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Abstract

We consider initial timing acquisition in DS-CDMA when propagation is affected by

multipath and fading and where the base-station broadcasts a synchronization pilot signal

in the form of bursts of modulated chips transmitted periodically and separated by long

silent intervals. Subject to certain simplifying assumptions we derive the maximum like-

lihood (ML) estimator by solving a constrained maximization problem. Our ML timing

estimator has constant complexity per observation sample. The relation to other estimation

methods is addressed, and performance comparisons are provided by simulation. The pro-

posed estimator yields good performance independently of the multipath-intensity profile

of the channel, provided that the delay spread is not larger than a given maximum spread.

Moreover, our estimator is fairly robust to the mismatch in the fading Doppler spectrum

and provides good performance for both fast and slow fading.
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1 Introduction and Motivation

In wireless mobile communication systems a mobile terminal (MT) must acquire the time ref-

erence of the base-station (BS) before starting communication. When data transmission occurs

with a slot structure the basic time reference is slot timing. In third generation wireless com-

munication systems [1] initial synchronization is facilitated by a pilot signal transmitted by the

BS. In particular, all BSs broadcast a common primary synchronization signal. When the MT

is switched on, it detects the presence and the timing of this signal. If the slot time reference of

at least one BS is successfully acquired, the MT searches for some secondary synchronization

signal carrying additional information (e.g., frame synchronization, BS identification). Once

the BS is identified, the MT can send a call request on the BS random access channel.

In both frequency-division duplex and time-division duplex modes of UMTS [2, 3], the primary

synchronization signal is bursty, i.e., it is non-zero only for a small fraction of time compared

with the slot duration. In particular, the primary synchronization signal consists of a given burst

of modulated chips separated by long silent intervals and repeated indefinitely. Motivated by

this scheme, we consider the general problem of initial slot timing acquisition in a DS-CDMA

system with a bursty pilot signal. In [4] a maximum likelihood (ML) timing estimator is derived

by assuming that the channel multipath-intensity profile (MIP) is known at the receiver, and

in [5, 6] the ML criterion is applied by modeling the channel as deterministic unknown and

constant with time. Unfortunately the multipath intensity profile is not known before initial

acquisition and, since the initial synchronization phase may last several slots, the algorithms

based on the constant channel assumption might perform poorly in the presence of time-varying

fading.

In this paper, we obtain a low-complexity slot timing estimator requiring a minimum amount of

prior knowledge and yielding good performances on a wide range of channel MIPs and fading

Doppler bandwidths. Since both the channel MIP and the noise plus interference power spectral

density are not known at the receiver, we formulate a joint ML problem where all these param-

eters have to be estimated. We derive the ML estimator by solving a constrained maximization

problem via the Karush-Kuhn-Tucker (KKT) conditions [7]. In order to obtain a tractable so-

lution we make several simplifying working assumptions. When these are not satisfied, our

estimator is not exactly ML and may suffer from mismatch. The proposed estimator is com-

pared with the simple estimator for flat fading [8], with the too optimistic estimator of [4], and
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with the estimator of [5] for two typical channel MIPs under both the assumption of slow fad-

ing (constant channel) and fast fading. Computer simulations show that the proposed joint ML

estimator exhibits good performances in all these conditions and it is fairly robust to mismatch

of the assumed fading statistics.

2 Signal Model

The continuous-time complex baseband received signal is given by

y(t) = x(t; �) + v(t) (1)

where v(t) represents noise plus interference, modeled as a zero-mean complex circularly-

symmetric Gaussian process with power spectral density I0, and x(t; �) is the received syn-

chronization signal component, given by

x(t; �) =
M�1X
m=0

Z
h(t; t� � )s(� � � �mT ) d� (2)

where � is the slot timing, s(t) is the bursty pilot waveform of duration Ts, T � Ts is the period

of repetition of s(t), h(t; � ) is the time-varying multipath channel impulse response and M is

the number of transmitted pilot bursts. Because of the slot periodicity, � must be estimated

modulo T . The channel is assumed to follow the wide-sense stationary uncorrelated scattering

model (WSS-US [8]) with Rayleigh fading and multipath impulse response

h(t; � ) =
P�1X
p=0

cp(t)�(� � �p) (3)

where cp(t) is the time-varying complex channel gain at delay �p. Since Ts is much shorter

than T , we assume that the channel coherence time Tcoh [8] satisfies Ts < Tcoh � T . This

implies that the channel is almost constant during each m-th burst, but changes independently

from burst to burst. Since Ts is very short1 this condition is referred to as fast fading, and holds

approximately for 1
T
� Bd <

1
Ts

, where Bd is the fading Doppler bandwidth. Moreover, we

assume that the delays �p are constant over the whole observation window of duration MT .

1In the UMTS standard proposal [2, 3] the pilot waveform consists of a sequence of 256 chips convolved with

a root-raised cosine chip-shaping pulse. Thus with good approximation we may say that Ts � 270 chip periods,

whereas T can range from one slot (2560 chips) to one frame period (15 slots).
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In practical systems [9] the period T ranges from one slot period to one frame period and the

multipath delays vary at a much lower rate than the slot rate. Thus this assumption is satisfied.

Subject to the above assumptions, x(t; �) in (2) can be conveniently rewritten as

x(t; �) =
M�1X
m=0

P�1X
p=0

cmps(t� � � �p �mT ) (4)

where cmp are complex zero-mean circularly-symmetric Gaussian mutually uncorrelated ran-

dom variables such that Efcmpc�nqg = �
2
p�m;n�p;q. The channel MIP is defined by the delays

� = (�0; : : : ; �P�1) and by the path variances � = (�20; : : : ; �
2
P�1). The pilot waveform is given

by

s(t) =
N�1X
n=0

sn (t� nTc) (5)

where Tc is the chip duration, sn is a sequence of N chips known at the receiver and  (t) is

the chip-shaping pulse band-limited to [�W 

2
;
W 

2
] with 1

Tc
� W � 2

Tc
. In a digital receiver

implementation the signal is low-pass filtered and sampled at a convenient rate W > W .

Hence, baseband processing is performed in discrete time. We assume W = nc=Tc, where

nc > 1 is the number of samples per chip. Let Q = WT denote the number of samples per pilot

repetition period, and define the discrete-time observed signal y = (y[0]; : : : ; y[MQ � 1])T .

After a straightforward derivation, it is possible to write y in the compact form

y = Sc+ v (6)

where v
�
= (v[0]; : : : ; v[MQ � 1])T is the vector of interference plus noise samples, c

�
=

(cT0 ; : : : ; c
T
M�1)

T , with cm
�
= (cm0; : : : ; cm(P�1))T , contains all MP channel path coefficients

over the M periods, and where S is the MQ �MP matrix whose (mP + p)-th column, for

m = 0; : : : ;M � 1 and p = 0; : : : ; P � 1, is given by

smp
�
= (0; : : : ; 0| {z }

mQ

; sp[0]; : : : ; sp[Q� 1]; 0; : : : ; 0| {z }
(M�m�1)Q

)T (7)

where

sp[i] =
1
p
W

N�1X
n=0

sn (i=W � � � �p � nTc) (8)

Notice that the dependence of y on � is hidden in the matrix S. Since the columns of S are

obtained by translating the same waveform, they have all the same square magnitude, equal

to the energy Es of the pilot waveform. Then, without loss of generality we can include the
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term Es into the path variances �2p , and consider jsmpj2 = 1 for all m; p and delay �. Under

our assumptions, y is a zero-mean complex circularly-symmetric Gaussian random vector with

covariance matrix

Ry = S�S
H + I0IMQ (9)

where the superscript (�)H denotes the Hermitian transpose, Im indicates the m � m iden-

tity matrix and where � is the covariance matrix of c, given by � = IM 
 �c with �c =

diag(�20; : : : ; �
2
P�1) (
 denotes Kronecker product [10]).

3 Maximum Likelihood Problem Formulation

The log-likelihood function for the parameters vector � = (�; � ;�; I0) is immediately obtained

as [11]

L(yj�) = � log det(Ry) � y
H
R
�1
y y (10)

Notice that the number of channel paths P is also unknown and it is implicitly contained into

the parameters � and �. By applying the matrix inversion lemma [10] to (9) we get

R
�1
y =

1

I0
IMQ �

1

I
2
0

S�
1=2

�
IMP +

1

I0
�

1=2
S
H
S�

1=2

�
�1

�
1=2
S
H (11)

Now, we make the key working assumption that the columns of S are mutually orthogonal.

In particular, this is approximately verified if the delays �p are sufficiently spaced apart (more

than Tc) and if the sequence of chips sn has a very peaky aperiodic autocorrelation function.

In practice, the pilot sequence sn is quite long (N = 256 in UMTS [9]) and paths spaced by

less than one chip interval are substantially treated as a single path (they are not resolvable [8]),

thus, our assumption is not very restrictive. If S has orthonormal columns, (11) reduces to

R
�1
y = 1

I0

�
IMQ � S�S

H
�

(12)

where� = IM
diag
�

�0
1+�0

; : : : ;
�P�1

1+�P�1

�
and where we define the path average signal-to-noise

ratio (SNR) �p = �
2
p=I0, for p = 0; : : : ; P � 1. Subject to the same assumption, the determinant

of Ry is readily obtained as

det(Ry) =
hQP�1

p=0 (1 + �p)
iM

I
MQ
0 (13)

By using (12) and (13) in (10) and by defining the total received signal energy Ey = jyj2 and

the vector of path average SNRs � = (�0; : : : ; �P�1), we obtain the log-likelihood function in
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the form

L(yj�) =
1

I0

"
P�1X
p=0

�p

1 + �p

X(� + �p)� Ey

#
�MQ log I0 �M

P�1X
p=0

log(1 + �p) (14)

where we define

X(� + �p)
4

=
M�1X
m=0

jsHmpyj
2 (15)

The term X(� + �p) is obtained by summing for m = 0; : : : ;M � 1 the squared magnitude of

the output of a discrete time filter with impulse response matched to the delayed pilot waveform

s(t � � � mT � �p). Then, this is the output of a sort of square-law diversity combiner [8]

collecting the signal energy over all the M pilot repetition periods, for a given guess of the

timing � and multipath component with delay �p. We shall refer to these terms as the received

path energies at delay � + �p. From the implementation point of view, X(� + �p) for all p =

0; : : : ; P �1 can be calculated by sampling at delays �+�p the output of the same filter matched

to s(t).

4 Approximated ML Estimation

In order to find the ML estimate of � we should jointly estimate also the other unknown param-

eters � ; � and I0. For simplicity of exposition, we first assume that the delays � are known.

Then, for any given value of � we want to maximize the log-likelihood function with respect to

� and I0, i.e., we want to solve the constrained maximization problem8<: maximize L(yj�; �; � ; I0)

subject to � � 0; I0 � 0
(16)

This can be solved by using the KKT method [7]. In this section we letXp
�
= X(�+ �p) for the

sake of notation simplicity.

We have the following:

Proposition 1. The solution of the maximization problem (16) is given by

�p =

�
1

�
Xp � 1

�
+

; I0 =
�

M
; � =

Ey �
P

p2DXp

Q�D
(17)

where [�]+ denotes positive part, and where we define the set of indexes D = fp 2 [0; P � 1] :

Xp > �g, of cardinality jDj = D. Moreover, this solution exists and is unique for any set of
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received signal energies fXp : p = 0; : : : ; P � 1g, for all Q > P and M � 1 and for all Ey

such that
PP�1

p=0 Xp < Ey <
Q

P

PP�1

p=0 Xp.

Proof. See appendix A. �

Solution (17) has the following intuitive interpretation: � acts as an adaptive threshold level. If

Xp > � then � + �p is a good candidate for being a true channel path.

Let � be the permutation of P indexes sorting the Xp’s in non-decreasing order, i.e., such that

X�(0) � X�(1) � � � � � X�(P�1). Then, by substituting the solution of Proposition 1 into (14)

we obtain the maximized log-likelihood function in the form

L(yj�; � ) 4

= max
�;I0

L(yj�) = �(Q�D) log
Ey �

PD�1

p=0 X�(p)

Q�D
� log

D�1Y
p=0

X�(p) (18)

The exact ML joint estimator of � is obtained by further maximizing L(yj�; � ) with respect

to all possible � and �. While maximization with respect to � involves searching in a one-

dimensional real space, with complexity O(Q), the maximization with respect to � requires a

search over P -dimensional real spaces for all P = 1; 2; : : :, which is highly impractical.

In order to circumvent this hurdle, we restrict the search over a set of tentative delay vectors

� selected according to some criteria. At the same time, the set of tentative � should enforce

the condition that the delays are separated by more than Tc, which guarantees that the columns

of S are approximately orthonormal. The selection of the tentative � is based on the following

proposition and heuristic considerations.

Proposition 2. For a given fixed �, let f�p : p = 0; 1; : : :g be a sequence of delays such that

the sequence of corresponding received energies fXp : p = 0; 1; : : :g is non-increasing. Then,

the sequence of log-likelihood functions fL(yj�; �0; : : : ; �p) : p = 0; 1; : : :g is non-decreasing.

Moreover, if for some D � 1 the condition

XD � �D
4

=
Ey �

PD�1

i=0 Xi

Q�D
(19)

holds, then maxp�0L(yj�; �0; : : : ; �p) = L(yj�; �0; : : : ; �D�1).

Proof. See appendix A. �

From Proposition 2 it follows that we can construct a set of “nested” tentative delay vectors

of dimension P = 1; 2; : : : in sequence, by appending more and more delays corresponding to

decreasing received energies. The maximum of the log-likelihood function over the (infinite)
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delay vector sequence is found when, for some (finite) integer D the condition (19) holds.

Furthermore, we observe that:

1. The log-likelihood function increases with the received energy sum A =
PD�1

p=0 X�(p)

and decreases with the product B =
QD�1

p=0 X�(p). For a given value of A, L(yj�; � ) is

maximized by a “peaky” distribution of the path energies Xp’s. In fact, the product B is

maximum for the uniform distribution X�(0) = � � � = X�(D�1) = A=D while it is small

if the received energies are spread, i.e., if X�(0) � X�(1) � � � � � X�(D�1) (notice that

X�(D�1) > � > 0, so B cannot be zero).

2. In practice, systems are designed to handle multipath channels up to a given maximum

delay spread Td (see e.g. [9]) (defined here as Td
4

= maxp �p � minp �p [8]). Then, for

a given �, the channel paths are expected to be contained in a time window [�; � + Td],

where Td is a priori known.

Driven by the above two considerations, a meaningful choice of the sequence of delays f�p :

p = 0; 1; : : :g is to choose for each p the delay �p 2 [0; Td] for which Xp is maximum and �p

has not appeared before in the sequence. Moreover, since the paths should be separated by at

least one chip interval, we place around each chosen �p a forbidden region of size 2Tc. The

newly selected delays should not belong to the forbidden regions of already selected delays.

The resulting approximated ML algorithm is given as follows.

Initial timing estimation. For all � 2 [0; T ] we compute the value bL(yj�) given by the recur-

sion: initialize p = 0, �0 = Ey=Q, and the search interval S0 = [0; Td], then

1. Select �p = arg max�2SpX(� + � ), and let Xp = X(� + �p).

2. If Xp > �p, let �p+1 =
Ey�
Pp

i=0
Xi

Q�p�1
, let Sp+1 = Sp n [�p � Tc; �p + Tc],2 then increment p

by 1 and go to step 1.

3. If Xp � �p or if Sp+1 is empty, compute bL(yj�) = �(Q� p) log �p � log
Qp�1

i=0 Xi and

exit the recursion.

Finally, the estimated slot timing is given by b� = �m + b�0, where

�m = arg max
�2[0;T ]

bL(yj�) (20)

2The notationA n B denotes the complement of the set B with respect to the set A.
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and where b�0 is the estimated delay of the first path (also provided by the above algorithm)

corresponding to �m. �

As far as implementation is concerned, some considerations are in order.

� Up to now, we considered the parameter � as continuous. However, in a digital imple-

mentation, the search for the maximum of bL(yj�) is done on a discrete set of values. The

most computationally demanding operation is the computation of the matched filter out-

put zmp(�) = s
H
mpy involved in the calculation of X(� + �p) (see (15)). In most practical

applications it is sufficient to acquire the slot timing with an error of less than one chip.

Therefore, a very fine discretization of � is not needed. In our numerical examples, we

discretize � with step 1=W , so that we need just a matched filter operating at the signal

sampling rate W , whose output is given by z[i] =
P

j y[j]s((j + i)=W )�. The receiver

accumulates the squared matched filter outputs in a vector bufferb = (b[0]; : : : ; b[Q�1])

such that b[i] =
PM�1

m=0 jz[mQ + i]j2. The search of the delays and the search for the

maximum in (20) is performed over the discrete values ftk = k=W : k = 0; : : : ; Q� 1g

by processing the data buffer b.

� We have implicitly assumed that the pilot bursts fall approximately in the middle of the

observation intervals [mT; (m+ 1)T ]. However, the initial timing reference of the MT is

arbitrary, and the pilot bursts may fall across the boundaries of the observation intervals.

Since the slot timing is defined modulo T , in order to solve this problem it is sufficient to

apply the estimation algorithm by treating the data buffer b as a circular buffer.

� The complexity of the proposed algorithm is linear in the observation size QM , as op-

posed to other timing algorithms based on least-squares (LS) [5] or subspace decompo-

sition, which require matrix-vector multiplication or matrix eigen-analysis (see e.g. [12]

and references therein).

� As byproducts of initial timing estimation, the proposed method also provides estimates

for the interference plus noise power spectral density I0, for the path SNRs �p, for the path

delays �p and for the number of paths P . These can be used to speed-up some terminal

setup procedures [2, 3]. For example, the delays corresponding to the largest path SNRs

can be used to initialize the fine delay search of a rake receiver, and the knowledge of I0

can be exploited to initialize the power control loop.
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5 Results

We compare the performances of our estimator, hereafter denoted by joint ML (JML), with the

following estimators:

� The least computationally intensive estimator that selects as estimated delay the position

of the maximum element in the buffer b, in the sequel denoted as the “MAX” estimator.

� The approximated least-squares estimator (denoted by “LS”) which is an approximation

of the exact LS estimator that coincides with the ML estimator subject to the assumption

of constant channel. In fact, when the channel is constant during the observation interval

the ML slot timing estimator is given by [5, 6]

�̂ = arg max
�

�yH�S(�SH �S)�1�SH �y (21)

where �y = 1
M

PM

m=1 ym, ym = (y[(m � 1)Q]; : : : ; y[mQ � 1])T , and where �S is the

Q � L convolution matrix whose l-th column is given by �sl = (sl[0]; : : : ; sl[Q � 1])T

where

sl[i] =
1
p
W

N�1X
n=0

sn ((i� l� 1)=W � nTc � �)

and L is the channel delay spread expressed in sample periods. From the implemen-

tation point of view the algorithm corresponds to filtering the received signal �y with a

filter matched to the pilot waveform, windowing the filtered signal by the L � L matrix

(�SH �S)�1, taking the magnitude square of the output signal and finding the maximum.

Even though the matrix (�SH �S)�1 can be pre-computed this approach is extremely com-

putational intensive since it requires the computation of L scalar products per output

sample (i.e. for each possible �). Therefore we consider the more practical approximated

LS estimator based on the assumption �SH �S � I, also proposed in [5].

� The ML estimator with perfect knowledge of both the channel MIP and the interference

power spectral density I0 (denoted by “ML/known MIP”) proposed in [4]. Since all the

parameters but � are known the log-likelihood function (14) for this estimator reduces to

L(yj�) =
P�1X
p=0

�p

1 + �p
X(� + �p) (22)
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Table 1: Channel MIPs

MIP Delays (Tc) Variances (dB)

CH1 (0; 1; 2; 3) (0;�3;�6;�9)

CH2 (0; 7:5) (0; 0)

CH3 (0; 1:12; 1:34; 4:85; 5:35; 5:62) (�3; 0;�3;�5;�7;�8)

CH4 (0; 7:5; 15) (0; 0; 0)

As performance measure we use the root-mean square error (RMSE) of the estimated slot tim-

ing normalized with respect to the chip interval (i.e., it is expressed in fraction of Tc) and the

cumulative density function (CDF) Fe(E) of the sum of the energies of the paths falling in the

estimated window We = [�̂; �̂ + Td], normalized with respect to the total channel energy. The

CDF gives the probability that the fraction of the total channel energy “captured” inside We

is below a given level E. Since in general the performance of the subsequent synchronization

phase, involving BS identification, frame synchronization etc., depends on the fraction of cap-

tured channel energy (no matter which algorithm is used), the CDF is able to characterize the

performance of the whole synchronization procedure, independently of the particular algorithm

employed in the second phase.

In our examples the chip-shaping pulse is root-raised cosine with roll-off factor � = 0:22. As

pilot sequence, we used a PN sequence of lengthN = 255 and the UMTS primary synchroniza-

tion sequence of length N = 256 defined in [13]. The receiver sampling rate is W = 4=Tc and

both the pilot repetition interval and the slot duration are equal to T = 625Tc, corresponding

to Q = 2500 samples (in reality Q may be much larger but we were limited by the simulation

time). In our simulations we considered four typical channel MIPs described in table 1 and

denoted by CH1 [14], CH2, CH3, and CH4.

Figures 1–4 show the timing RMSE versus the pilot energy to interference plus noise ratio

Es=I0 for channel MIPs CH1 and CH3 under both constant and fast fading conditions. We refer

to fast fading conditions when the channel coherence time is much smaller than the period of

repetition of the pilot (but still larger than the pilot duration). Notice that the “JML” and the

“ML/known MIP” estimators are mismatched for constant channel, while the “LS” estimator is

mismatched for fast fading. The number of accumulated bursts is fixed to M = 10.
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The “LS” estimator performs very poorly in the presence of fast fading because is mismatched

(see figures 2 and 4). Indeed in the presence of fast Rayleigh fading, as in our scenario, the

amplitude of the averaged received signal �y = 1
M

P
m ym decreases as the number of accumu-

lated bursts M increases. On the contrary the “JML” estimator shows good performances also

in the presence of a constant channel despite it is mismatched in this case. Moreover it always

performs closely to the “ML/known MIP” estimator.

Extensive simulations show that increasing M reduces the Es=I0 needed to achieve a given

RMSE, without affecting the relative behaviors of the estimators.

Figures 5–8 show the CDF Fe(E) of the fraction of channel energy captured in the windowWe

for channels CH2 and CH4. In these figures the CDF of the “MAX” estimator shows abrupt

transitions each corresponding to the loss of the channel energy associated with a path. For

instance, in the case of channel MIP CH2, the transition occurs at E = �3 dB that corresponds

to the loss of half the channel energy. This effect is due to a false lock of the “MAX” estimator

on the the second path of the channel.

In the presence of fast fading the “JML” estimator generally outperforms all other estimators but

the “ML/known MIP” that is based on non-realistic assumptions. In the presence of constant

channel our estimator performs better than the “MAX” and the “LS” estimators for high Es=I0

(i.e. greater than 10 dB when M = 10) and it performs always close to the “ML/known MIP”

estimator, even though it is mismatched.

Finally figures 9 and 10 compare the performances of the “JML” estimator in terms of RMSE

versus Es=I0 for fast fading channel CH1 and CH3 when using the UMTS and the PN sequence,

for M = 10 accumulations. Performances are worse with the UMTS sequence due to its worse

acyclic autocorrelation properties.

6 Conclusions

Motivated by the initial BS acquisition procedure of UMTS, we considered the problem of slot

timing estimation based on bursty pilot signals. Subject to some simplifying working assump-

tions, we derived a low-complexity algorithm based on joint ML estimation of the slot timing, of

the multipath intensity profile and of the interference plus noise power spectral density and we

solved the likelihood function maximization problem by using the KKT conditions. Compar-
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isons with other algorithms such as the simple peak detection, the ideal algorithm that exploits

perfect knowledge of the channel multipath intensity profile and an approximated least-squares

are provided. The proposed algorithm shows good performances in all the considered condi-

tions, especially for very sparse channels and under fast fading conditions. Moreover it shows

significant robustness to mismatch namely to the presence of constant channels and non-ideal

acyclic autocorrelation properties of the pilot sequence.

Appendix

A Proofs

A.1 Proof of Proposition 1

We restate the maximization problem (16) more in general as follows. For arbitrary P , let

fXp : p = 0; : : : ; P � 1g be a non-increasing non-negative sequence, let Q > P and M > 1 be

arbitrary integers and let
PP�1

p=0 Xp < Ey <
Q

P

PP�1
p=0 Xp. We want to maximize the function

f(�; I0) =
1

I0

"
P�1X
p=0

�p

1 + �p
Xp � Ey

#
�MQ log I0 �M log

P�1Y
p=0

Xp

subject to � � 0 and I0 � 0.

The KKT necessary conditions for a (local) maximum point of the objective function in the

constraint set yield the system of inequalities

@

@�i
f(�; I0) � 0; for i = 0; : : : ; P � 1

@

@I0
f(�; I0) � 0

(23)

where strict equality must hold if �i > 0 or I0 > 0.

By solving the inequality for �i we obtain �i � Xi=(MI0)� 1. Since the RHS of the inequality

for �i is negative if �i = 0 and Xi=(MI0) < 1, we conclude that the solution is given by

�i =

�
Xi

�
� 1

�
+

(24)

where we let � = MI0. By substituting this into the inequality for I0, we obtain

� =
Ey �

PD�1
p=0 Xp

Q�D
(25)

13



where D � P is the minimum integer for which XD < �. Notice that since Ey >
PP�1

p=0 Xp,

then � > 0 thus I0 > 0 and (24), (25) satisfy the KKT necessary conditions.

Next, we prove that this solution exists and is unique. Finally, we prove that this is actually the

global maximizer for our problem.

Existence. For d = 1; : : : ; P , let

�d =
Ey �

Pd�1

p=0Xp

Q� d
(26)

and define the setDd = fXp : Xp > �dg. The solution (24), (25) exists if the equation jDdj = d

has a solution for some D 2 f1; : : : ; Pg.

By definition of �d, we have thatX0 > �1. If for 1 � p � P �1 the conditionXp > �p is never

verified, then the solution is obviouslyD = 1. Otherwise, there must exist some 1 � p � P �1

such that Xp > �p. Let d be the maximum of such indexes. We can write

Xd > �d

=
Ey �

Pd�1

p=0Xp

Q� d

=
Q� d� 1

Q� d� 1

 
Ey �

Pd�1

p=0Xp

Q� d
+

Xd

Q� d
�

Xd

Q� d

!

=
Q� d� 1

Q� d
�d+1 +

Xd

Q� d
(27)

which implies Xd > �d+1. Since by construction d = maxfp : Xp > �pg, then Xd+1 � �d+1,

which implies that D = d+ 1 is a solution.

Uniqueness. Suppose that there exist 1 � D < D
0 � P such that jDDj = D and jDD0 j = D

0,

i.e., 8<: Xp > �D for 0 � p � D � 1

Xp � �D for D � p � P � 1
(28)

and 8<: Xp > �D0 for 0 � i � D
0 � 1

Xp � �D0 for D
0 � i � P � 1

(29)

By following the same steps of (27) we can show that

�d > Xd ) �d+1 > Xd (30)

Then, starting from (28) we can write the chain of inequalities �D � XD ) �D+1 � XD �

XD+1 ) �D+2 � XD+1 � XD+2 ) � � � ) �D0 � XD0

�1, which contradicts (29). We

conclude that the solution must be unique.

14



Global maximum. The function f(�; I0) is not concave in RP+1+ . However, it is continuous on

the (convex) constraint RP+1+ and f(�; I0) ! �1 if any of its variables grows without bound.

By continuity, the global maximum of f(�; I0) is finite and the maximizer must have all finite

components, therefore it must satisfy the necessary KKT conditions. Since the solution (24),

(25) exists and is unique, it must be the global maximizer.

A.2 Proof of Proposition 2

Let fXp : p = 0; 1; : : :g denote a sequence of non-increasing path energies. If for some D

the condition (19) holds, then �D � Xp for all p � D and, by Proposition 1, the function

L(yj�; �0; : : : ; �p; �0; : : : ; �p; I0) for all p � D is maximized with respect to the �i’s and I0 by

letting � = �D = (Ey �
PD�1

i=0 Xi)=(Q � D), I0 = �=M and �i = [Xi=� � 1]+. Since �D

is determined only by the Xi’s for i = 0; : : : ;D � 1, by adding more delays to the sequence

�0; : : : ; �D�1 with received energy Xp � �D is not going to affect neither the value of �D nor

the value of the maximum L(yj�; �1; : : : ; �p).

Therefore, the only situation that must be taken into account is when, for given p, �p < Xp�1

and we add a delay �p with received energy Xp > �p. From the proof of Proposition 1 we

have that Xp > �p ) Xp > �p+1, i.e., L(yj�0; : : : ; �p; �0; : : : ; �p; I0) is actually maximized by

all �i > 0, implying that L(yj�; �0; : : : ; �p�1) 6= L(yj�; �0; : : : ; �p). Proposition 2 is proved by

showing that

L(yj�; �0; : : : ; �p�1) � L(yj�; �0; : : : ; �p)

By using the fact that

�p+1 =
Q� p

Q� p� 1

�
�p �

Xp

Q� p

�
and by lettingQ� p = k we have

L(yj�; �0; : : : ; �p)� L(yj�; �0; : : : ; �p�1) =

= �(k � 1) log �p+1 � log

pY
i=0

Xi + k log �p + log

p�1Y
i=0

Xi

= �k log
�

k

k � 1

�
1 �

Xp

k�p

��
+ log

�
k

k � 1

�
�p

Xp

�
1

k

��
= (k � 1) log

1� 1=k

�p=Xp � 1=k
+ k log

Xp

�p

> 0
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since the arguments of both logarithms in the third line above are larger than 1. This concludes

the proof.
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Figure 1: RMSE with constant CH1 vs. Es=I0 forM = 10 accumulated bursts
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Figure 2: RMSE with fast fading CH1 vs. Es=I0 for M = 10 accumulated bursts
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Figure 3: RMSE with constant CH3 vs. Es=I0 forM = 10 accumulated bursts
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Figure 4: RMSE with fast fading CH3 vs. Es=I0 for M = 10 accumulated bursts
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Figure 5: CDF with constant CH2 for Es=I0 = 4 dB and M = 10 accumulated bursts
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Figure 6: CDF with fast fading CH2 for Es=I0 = 4 dB and M = 10 accumulated bursts

20



−5 −4 −3 −2 −1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E (dB)

F
e(E

)

Const CH4; PN seq.; M=10; E
s
/I

0
=4dB

Max         
LS          
ML/known MIP
JML         

Figure 7: CDF with constant CH4 for Es=I0 = 4 dB and M = 10 accumulated bursts
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Figure 8: CDF with fast fading CH4 for Es=I0 = 4 dB and M = 10 accumulated bursts
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Figure 9: RMSE with fast fading CH1 vs. Es=I0 for UMTS and PN sequences and M = 10

accumulated bursts
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Figure 10: RMSE with fast fading CH3 vs. Es=I0 for UMTS and PN sequences and M = 10

accumulated bursts
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