporal G.
0.67 0.56

L. Inferior

Temporal
0.43 0.67

L. Precu-

neous C.
0.67 0.56 L. Precuneus 0.56 0.59

R. Para hippo-

campal G.
0.67 0.42

R. Para

hippocampal
0.53 0.62

L. Cuneal C. 0.66 0.56 L. Cuneus 0.51 0.44

L. Temporal

Fusiform C.
0.65 0.53 L. Fusiform 0.50 0.60
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Table 3: Comparison between results obtained
with the proposed approach and state of the art
methods assessed with ABIDE dataset. Abbre-
viations: control (CRT), autism spectrum dis-
orders (ASD), area under the receiver operator
curve (AUC).

CNT ASD Age AUC

Wang17 54 57 <15 0.80 *

Katuwal13 373 371 NR 0.60

Katuwal47 361 373 7 - 64 0.68

Parisot48 468 403 6 to 64 0.75

Li50 149 161 10 to 34 0.74

Proposed 151 151 6 - 13
0.75

0.77 **

* This result was obtained with cases from a single
center: the NYU Langone Medical Center.
** This result corresponds to Tests 2.a and 2.b.
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