
UAV Path Planning for Wireless Data Harvesting:
A Deep Reinforcement Learning Approach
Harald Bayerlein1, Mirco Theile2, Marco Caccamo2, and David Gesbert1

1Communication Systems Department, EURECOM, France
2TUM Department of Mechanical Engineering, Technical University of Munich, Germany

Autonomous UAV Data
Harvesting [1]

•Quadcopter UAV carrying a wireless access
point collects data from Internet of Things
(IoT) devices
•Trajectory planning subject to constraints on
flying time, obstacle avoidance and regulatory
no-fly zones (NFZs)
•Changes in scenario (position of IoT devices,
amount of data to be picked up etc.) usually
require expensive recomputation or relearning

yUse reinforcement learning (RL) to learn a
UAV control policy that generalizes over
changing scenario parameters.

System Model

•Square grid world M ×M ∈ N2 with K static
IoT devices at positions uk = [xk, yk, 0]T ∈ R3

•Maximum flying time T ∈ N discretized into
mission time slots t ∈ [0, T ]
•UAV’s position [x(t), y(t), h]T ∈ R3 and
velocity v(t) ∈ {0, V }
• Information rate for k-th device:

Rk(t) = log2 (1 + SNRk(t))

SNRk(t) = Pk
σ2 · dk(t)

−αl · 10ηl/10

•Scheduling algorithm based on TDMA
yThroughput maximization over K devices:

max
x(t),y(t)

T∑
t=0
C(t) = max

x(t),y(t)

T∑
t=0

K∑
k=1

Rk(t)

Reinforcement Learning [2]

Main idea: an agent in an environment
takes actions trying to maximize reward

•Modelled as finite MDP (S,A, R, P )
•Probabilistic policy π : S ×A → R
•Q-function or state action-value function:

Qπ(s, a) = Eπ [Rt|st = s, at = a]
yOptimal policy π∗(a|s) = argmaxaQπ∗(s, a)

Double Deep Q-Learning [3]

A double deep Q-network (DDQN) parame-
terizing the Q-function with parameter vector
θ is trained to minimize the expected temporal
difference (TD) error given by
L(θ) = Es,a,s′∼D[(Qθ(s, a)− Y (s, a, s′))2]

where the target value, computed using a sepa-
rate target network with parameters θ̄, is given
by
Y (s, a, s′) = r(s, a)+γQθ̄(s

′, argmax
a′

Qθ(s′, a′)).

We added some other extensions to the train-
ing process, i.a. combined experience replay
[4], as a remedy for the agent’s sensitivity to
the selection of the replay buffer size.

DQN Architecture with Map Centering

Advantage of Map Centering

(a) Episodic cumulative reward (b) Collection ratio and landed
Figure: Training process comparison between centered and
non-centered map input showing the average and 99% quantiles
of three training processes each, with episodic metrics grouped in
bins of 5000 step width.

Metric Manhattan Map
Has Landed 99.5%

Collection Ratio 94.8%
Collection Ratio and Landed 94.6%
Table: Performance metrics averaged over 1000 random
scenario Monte Carlo iterations.

References
[1] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert “UAV Path

Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach,” arXiv:2007.00544 [cs.LG].

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: an
introduction. MIT Press, second ed., 2018.

[3] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Thirtieth AAAI conference on
artificial intelligence, pp. 2094–2100, 2016.

[4] S. Zhang and R. S. Sutton, “A deeper look at experience replay,”
arXiv:1712.01275 [cs.LG], 2017.

“Manhattan”-type Map

(a) Time 31/38; Data
17.4/17.4

(b) Time 41/41; Data
34.5/34.5

(c) Time 30/35; Data
32.0/50.6

(d) Time 45/65; Data
60.7/60.7

Figure: Illustration of the same agent adapting to differences in
device count and device placement as well as flight time limits,
showing used and available flying time and collected and
available total data in the Manhattan scenario.


