
sensors

Article

Networking-Aware IoT Application Development

Arne Bröring 1,* , Jan Seeger 2, Manos Papoutsakis 3,4, Konstantinos Fysarakis 5

and Ahmad Caracalli 6

1 Siemens AG, Corporate Technology, 81739 Munich, Germany; arne.broering@siemens.com
2 Chair of Networking Architectures and Services, Technical University Munich, 80333 Munich, Germany;

seeger@in.tum.de
3 School of Mathematics, Computer Sciences and Engineering, City University of London,

Northampton Square, London EC1V 0HB, UK; Emmanouil.Papoutsakis@city.ac.uk
4 Foundation for Research and Technology Hellas, Institute of Computer Science; N.Plastira 100,

70013 Heraklion, Crete, Greece; paputsak@ics.forth.gr
5 Sphynx Technology Solutions AG, 6300 Zug, Switzerland; fysarakis@sphynx.ch
6 EURECOM, Campus SophiaTech, 06410 Biot, France; ahmad.caracalli@eurecom.fr
* Correspondence: arne.broering@siemens.com

Received: 29 November 2019; Accepted: 31 January 2020 ; Published: 7 February 2020
����������
�������

Abstract: Various tools support developers in the creation of IoT applications. In general, such
tools focus on the business logic, which is important for application development, however, for IoT
applications in particular, it is crucial to consider the network, as they are intrinsically based on
interconnected devices and services. IoT application developers do not have in depth expertise in
configuring networks and physical connections between devices. Hence, approaches are required
that automatically deduct these configurations. We address this challenge in this work with an
architecture and associated data models that enable networking-aware IoT application development.
We evaluate our approach in the context of an application for oil leakage detection in wind turbines.

Keywords: IoT; SDN; semantic models

1. Introduction

Today, building IoT applications is more and more supported by tools as well as by standardized
activities for networking, accessing, or controlling devices. Standards (e.g., W3C Web of Things [1],
OPC UA [2], or OneM2M [3]) allow the reliable development of integration and interaction mechanisms
between IoT devices or platforms. No-/low-code tools enable the easy composition of devices and their
functionalities to combine them on a higher level to IoT applications. For cloud and mobile environments,
examples for such tools are “If This Then That” (http://ifttt.com) or Mendix (https://mendix.com).
For the device-level, an example tool is Node-RED (http://nodered.org) that supports the IoT application
development with a visual flow programming approach. Facilitating the IoT application development
with such tools becomes a key enabler towards an IoT app economy [4] with novel business models.

While the composition of IoT application development is well supported and is becoming easier
today, the focus is solely on the flow and business logic of the application. The network between IoT
devices and platforms is typically assumed as existing and not considered needing to be adjusted or
managed by such IoT tools. Instead, the network is engineered separately and no integrated view on
the application/network interplay is given. This is an issue as the network configuration underlying
an IoT application can be crucial for its successful execution. An example is the case of an intrusion
detection application with three devices involved: (1) a surveillance camera streams their video feed
to (2) an artificial intelligence (AI) analytics service running on an IoT/edge device that triggers
(3) an alarm hosted by a third device. In such an example, the IoT application is relying on the network

Sensors 2020, 20, 897; doi:10.3390/s20030897 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1181-3897
http://www.mdpi.com/1424-8220/20/3/897?type=check_update&version=1
http://ifttt.com
https://mendix.com
http://nodered.org
http://dx.doi.org/10.3390/s20030897
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 897 2 of 20

to provide the required bandwidth for multiple HD camera feeds as well as be reliably available
for sending out the alarms. This is getting particularly challenging if multiple IoT applications are
implicitly relying on hard quality of service (QoS) constraints of the network.

In this paper, we present an integrative approach that allows the composition of IoT applications
in conjunction with semantically-enabled requirement definitions towards the network. We design an
architecture and implement its components that can be utilized to visually compose IoT applications
and define application-level constraints towards the network. We enable the automatic translation of
these application-level constraints into patterns regarding security, privacy, dependability, and interop-
erability (SPDI) aspects of the network. As input for a rule engine, these patterns can be automatically
monitored and enforced through our approach. As compared to traditional SDN network setups, this
enables low-code and dynamic management of the underlying network without having to manually
manage the configuration overhead of the Software-defined Networking (SDN) Controller. We thus
provide mechanisms to develop distributed IoT applications under consideration of QoS constraints
and for the flexible enforcement of these constraints. For the basis of the tool to create IoT applications,
we utilize Node-RED, as it gains more and more traction in the industry, while still being open, extend-
able, and reliant on a large open source community. We abstract from the network and device specific
properties by using the semantically-enriched format of Thing Descriptions [5], which are discoverable
via a Thing Directory.

We demonstrate our developed solution via an application that consists of multiple IoT devices
and services to detect oil leakage in wind turbines. As a proof of concept, this IoT application integrates
a camera that transmits its video stream to a second device for AI-based image classification and a third
device is triggered to stop the wind turbine in case leaked grease is detected. We evaluate our approach
with this application concerning the network utilization and performance of the semantic reasoning.

This work describes the latest findings on our research agenda to enable IoT applications as
distributed choreographies. Our agenda started with the definition of the Recipe concept as template
for IoT applications [6], continued by our approach for runtime management of such recipes [7], the dy-
namic and resilient management of IoT applications [8], and rule-based configuration of networks
underlying the IoT application [9]. This work combines the results of these previous works and goes
beyond by investigating, implementing, and evaluating an approach that automatically translates
application-specific SPDI and QoS constraints into executable patterns/rules as well as their actual
monitoring and enforcement.

The remainder of this paper is structured as follows. Section 2 presents relevant works from
the field of service and device composition using semantic descriptions as well as software defined
networking to enforce networking QoS. Section 3 outlines the architecture of our approach. Section 4
describes the developed model for the design of IoT application lows as well as the pattern language
for IoT orchestrations. Section 5 describes the mechanisms for the automated translation of application
flows into network configurations, for automated processing of these configurations, and for automati-
cally configuring the SDN. Section 6 presents the example of the oil leakage detection application and
evaluates the approach. Section 7 draws conclusions and lessons learned from the results of this work
and outlines derived future research directions.

2. Background and Related Work

IoT applications and systems are composed of IoT devices and their functions. Service composition
addresses the difficulties of finding and linking devices and functions. Orchestration and choreography
are the two types of service compositions distinguished literature [10]. Orchestration is centered around
a controlling service steering the interplay of the other involved services. Choreography distributes
this control, i.e., each service acts upon its on knowledge or configuration in the interaction with others.
In both cases, compositions of services can be formally described by relying on the description of each
service. This can be similarly done for the composition of IoT devices and their functions.

Sensors 2020, 20, 897 3 of 20

The semantic enrichment of service descriptions makes their discovery more powerful. This allows
resources to be identified in conjunction with expanded semantics. The design of services can also be
progressed by automatically identifying matching services that can communicate by utilizing their
semantic descriptions. WS-BPEL, which is widely supported in practice, is a standard for syntactic
Web service orchestration. SOA4All was an example of a project dealing with issues related to the
semantic network orchestration of WSDL / SOAP-based web services [11], while RESTful services can
be semantically described with e.g., hRESTS [12] or RESTdesc [13]. The W3C Web of Things (WoT)
initiative specifies a semantic description format dedicated for IoT devices and their functions: the
Thing Description (TD) [5], which contains metadata about the device and possible interactions with it.
In [14], the applications are described as sets of semantic rules. However, this approach does not take
into account definition of QoS constraints. Also, visual programming support to facilitate application
development is not provided.

There are a range of frameworks for system composition to design automation activities for new
services. A systematic survey on the composition of cloud-based QoS-aware web services can be
found in [15], however, this study concentrates on cloud-level platforms, while we focus on localized,
edge-level composition of IoT devices and also specifically considering QoS constraints. Another
example for a QoS-aware approach for service composition is described by Mokhtar et al. [16] and
also based on matching service semantics. Also in [17], a framework is presented that qualifies QoS
capabilities, in this case through the management of trust. In [18] a dependable platform for the
composition of services is presented. The previous work has in common that QoS constraints are
defined at service level, while the utilized network is not considered. On the other hand, we intend
to also explicitly consider the network and configure, monitor, and ensure QoS requirements on that
level as well.

Software-defined networking (SDN) centralizes routing decisions in a central controller and
thus provides finer-grained control over network settings, as compared to traditional distributed
approaches [19]. The controller separates the data and control planes from each other, allowing routers
and switches to forward data based on a global view of the network. Protocols such as OpenFlow [20]
allow routers and switches to enforce QoS constraints using queues and meters.

Traditional protocols for network-wide QoS control are Differential Services (DiffServ) [21] and
Integrated Services (IntServ) [22]. DiffServ describes coarse-grained traffic classes, and relies on a
decentralized configuration of network elements. This class-based approach is not able to differentiate
the many different requirements that automation applications can require. IntServ provides a finer-
grained approach, but is not widely supported by consumer hardware, and has scalability issues in
larger systems. Both protocols do not provide a centralized view of the system, and cannot support
the fine-grained control realizable with a central controller with global knowledge of the network.

SDN is often complemented by Network Function Virtualization (NFV), which further shifts the
network management towards software. Separate Virtual Network Functions (VNFs) can implement
network functions such as firewalls or load balancers, while being virtually executed in a containerized
environment that is scalable to the actual demand, e.g., to support tactile internet [23]. Based on an
SDN-enabled network, [24] presents an approach for the optimal allocation of such VNFs; similar to
the allocation of application tasks as described in [25]. Such an optimal allocation approach could
be implemented by the rule system proposed in this work, particularly, to extend the efficiency of
running applications.

Various research works focus on the enforcement of QoS parameters via SDN protocols. Na-
man et al. [26] propose an API for providing visibility into the network state, and implement an
SDN-assisted congestion control algorithm for satisfying demands for low latency and high bandwidth.
Akella et al. [27] work on guaranteeing bandwidth allocations for prioritized cloud users. Kucmin-
ski et al. [28] present a QoS-based routing scheme for prioritizing important traffic over less important
traffic. Li et al. [29] take a step back and try to identify application classes at the SDN controller. Different
QoS classes are then defined for the different types of applications. Guck et al. [30] implement and evaluate

Sensors 2020, 20, 897 4 of 20

a network model for guaranteed latency with a reasonable processing cost. Gorlatch et al. [31] translate
high-level QoS requirement into low-level SDN configurations for optimizing response-time in real-time
interactive applications.

However, no systematic integration with application development tools has been attempted so
far. Our aim is the creation of a system for the integrated development of application and network con-
straints.

3. An Architecture for Network-Aware IoT Applications

We define the term IoT application as a workflow of interacting services (e.g., sensing, acting,
storing, or computing) offered by different IoT devices. Thereby, multiple IoT applications can be
executed within an IoT environment, a physical space that comprises several networked IoT devices.
Today, when new devices and applications are added to such an IoT environment, there is manual
integration effort, e.g., the device’s parameterization needs to be adjusted or a centralized network
controller may need to be reconfigured. Manually designing and deploying such compositions of IoT
applications can be time-consuming and error prone [10].

To support the design of IoT applications, there are commercially available systems such as “If
This Then That” (IFTTT) (http://ifttt.com). The platform provides a simple interface to create and
execute cloud-centralized orchestrations of IoT service choreographies, however, it lacks systematic
engineering support [32]. The Node-RED (http://nodered.org) tool focuses also on usability and
therefore follows a visual programming approach. Its browser-based editor can be easily used to
connect IoT devices, APIs, and online services through an interactive drag and drop and wiring to an
application flow.

A shortcoming of Node-RED is that developed applications cannot be executed in a decentralized
way, i.e., all program logic designed in a flow is executed locally on one machine—even when defining
flows in separate sub-flows or on different tabs. It is possible to view multiple Node-RED instances
at a central machine and connect them via communication protocol nodes, e.g., for MQTT, UDP,
or HTTP. However, managing such connections manually between the Node-RED instances of the
various involved devices would be complex and error-prone. This is where Distributed Node-RED
(DNR) [33] fills a gap and enables the definition of distributed flows by allowing the ability to define
on which device each node runs. Thereby, DNR provides a tool to configure the IoT application
centrally and automatically communicate the design and changes of the flow to the involved devices.
The communication between the now distributed nodes is realized based on a MQTT broker contained
in the DNR distribution, i.e., all communications, not only management of flow handling but also
data transfer between nodes, is exchanged via this MQTT broker. In this paper we build up on DNR,
but extend it to allow direct communication (circumventing the MQTT broker, e.g., via UDP) and
enable the underlying network configuration through semantically defined QoS requirements.

In our previous work [6–8], we introduced the recipe concept to represent the design of an
IoT application, i.e., a composition of services from IoT devices, separate from its implementation.
A graphical tool allows the ability to define and instantiate the recipe. The user is supported during
the instantiation of the recipe by narrowing down matching recipe ingredients through semantic
subsumption reasoning. Then, we enabled the distributed execution of instantiated recipes in [7].
Our approach went beyond the concepts of [33] by introducing mechanisms for fault tolerance and
failure detection (see [8]) as needed by critical automation systems.

Missing in the above works and tools, is the representation of the network when creating IoT
applications. In case of Node-RED, the developer is designing the data flow to create an IoT application.
Generally, this focus on the business logic is important for application development. However, for IoT
applications in particular, it is crucial to consider the network, as they are intrinsically based on
interconnected devices and services. Often, the user/developer does not have in depth expertise
in configuring the network and physical connections between the involved IoT devices. Hence,
approaches are required, which automatically deduct these configurations. To address this challenge,

http://ifttt.com
http://nodered.org

Sensors 2020, 20, 897 5 of 20

we have designed and implemented the components of an architecture with associated data models
(Section 4) that allow this integrative IoT application development.

Figure 1 shows the key components of this architecture and their interplay. At the center is the
Recipe Cooker, which is responsible for creating IoT applications that reflect user requirements on
different layers (cloud, edge, and network), transforming recipes into executable rules. For this work,
the Recipe Cooker component has been re-implemented and based on Distributed Node-RED [33].

Figure 1. Overview of architectural components and their interplay.

In order to receive semantic descriptions of available IoT devices and their functions, the Recipe
Cooker connects to the Thing Directory. This component hosts Thing Descriptions (TDs) of registered
IoT devices and can be used to browse and discover a thing based on its registered TD. The Thing
Description model and serialization format are conform to the W3C definitions [5]. The directory can
be used to browse and discover Things based on their TDs. This includes Searching for a thing based
on its metadata, properties, actions, or events; as well as creating or deleting a thing’s TD or updating
an existing one.

The application developer creates an IoT application using the Recipe Cooker. The application
is represented as an orchestration pattern that comprises application-level networking constraints
and follows a semantically-defined grammar (Section 4.3). This pattern-based application definition
is transmitted to the Pattern Orchestrator, which is responsible for the automated coordination and
management of patterns and their deployment. Next, this component converts the received patterns
to Drools rules, which are distributed as facts to the relevant Pattern Engine.

The Pattern Engine component is incorporated with an SDN controller. It allows the insertion, mod-
ification, execution, and retraction of patterns at design or runtime of the SDN controller. Continuous
reasoning through pattern matching ensures the secure, privacy-aware, dependable, and interoperable
operation of the network and the IoT application running on top of it. The Pattern Engine is based on a
rule engine, which needs to be able to express design patterns as production rules to enable reasoning.
Hence, the rule engine is based on the Drools rule engine [34] that supports backward and forward
chaining inference and verification, by applying and extending the Rete algorithm [35]. The SDN
controller is then configured by the Pattern Engine through the OpenFlow interface (Section 2).

4. Models for IoT Application Flows and Network Patterns

In the following, we present models for IoT application flows that can capture application-level
QoS constraints that are to be translated into network-specific constraints (Section 4.1), an approach

Sensors 2020, 20, 897 6 of 20

for designing application flows with this model (Section 4.2), as well as a model for a pattern language
to monitor and enforce the QoS constraints on the network (Section 4.3).

4.1. Model for IoT Application Flows with QoS Constraints

Initially developed to support the semantic enablement of IoT interoperability [36], we have
developed the Recipe model [6] that allows the compositions of ingredients and their interactions. Ingre-
dients are placeholders for offerings, devices and services that process and transform data. Interactions
describe the dataflow between these ingredients. In this work, we build up on this model for defining
distributed IoT applications and the application-specific QoS constrains.

An example recipe is shown in Figure 2 describing a simple machine-learning based oil leak detection
system. A camera records a video stream, which is passed to an oil detection component. This oil detection
component derives the current oil leakage based on the image input. The amount of leaking oil is then
sent to a warning component that compares the oil level to a preset or dynamic threshold. When this
threshold is exceeded, an alarm message is sent to the emergency stop component to stop the machine.
The type is used for matching offerings with ingredients based on the semantic type [8].

Camera

Oil detection

Oil warning

Emergency stop

Training input

name: video_in
type: qudt:VideoFrame

name: oil_level
type: qudt:LiquidVolume

name: oil_alarm
type: iotschema:Event

name: training_video
type: qudt:VideoFrame

Figure 2. A simple oil leak detector recipe.

Offerings describe service or device instances, and how to access these services or devices. Offer-
ings are specified in a semantic format by the so-called offering description, which is semantically-aligned
with the W3C Thing Description [5] used in the Thing Directory of our architecture (Section 3). Offering
descriptions contain information on the inputs and outputs of an offering as well as information on
how to access the underlying service or device (providing the offering implementation). The offering
contains functional as well as non-functional properties. Functional properties describe the implemen-
tation of the offering (e.g., the endpoint as well as protocol to access it), while non-functional properties
describe installation-specific metadata about the offering (such as the price or location of the offering).
Non-functional and functional properties thus correspond to offering interface and implementation,
respectively. The offering description further contains functional properties that contain information
on the types of input and output that this offering consumes and produces. Type annotations are
uniform resource identifiers (URIs) referencing for example a term in the schema.org [37] or QUDT [38]
ontologies. Additionally, a category can be used to classify the offering, e.g., into smart building or
transportation categories.

Based on the above outline model, we have implemented application-level QoS constraints
on a semantics-based platform in our previous work [9]. Application-level QoS constraints refer to
the possibility of defining such constraints on a high-level, independent of network-level specifics.
Application-level QoS constraints are thus an abstract description of an application’s network require-
ments. Due to being defined on the application level, such constraints are easier to define for the user,

Sensors 2020, 20, 897 7 of 20

and can be stored independently of the specifics of the underlying network. An example for the use
and implementation of application-level constraints can be found in [31].

We have defined a scheme for expressing application-level QoS constraints as a collection of seman-
tic rules. Including these rules in the triple store together with the semantic models, the application-
level constraints are automatically translated by the semantic reasoner of the triple store into instances
of the lower-level SDN model. These instances can then be submitted as configurations to the SDN
Pattern Engine.

One example for such an application-specific constraint is specifying the required bandwidth for
a video stream based on the frame rate (f) of a video. This is a useful constraint in video analysis, where
the algorithm requires a certain frame rate to work correctly. In the oil leakage example in Figure 2,
attaching such a constraint on the link between the camera and analysis component would ensure that
the input quality for the analysis component is good enough to deduce correct oil leakage information.
Using application-level constraints, we can ensure the availability of bandwidth from application
development onwards. For more information on the possible implementation of such constraints via a
semantic reasoner, see [9].

The advantage of these application-level constraints is that they can take into account high-level
parameters such as resolution or encoding efficiency, which are available in the Thing Directory. If the
video format’s efficiency is e ∈ [−∞, 1] and the video’s resolution is x× y, we can infer a minimum
bandwidth with the calculation bw = (1− e) ∗ x ∗ y ∗ f . The translated bandwidth constraint can then
be sent to the Pattern Orchestrator, which is able to (a) monitor the fulfillment of the constraint on the
network and (b) enforce the availability of bandwidth via SDN mechanisms.

4.2. Defining IoT Application Flows with QoS Constraints

To be able to define application flows with application-level networking requirements, we extended
Distributed Node-RED (DNR) [33]. The DNR tool already provides a way to execute application flows in
a distributed way, i.e., the IoT application developer can specify for each node of the application flow on
which machine it should be deployed and executed. This makes DNR a powerful tool for realizing edge
computing [39] applications.

In Figure 3, the DNR editor is shown and a simple application flow (shown in more detail in Figure 4)
is implemented that consists of four nodes transmitting a live video between two Raspberry Pi devices.
Labeled with ’piB’, the start stream node and multipart decoder node (for decoding the video stream from a
connected camera) are running on Raspberry Pi B. Similarly, the display image node is labeled with ’piA’,
which means that it is running on Raspberry Pi A. We could already connect the multipart decoder node and
the display image node to create a distributed flow between Raspberry Pis A and B. However, with DNR
only, no further specifications for the underlying networking can be made. Hence, we developed the
DirectCom node, which is representing the network connection (see Figure 4).

Sensors 2020, 20, 897 8 of 20

Figure 3. Extended Distributed Node-RED (DNR) to allow the specification of quality of service (QoS)
constraints from application perspective.

Figure 4. Live video transmission flow.

The main functionality of the DirectCom node is to create a UDP link between the source node on
the left and destination node on the right. Using only the DNR without this extension, all commu-
nication (even the video data between the two nodes) happens via an MQTT server running in the
background of DNR. The DirectCom node is running instances on all involved machines of the cluster
(here: Raspberry Pi A and B). It launches a UDP server on the machine of the destination node and a
UDP client on the machine of the source node, in order to transmit all incoming data from the source
node (here: multipart decoder) to the UDP server node. In response, the UDP server forwards the
received data to the next node (here: display image).

Figure 3 shows the configuration of the DirectCom node. Besides defining the IP addresses
of source and destination, the socket port number of the UDP server, and the output data format
(Buffer, String, or Base64 encoded string) have to be specified. The QoS key text field in the dialog
of Figure 3 then allows us to define application-level QoS constraints to be applied for this specific
communication link. From a drop-down menu, terms that represent application-level QoS constraints
can be selected. Here, ’schema:videoframerate’ (set to a minimum of 15 frames per second) is provided
to automatically translate the frame rate requirement of the application into a bandwidth constraint
(Section 4). To integrate with an existing ecosystem we aligned our terms with the existing vocabulary
schema.org [40].

4.3. Pattern-Driven Property Modeling and Management

In addition to facilitating the user-friendly definition of IoT applications and their orchestrations,
an ever-present need is to monitor and enforce the desired properties that said applications must
maintain. To this end, the work presented herein adopts a pattern-driven approach. Patterns are
re-usable solutions to common problems and building blocks to architectures and in the context of
this work they are used to encode proven dependencies between security, privacy, dependability,
and interoperability (SPDI) as well as QoS properties of individual smart objects and corresponding
properties of orchestrations (composition) involving them. The encoding of such dependencies will

Sensors 2020, 20, 897 9 of 20

enable: (i) the verification that a smart object orchestration satisfies certain SPDI and QoS properties,
and (ii) the generation (and adaptation) of orchestrations in ways that are guaranteed to satisfy required
SPDI properties.

This pattern-driven approach, as recently presented in [41], [42], and [43], is inspired from
similar pattern-based approaches used in service-oriented systems [44,45], cyber-physical systems [46],
and networks [47], while covering the intricacies of IoT deployments and more properties in addition
to Security, and also providing guarantees and verification capabilities that span both the service
orchestration and deployment perspectives.

To enable the above approach, it is necessary to develop a language for specifying the components
that constitute IoT applications along with their interfaces and interactions. In this context, the defini-
tion of the various functional and non-functional properties of IoT components and their orchestrations
is required in the form of a model. The defined model appears in Figure 5, and is presented in detail
in [41]). A model with such characteristics effectively serves as a general “architecture and workflow
model” of the IoT application.

Figure 5. IoT orchestrations system model.

Once defined, this model is used to derive a language which will allow the definition of pattern
rules and facts which, consequently, enable the reasoning required for verifying SPDI and QoS proper-
ties in specific IoT applications and subsequently enable different types of adaptations. The derived
language for defining IoT application models adopts an orchestration-based approach. An orchestra-
tion of activities may be of different types depending on the order in which the different activities
involved in it must be executed (e.g., sequence, parallel, choice, and merge). Moreover, an orchestration
involves orchestration activities. The implementation of an activity in an IoT application orchestration
may be provided by a software component, software service, network component, an IoT sensor,
actuator or gateway, as well as a sub-orchestration of IoT application activities of the previous types).
These types of IoT application activity implementers are grouped under the general concept of a
placeholder, which is accessible through a set of interfaces.

Based on the above, language constructs are used to define an orchestration pattern. A textual
representation of the model in the form of an EBNF [48] grammar is used as input to the Eclipse

Sensors 2020, 20, 897 10 of 20

ANTLR4 [49] plugin for the creation of a lexer and parser. In this way, any input can be checked for
compliance with the defined grammar. For the sake of brevity, only a sample for the definition of a
Placeholder is presented in Listing 1.

5. Implementation

In the following, we describe the mechanisms for automated translation of application flows into
network configurations (Section 5.1) as well as a mechanism for the monitoring of these configurations
(Section 5.2).

Listing 1: Pattern Language Grammar Snippet

placeholder
: placeholdertitle OPEN_PAREN placeholderid COMMA interfacename (COMMA interfacename)*

COMMA propertyname (COMMA propertyname)* CLOSE_PAREN
| orchestration
| orchestrationactivity
;

5.1. Translation of Application Flows into Network Configuration

To monitor and enforce QoS properties using the Pattern Engine, we must transform the IoT ap-
plication as defined in the Recipe Cooker (Section 3) from an application flow into the pattern language
consumed by the Pattern Orchestrator, which forwards it to the Pattern Engine to be monitored and
enforced (Section 5.2). Our input is in formatted in JavaScript Object Notation (JSON), the standard
Node-RED flow export format. We read this input using library functionality, and transform it into a
graph. Then, we run a number of graph reduction steps while emitting pattern language elements.
These steps are, in order:

1. Emit placeholders and their static properties.
2. Merging two nodes and one link into a Sequence.
3. Merging three nodes where two nodes are connected to one node into a Merge.
4. Merging three nodes where one node is connected to two nodes into a Choice.
5. Emit properties that need to be proven.

Steps 1 and 5 are only executed once, while Steps 2 to 4 are executed until they no longer change
the resulting graph. Each translation step emits pattern language elements and shrinks the graph for
the next transformation step. It is easy to see that each step reduces the size of the graph by at least one,
as at least two nodes are merged into one. This means this algorithm is guaranteed to finish eventually.

An example for the translation steps is shown in Figure 6. Before the translation, all components
are translated into placeholders, software components, and hosts for communicating device infor-
mation such as MAC and IP address. Additionally, we emit links between components. We have
implemented this transformation in a Python (http://python.org) script using the networkx library.

http://python.org

Sensors 2020, 20, 897 11 of 20

Camera

Oil detection

Oil warning

Emergency stop

Training input Camera

Oil detection

Seq-1

Training input Merge-1

Seq-1

Seq-2

Figure 6. Translation steps from application graph into pattern language.

Then we start the graph conversion process. In the first step, a sequence is created from two
nodes, causing a Sequence node consisting of two placeholders to be created. Then, a merge is created
from three nodes, causing a Merge node consisting three placeholders to be created. Finally, another
sequence is created from the Merge and Sequence nodes. The graph consists of only one node, so the
transformation is complete. The shortened output looks like this:

Placeholder("Camera"),
Placeholder("Oil detection"),
Placeholder("Training Input"),
Placeholder("Oil warning"),
Placeholder("Emergency stop"),
Link("Link1", "Camera", "Oil detection"),
Link("Link2", "Oil detection", "Oil warning"),
Link("Link3", "Oil warning", "Emergency stop"),
Link("Link4", "Training input", "Oil detection"),
Sequence("Seq-1", "Oil warning", "Emergency stop", "Link3"),
Merge("Merge-1", "Camera", "Training input", "Oil detection", "Link1", "Link4"),
Sequence("Seq-2", "Merge-1", "Seq-1", "Link2")
Static properties
Property("Prop0", required, qosbandwidth, "11400000.0", "Camera", true),
Property("Prop1", required, qosbandwidth, "11400000.0", "Oil detection", true),
To-be-proven properties
Property("Prop2", required, qosbandwidth, "4000000",..., false)
Added by monitoring system
Property("Prop3", required, qosbandwidth, "11400000.0", "Link1", true)

Additionally, to allow the monitoring of network configurations, we add properties to the graph.
These properties are either static facts about the devices (such as available link bandwidth or processing
speed), or need to be proven by the Pattern Orchestration Engine (such as required bandwidth,
or maximum latency). Static information is retrieved from the Thing Directory, while “to-be-proven”
properties are specified in the UI. Static properties are indicated by a true in the final position, while
the Pattern Engine tries to prove those properties that have a false as final parameter. To be able to
prove this, a monitoring system periodically updates the properties of network, as described in the
next section.

5.2. Automated Processing of Network Configurations

An important requirement for implementing the pattern-driven management and adaptation of
IoT applications is to support the automated processing of the patterns developed using the language
described in Section 4.3. To achieve this, the SPDI patterns can be expressed as Drools [50] business
production rules, and the associated rule engine, by applying and extending the Rete algorithm [35].

Sensors 2020, 20, 897 12 of 20

The latter is an efficient pattern-matching algorithm known to scale well for large numbers of rules
and data sets of facts, thus allowing for an efficient implementation of the pattern-based reasoning
process. A Drools production rule has the following generic structure:

rule name <attributes>* when <conditional element>* then <action>* end

Thus, herein Drools are leveraged to encode the relation between properties in SPDI and QoS
patterns in a way that allows the inference of the activity properties required of the activity placeholders
present in the orchestration of said pattern in order for the orchestration to have the SPDI property
guaranteed by the pattern.

The IoT application transformed into the pattern language is communicated to the Pattern
Orchestrator and is fed to an ANTLR4 lexer, parser, and listener. These three programs manage to create
a Drools fact, i.e., an instance of the corresponding Java class of the IoT application model, for every
orchestration activity, control flow operation, or property. During this procedure, the ANTLR4 lexer
recognizes keywords and transforms them into tokens. The created tokens are used by the ANTLR4
parser for creating the logical structure, i.e., the parse tree. The main functionality of the ANTLR4
listener is to become aware of the node additions in the parse tree. Whenever such an addition takes
place, the listener takes information from the tokens that were used for the creation of instances of
the corresponding Java classes. Afterwards, the received information is stored at the class attributes.
Finally, the created Java instances are sent to the corresponding Pattern Engine as facts, where they are
inserted into knowledge sessions of Drools Engine. These Drools facts are used by Drools rules, which
are fired when their conditions are met.

The communication between the Pattern Orchestrator and the Pattern Engine is done
through a REST API, which comprises the methods for the creation, deletion, and retrieval
of facts. The request for sending a Drools fact uses the HTTP POST method and its URL is
http://[PatternEngineIP]/patternengine:addFact. In the body of the request, there is a Fact
object with five field names presented in Table 1 below.

Table 1. Field names of the Drools Fact object in the addFact request.

Name Description Valid Value Example

recipeID The ID of the recipe the fact belongs to “WF1”
factID The identifier of the fact object itself “WF1-1”
from Originator of the message “Orchestrator”
factMessage The fact itself “DisplayImage, 80801, PiB”
type The object type of the fact “Softwarecomponent”

When a Drools fact is received by the Pattern Engine, it is inserted in the Drools Rule Engine,
part of a business rule management system (BRMS). Upon the arrival of a Drools fact, a new KIE
(Knowledge Is Everything) session is created. This session is used for the insertion of the Drools fact
into the working memory of Drools Rule Engine. Drools Rules are contained in the RuleBase, ready to
be used. Such rules preexist in the Pattern Engine or can be sent by the Pattern Orchestrator. Drools
facts are used to satisfy the ’when’-part of the Drools Rules (conditional elements) aiming to execute a
rule (action). The execution of a rule, in this case, corresponds to execution of Java code. The Drools
Facts that refer to SPDI and QoS properties are those of type Property.

As an example of Drools Rule, Listing 2 shows the specification of QoS (bandwidth) property.
The ’when’-part of the rule specifies: the two activity placeholders pA and pB along with their
bandwidth properties (lines 3-6), the link between them along with its corresponding property (lines
7-8), the order (sequence) in which pA and pB are executed (line 9), and the PR4 bandwidth property
that refers to the sequence. In the ’then’-part, the PR4 bandwidth property is guaranteed if all the
above and the conditions mentioned in the property hold (line 10).

Sensors 2020, 20, 897 13 of 20

Such a Drools Rule corresponds to a pattern. In this case, a QoS pattern is defined to monitor
and enforce a minimum bandwidth. A Pattern Engine equipped with such a pattern, can verify if the
qosbandwidth property holds for a given IoT application.

5.3. Configuring the SDN

Our main objective is to give the IoT application developers easy-to-use tools that enable to define
requirements related to the network without having to define detailed network configurations. Hence,
our approach allows the automatic generation of network configurations from the initially defined user
requirements, which are then translated into patterns via the Pattern Orchestrator (Section 5.1) and
converted into facts and rules to be executed by the Pattern Engine (Section 5.2). Finally, the Pattern
Engine executes rule actions that implement the network configurations, which we describe in detail
in this section.

Listing 2: Specification of QoS (Bandwidth) Property via Drools

rule "Sequence Bandwidth Verification"
when
Placeholder(pA:=placeholderid)
PR1: Property (pA:=subject, category=="qosbandwidth", prvalue1:=value, satisfied==true)
Placeholder(pB:=placeholderid)
PR2: Property (pB:=subject, category=="qosbandwidth", prvalue2:=value, satisfied==true)
Link (rId:=recipeID, orchLink:=linkid)
PR3: Property (rId:=recipeID, orchLink:=subject, category=="qosbandwidth", prvalue3:=value,

satisfied==true)
SEQ: Sequence(rId:=recipeID, sId:=placeholderid, pA:=placeholdera, pB:=placeholderb,

orchLink:=orchlink)
PR4: Property (rId:=recipeID, sId:=subject, category=="qosbandwidth", prvalue4:=value,

prvalue4<=prvalue1, prvalue4<=prvalue2, prvalue4<=prvalue3, satisfied==false)
then
modify(PR4){satisfied=true};
end

Listing 3: Call to the SDN Controller for configuring the communication with a switch

curl − XPUT − d′”tcp :
OVS_IP_ADDR:TCPListenPORT”′http : //SDN_IP:SDNListenPORT/v1.0/con f /switches/Switch_ID/
ovsdb_addr

As shown in the architecture (Figure 1), the Pattern Engine is incorporated with the SDN Controller
that has access to one or multiple SDN Switches. After a rule triggers, the Pattern Engine executes a
rule action (Java program code), while relying on the functionalities of the SDN Controller. Particularly,
we have implemented this configuration through the REST interface of the SDN Controller (we used
the RYU controller (https://osrg.github.io/ryu/)). The Pattern Engine can then dynamically adjust
the network based on previously received rules. This enables in general a more agile management of
the network, as compared to regular SDN controller based approaches.

Before we can add queue settings and QoS rules, the first step to configuring the SDN is
conducted during the bootstrapping phase to establish the communication with a switch. List-
ing 3 shows this first call that informs the SDN controller that the SDN switch (implemented
using Open vSwitch (https://www.openvswitch.org/; OVS) is listening on a particular IP ad-
dress and port number. Then, to communicate between SDN controller and a switch the
Open vSwitch Database Management Protocol) (https://tools.ietf.org/html/rfc7047) in conjunction
with OpenFlow (https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.1.pdf) version 1.3 are used. Thereby, the OVS_IP_ADDR
is the IP address of the Open vSwitch, TCP_Listen_PORT is the port number of the switch, SDN_IP is

https://osrg.github.io/ryu/
https://www.openvswitch.org/
https://tools.ietf.org/html/rfc7047
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf

Sensors 2020, 20, 897 14 of 20

the address of the SDN controller, SDN_Listen_PORT is its port number (for HTTP communication),
and Switch_ID is given to uniquely identify a switch.

In a second step, a call is made to the SDN Controller to set a queue table for a particular port or
all ports of a switch. Thereby, this table comprises the following parameters: Port_Name is the name
corresponding to the port planned to set queue for, and linux-htb/linux-hfsc are two options to specify
the queuing discipline (representing respective queuing algorithms in the Linux kernel). Further, we
need to specify the maximum and minimal rate (max_rate and min_rate properties), and we can specify
the data rate limits for each queue in the queues property. The ID of a particular queue is the index of
the queue in the queues list.

Finally, the SDN Controller is called by the Pattern Engine to install QoS flow rules in the flow
table at a switch. Each installed QoS flow rule will match source and destination IP addresses of a
packet with given source and destination IP addresses given. The matched packets will be forwarded
to a queue with a particular queue ID, and so the traffic of similar packets will be limited according to
the bandwidth limitation specified in that queue.

Listing 4: Call to the SDN Controller for configuring the queues at the switch

curl − XPOST − d′{”portname” : ”Port_Name", "type": "linux− htb|linux-hfsc", "max_rate":
"int”, ”queues” : [{”maxrate” : ”int", "min_rate":
"int”}, ...]}′http : //SDN_IP:SDNListenPORT/qos/queue/Switch_ID

Listing 5: Call to the SDN Controller for configuring a flow entry

curl − XPOST − d′”priority” : 1, ”match” : ”ipv4src” : ”10.0.0.1”, ”ipv4dst” : ”10.0.0.2”, ”actions” : [”type” : ”ENQUE”, ”queueid” : 1, ”port” : 1]...′http : //
SDN_IP:SDNListenPORT/qos/rules/Switch_ID

The above described approach works not only with multiple SDN switches, but also multiple SDN
Controllers could be handled by the Pattern Engine. By simply maintaining the references (switch IDs
and SDN Controller IPs) used in the described calls above, this approach allows to manage complex
cases of networks with multiple switches and controllers.

6. Proof of Concept Application and Evaluation

In the following, we present an application that build up on the presented architecture and
implemented components (Section 6.1) and evaluate our approach in context of this application
concerning the network performance and semantic reasoning.

6.1. Oil Detection Application

This application utilizes the developed architecture for automated detection of oil leakages
occurring around the inner bearings of wind turbines. This is a problem that can remain unrecognized
for too long by the maintenance engineers and an automatic detection is promising for wind park
operators. The application flow is implemented in Node-RED and shown in Figure 7. The video stream
from the camera is read via the ’video access’ node. It transmits the video stream to an AI pipeline
via the DirectCom node (Section 4.2 and Figure 3) that enables the definition of application-specific
QoS constraints. In this example the video frame rate is specified to a minimum of 15 frames per
second (as shown in Figure 3) and configured/monitored by the Pattern Orchestrator and Pattern
Engine. The AI pipeline can then load each image frame, transfers it to a tensor and finally classifies
the image into two classes (’no oil’ or ’oil’ detected). The image classification is based on a re-trained
MobileNet [51] neural network and is implemented using TensorFlow [52]. Finally, the programmable
logic controller (PLC) [53] for the wind turbine is triggered in case leaked oil is detected.

Figure 8 (Icons made by Pause08, Becris, Eucalyp, and freepik from www.flaticon.com; images
of NanoBox and PLC are under copyright of Siemens AG) shows the deployment setup of this IoT
application flow. The IT infrastructure within the wind turbine is connected via an SDN programmable
network. Here, a Raspberry Pi device provides access to the video camera and a Siemens SIMATIC
NanoBox [54] is available on the network as an edge resource with extended computing power.

Sensors 2020, 20, 897 15 of 20

First, the Recipe Cooker retrieves the relevant TDs for all registered devices to access their metadata.
Then, the distributed application flow is defined in the Recipe Cooker as described above. In the
second step, the application flow is translated to patterns (Section 5.1) and transmitted to the Pattern
Orchestrator to configure the network accordingly. At the same time, the application flow is deployed
using DNR [33], i.e., each node contained in the application is instantiated within the Node-RED
environment of the device to which it has been assigned.

6.2. Performance Assessment

The subsections below present an initial evaluation of the performance of the key building blocks
of the proposed approach.

6.2.1. Evaluation of Network Usage

In our experiment (Section 6.1), a live video stream was transmitted between a Raspberry Pi and
a NanoBox over a network configured by an SDN controller. In order to evaluate the influence of our
approach and particularly the utilization of the DirectCom node and specified QoS in the application
flow (see Figure 7), we compared the brokered architecture (as an indirect communication using MQTT
via the original DNR broker as part of the Recipe Cooker) and the direct communication (using UDP
with the DirectCom node). To compare the latency, a timestamp packet was sent from Raspberry
Pi every one second; once it arrived at the NanoBox, another timestamp was generated and the
difference was calculated as latency (or end-to-end delay). We did this procedure for both approaches.
The resulting latency measurements over time are presented in Figure 9a. In the graph, it becomes
clear that over time the direct communication approach has less latency than the brokered architecture
approach. It has been reduced around 50%.

Further, we analyzed the difference in received throughput between the two approaches. To do
that, 1000 messages per second were sent from the Raspberry Pi, and every message is about 73 Bytes.
In the NanoBox, we checked how many messages were received per second. We did this procedure for
both approaches. The measured throughput over time is shown in a graph of Figure 9b. From the graph,
we can see that the direct communication approach has better throughput (received messages/second)
compared to the brokered architecture approach and it improves by around 50%.

Figure 7. IoT application flow for oil leakage detection.

Sensors 2020, 20, 897 16 of 20

Figure 8. Setup of the oil leakage detection application.

0 20 40 60 80 100 120
Time (s)

200

300

400

500

600

Th
ro

ug
hp

ut
 (m

sg
s/

s)

Connection type
Direct
Indirect

(a) Latency

0 20 40 60 80 100 120 140
Time (s)

5

10

15

20

25

La
te

nc
y

(m
s)

Connection type
Direct
Indirect

(b) Throughput
Figure 9. Performance measurements of analysis application in direct vs. indirect mode.

6.2.2. Evaluation of Pattern Engine

As an early verification of the feasibility of the proposed pattern reasoning approach, a proof of
concept environment has been setup based on the JBoss Drools Engine v7.15 (https://www.drools.
org/download/download.html), and gRPC (https://www.grpc.io/) with Protocol Buffers Version 3
(https://developers.google.com/protocol-buffers/).

In more detail, the testbed setup features a gRPC server is deployed on a desktop system (Core i7,
8GB RAM), loading the Pattern Engine with a basic set of Drools rules. A test client is used to make
gRPC calls to the server to request verification of the QoS pattern rule presented in Listing 2 above.

Using the above test setup, and based on the complexity of the modeled IoT environment, i.e., the
number of placeholders stored as facts within the Drool knowledge base, the execution time ranges
from 19 ms for 10 placeholders to 82 ms for 100 placeholders.

While a more detailed performance evaluation will follow, investigating in more detail the
performance impact of modeling more complex environments and supporting and evaluation a larger
set of pattern rules, these initial results validate the feasibility of real-time pattern-driven property
verification and the timely triggering of needed adaptations.

https://www.drools.org/download/download.html
https://www.drools.org/download/download.html
https://www.grpc.io/
https://developers.google.com/protocol-buffers/

Sensors 2020, 20, 897 17 of 20

7. Conclusions and Future Work

In this work, we present our approach for networking-aware IoT application development. Our
architecture is centered around the Recipe Cooker, a tool based on Distributed Node-RED, that allows
the definition of application flows, which we extended to define QoS constraints from application
perspective and to provide an integrative view on application and network. We provide then a
mechanism that automatically translates these application-specific QoS constraints into network-
specific constraints, which are configured and monitored via an SDN controlled network deployment.
The description of the application flow is based on a semantic model upon which we conduct the
auto-translation into a pattern language for defining facts that are fed into a rule engine.

We applied our approach in an IoT application for oil leakage detection within the bearings
of a wind turbine. We demonstrated that the application-specific QoS (e.g., video frame rate of 15
frames per second) are translated into bandwidth constraints that are configured on the SDN controller.
We conducted first performance assessments on the network usage resulting from utilization of our
components and evaluate the performance of the reasoning in the Pattern Engine.

Our approach is backward compatible with existing Node-RED applications, as DNR is fully
backward compatible, and applications can be simply integrated using standard import functional-
ity. When importing an existing IoT application into our system, subsequently, the distribution of
application parts onto different devices and their connectivity via DirectCom node can be configured.

Following up on these results, our road map for this research involves multiple directions, e.g., we
will leverage on the findings of this work to improve application development for distributed AI
based on IoT devices by facilitating the network constraint consideration. Thereby we will not only
investigate on improving the inference but also the training of AI (e.g., using federated learning [55]).

Author Contributions: Individual contributions: conceptualization, A.B., J.S., K.F., and M.P.; software, J.S., M.P.,
and A.C.; validation, A.B., M.P., and A.C. All authors have read and agree to the published version of the
manuscript.

Funding: This work is part of the project SEMIoTICS funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 780315.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Raggett, D. The web of things: Challenges and opportunities. Computer 2015, 48, 26–32.
2. Hannelius, T.; Salmenpera, M.; Kuikka, S. Roadmap to adopting OPC UA. In Proceedings of the 2008 6th

IEEE International Conference on Industrial Informatics, Daejeon, South Korea, 13–16 July 2008; pp. 756–761.
3. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer

platform: Introduction to oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26.
4. Pahl, M.O.; Carle, G. Taking Smart Space Users into the Development Loop: An Architecture for Com-

munity Based Software Development for Smart Spaces. In Proceedings of the 2013 ACM Conference on
Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, September 2013; ACM:
New York, NY, USA, 2013; pp. 793–800.

5. Charpenay, V.; Käbisch, S.; Kosch, H. Introducing Thing Descriptions and Interactions: An Ontology for the
Web of Things. In SR+ SWIT@ ISWC; Academic Press: Cambridge, MA, USA, 2016, pp. 55–66.

6. Thuluva, A.S.; Bröring, A.; Medagoda, G.P.; Don, H.; Anicic, D.; Seeger, J. Recipes for IoT Applications.
In Proceedings of the IoT ’17 Seventh International Conference on the Internet of Things, Linz, Austria,
October 2017; ACM: New York, NY, USA, 2017; pp. 10:1–10:8, doi:10.1145/3131542.3131553.

7. Seeger, J.; Deshmukh, R.A.; Bröring, A. Running Distributed and Dynamic IoT Choreographies. In Proceed-
ings of the 2018 IEEE Global Internet of Things Summit (GIoTS) Proceedings, Bilbao, Spain, 4–7 June 2018;
Volume 2, pp. 33–38, arXiv: 1802.03159.

8. Seeger, J.; Deshmukh, R.A.; Sarafov, V.; Bröring, A. Dynamic IoT Choreographies. IEEE Pervasive Comput.
2019, 18, 19–27, doi:10.1109/MPRV.2019.2907003.

Sensors 2020, 20, 897 18 of 20

9. Seeger, J.; Bröring, A.; Pahl, M.O.; Sakic, E. Rule-Based Translation of Application-Level QoS Constraints
into SDN Configurations for the IoT. In Proceedings of the 2019 European Conference on Networks and
Communications (EuCNC), Valencia, Spain, 18–21 June 2019; pp. 432-437.

10. Sheng, Q.Z.; Qiao, X.; Vasilakos, A.V.; Szabo, C.; Bourne, S.; Xu, X. Web services composition: A decade’s
overview. Inf. Sci. 2014, 280, 218–238, doi:10.1016/j.ins.2014.04.054.

11. Lécué, F.; Gorronogoitia, Y.; Gonzalez, R.; Radzimski, M.; Villa, M. SOA4All: An innovative integrated
approach to services composition. In Proceedings of the International Conference on Web Services, Mi-
ami, FL, USA, 5–10 July 2010; pp. 58–67.

12. Kopecky, J.; Gomadam, K.; Vitvar, T. hrests: An html microformat for describing restful web services. In
Proceedings of the WI-IAT’08 International Conference on Web Intelligence and Intelligent Agent Technology,
Sydney, NSW, Australia, 9–12 December 2008; pp. 619–625.

13. Mayer, S.; Verborgh, R.; Kovatsch, M.; Mattern, F. Smart Configuration of Smart Environments. IEEE Trans.
Autom. Sci. Eng. 2016, 13, 1247–1255, doi:10.1109/TASE.2016.2533321.

14. El Kaed, C.; Khan, I.; Van Den Berg, A.; Hossayni, H.; Saint-Marcel, C. SRE: Semantic rules engine for the
industrial Internet-of-Things gateways. IEEE Trans. Ind. Informatics 2017, 14, 715–724.

15. Hayyolalam, V.; Pourhaji Kazem, A.A. A systematic literature review on QoS-aware service composition
and selection in cloud environment. J. Netw. Comput. Appl. 2018, 110, 52–74, doi:10.1016/j.jnca.2018.03.003.

16. Mokhtar, S.B.; Preuveneers, D.; Georgantas, N.; Issarny, V.; Berbers, Y. EASY: Efficient semAntic Service
discoverY in pervasive computing environments with QoS and context support. J. Syst. Softw. 2008,
81, 785–808, doi:10.1016/j.jss.2007.07.030.

17. Moustafa, A.; Zhang, M.; Bai, Q. Trustworthy Stigmergic Service Compositionand Adaptation in Decentral-
ized Environments. IEEE Trans. Serv. Comput. 2016, 9, 317–329, doi:10.1109/TSC.2014.2298873.

18. Liu, C.; Cao, J.; Wang, J. A Reliable and Efficient Distributed Service Composition Approach in Pervasive
Environments. IEEE Trans. Mob. Comput. 2017, 16, 1231–1245, doi:10.1109/TMC.2016.2591544.

19. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined
Networking: Past, Present, and Future of Programmable Networks. IEEE Commun. Surv. Tutorials 2014,
16, 1617–1634, doi:10.1109/SURV.2014.012214.00180.

20. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008,
38, 69–74.

21. Blake, S.; Black, D.; Carlson, M.; Davies, E.; Wang, Z.; Weiss, W. RFC 2475 – An Architecture for Differentiated
Services; Technical Report; IETF, 1998.

22. Braden, R.; Clark, D.; Shenker, S. RFC 1633 – Integrated Services in the Internet Architecture: An Overview;
Technical Report; IETF, 1994.

23. Mekikis, P.V.; Ramantas, K.; Sanabria-Russo, L.; Serra, J.; Antonopoulos, A.; Pubill, D.; Kartsakli, E.;
Verikoukis, C. NFV-enabled experimental platform for 5G Tactile Internet support in industrial environments.
IEEE Trans. Industrial Inform. 2019, 16, 1895–1903.

24. Sarrigiannis, I.; Ramantas, K.; Kartsakli, E.; Mekikis, P.V.; Antonopoulos, A.; Verikoukis, C. Online VNF
Lifecycle Management in a MEC-enabled 5G IoT Architecture. IEEE Internet Things J. 2019.

25. Seeger, J.; Bröring, A.; Carle, G. Optimally Self-Healing IoT Choreographies. arXiv 2020, arXiv:1907.04611;
under review.

26. Naman, A.T.; Wang, Y.; Gharakheili, H.H.; Sivaraman, V.; Taubman, D. Responsive high throughput
congestion control for interactive applications over SDN-enabled networks. Comput. Netw. 2018, 134, 152–
166, doi:10.1016/j.comnet.2018.01.043.

27. Akella, A.V.; Xiong, K. Quality of Service (QoS)-Guaranteed Network Resource Allocation via Software
Defined Networking (SDN). In Proceedings of the 2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing, Dalian, China, 24–27 August 2014; pp. 7–13, doi:10.1109/DASC.2014.11.

28. Kucminski, A.; Al-Jawad, A.; Shah, P.; Trestian, R. QoS-based routing over software defined networks. In Pro-
ceedings of the 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), Cagliari, Italy, 7–9 June 2017; pp. 1–6, doi:10.1109/BMSB.2017.7986239.

29. Li, F.; Cao, J.; Wang, X.; Sun, Y. A QoS Guaranteed Technique for Cloud Applications Based on Software
Defined Networking. IEEE Access 2017, 5, 21229–21241, doi:10.1109/ACCESS.2017.2755768.

https://doi.org/10.1016/j.ins.2014.04.054

Sensors 2020, 20, 897 19 of 20

30. Guck, J.W.; Van Bemten, A.; Kellerer, W. DetServ: Network Models for Real-Time QoS Provisioning in
SDN-Based Industrial Environments. IEEE Trans. Netw. Serv. Manag. 2017, 14, 1003–1017.

31. Gorlatch, S.; Humernbrum, T. Enabling high-level QoS metrics for interactive online applications using SDN.
In Proceedings of the 2015 International Conference on Computing, Networking and Communications
(ICNC), Garden Grove, CA, USA, 16–19 February 2015; pp. 707–711, doi:10.1109/ICCNC.2015.7069432.

32. Ur, B.; Pak Yong Ho, M.; Brawner, S.; Lee, J.; Mennicken, S.; Picard, N.; Schulze, D.; Littman, M.L. Trigger-
Action Programming in the Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; ACM: New York,
NY, USA, 2016; pp. 3227–3231, doi:10.1145/2858036.2858556.

33. Giang, N.K.; Blackstock, M.; Lea, R.; Leung, V.C.M. Developing IoT applications in the Fog: A Distributed
Dataflow approach. In Proceedings of the 2015 5th International Conference on the Internet of Things (IOT),
Seoul, South Korea, 26–28 October 2015; pp. 155–162, doi:10.1109/IOT.2015.7356560.

34. Salatino, M.; De Maio, M.; Aliverti, E. Mastering Jboss Drools 6; Packt Publishing Ltd: Birmingham, UK, 2016.
35. Forgy, C.L. Rete: A fast algorithm for the many pattern/many object pattern match problem. In Readings in

Artificial Intelligence and Databases; Elsevier: Amsterdam, The Netherlands, 1989; pp. 547–559.
36. Bröring, A.; Schmid, S.; Schindhelm, C.K.; Khelil, A.; Käbisch, S.; Kramer, D.; Phuoc, D.L.; Mitic, J.; Anicic, D.;

Teniente, E. Enabling IoT Ecosystems through Platform Interoperability. IEEE Softw. 2017, 34, 54–61,
doi:10.1109/MS.2017.2.

37. Guha, R.; Brickley, D.; Macbeth, S. Schema. org: Evolution of structured data on the web. Commun. ACM
2016 59, 44–51.

38. Hodgson, R.; Keller, P.J. QUDT-Quantities, Units, Dimensions and Data Types in OWL and XML. 2011.
Available online: http://www.qudt.org (accessed on 6 February 2020).

39. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016,
3, 637–646.

40. Meusel, R.; Bizer, C.; Paulheim, H. A web-scale study of the adoption and evolution of the schema. org
vocabulary over time. In Proceedings of the 5th International Conference on Web Intelligence, Mining and
Semantics, Larnaca, Cyprus, July 2015; ACM: New York, NY, USA, p. 15.

41. Fysarakis, K.; Papoutsakis, M.; Petroulakis, N.; Spanoudakis, G. Towards IoT Orchestrations with Se-
curity, Privacy, Dependability and Interoperability Guarantees. In Proceedings of the 2019 IEEE Global
Communications Conference (GLOBECOM 2019), Waikoloa, HI, USA, 9–13 December 2019.

42. Soultatos, O.; Papoutsakis, M.; Fysarakis, K.; Hatzivasilis, G.; Michalodimitrakis, M.; Spanoudakis, G.;
Ioannidis, S. Pattern-Driven Security, Privacy, Dependability and Interoperability Management of IoT
Environments. In Proceedings of the 2019 IEEE 24th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, 11–13 September 2019;
pp. 1–6.

43. Fysarakis, K.; Spanoudakis, G.; Petroulakis, N.; Soultatos, O.; Bröring, A.; Marktscheffel, T. Architec-
tural Patterns for Secure IoT Orchestrations. In Proceegings of the Global IoT Summit 2019 (GIoTS’19),
Aarhus, Denmark, 17–21 June 2019.

44. Pino, L.; Spanoudakis, G.; Fuchs, A.; Gurgens, S. Discovering Secure Service Compositions. In Pro-
ceeding of the 4th International Conference on Cloud Computing and Services Sciences (CLOSER 2014),
Barcelona, Spain, April 2014.

45. Pino L.; Spanoudakis, G.; Krotsiani, M.; Mahbub, K. Pattern Based Design and Verification of Secure Service
Compositions. IEEE Trans. Serv. Comput. 2017.

46. Maña A.; Damiani, E.; Guergens, S.; Spanoudakis, G. Extensions to Pattern Formats for Cyber Physical
Systems. In Proceedings of the 31st Conference on Pattern Languages of Programs (PLoP’14), Monti-
cello, IL, USA, 14–17 September 2014.

47. Petroulakis, N.E.; Spanoudakis, G.; Askoxylakis, I.G. Fault tolerance using an sdn pattern framework. IEEE
Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6.

48. Extended Backus-Naur Form. Available online: https://tomassetti.me/ebnf (accessed on February 6 2020).
49. ANother Tool for Language Recognition. Available online: https://www.antlr.org (accessed on February 6

2020).
50. Business Rules Management System (BRMS). Available online: https://www.drools.org (accessed on

February 6 2020).

https://doi.org/10.1145/2858036.2858556
http://www.qudt.org
https://tomassetti.me/ebnf
https://www.antlr.org
https://www.drools.org

Sensors 2020, 20, 897 20 of 20

51. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mo-
bilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

52. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
2016, arXiv:1603.04467.

53. Berger, H. Automating with SIMATIC: Controllers, Software, Programming, Data; John Wiley & Sons: Hobo-
ken, NJ, USA, 2012.

54. Siemens. SIMATIC Box IPC. Available online: https://new.siemens.com/global/en/products/automation/
pc-based/simatic-box-ipc.html#SIMATICIPC227E, (accessed on 29 November 2019).

55. Park, J.; Samarakoon, S.; Bennis, M.; Debbah, M. Wireless network intelligence at the edge. Proc. IEEE 2019,
107, 2204–2239.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://new.siemens.com/global/en/products/automation/pc-based/simatic-box-ipc.html#SIMATICIPC227E
https://new.siemens.com/global/en/products/automation/pc-based/simatic-box-ipc.html#SIMATICIPC227E
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	An Architecture for Network-Aware IoT Applications
	Models for IoT Application Flows and Network Patterns
	Model for IoT Application Flows with QoS Constraints
	Defining IoT Application Flows with QoS Constraints
	Pattern-Driven Property Modeling and Management

	Implementation
	Translation of Application Flows into Network Configuration
	Automated Processing of Network Configurations
	Configuring the SDN

	Proof of Concept Application and Evaluation
	Oil Detection Application
	Performance Assessment
	Evaluation of Network Usage
	Evaluation of Pattern Engine

	Conclusions and Future Work
	References

