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Abstract—To achieve the vision of Zero Touch
Management (ZSM) of network slices in 5G, it is
important to monitor and predict the performances of
the running network slices, or their Key Performance
Indicator (KPI). KPIs are usually monitored, but
also, with the advance of Machine Learning (ML)
techniques, predicted, in order to proactively react to
any service degradation of a running network slices.
While network- and computation-oriented KPIs can
be easily monitored and predicted, service-oriented
KPIs are difficult to obtain due the privacy issue, as
they disclose critical information on the performance
of services. To tackle this issue, in this paper, we
propose to use a new ML technique, known as
Federated Learning (FL). It consists in keeping raw
data where it is generated, while sending only users’
local trained models to the centralized entity for
aggregation. Therefore, FL is adequate to predict
slices’ service-oriented KPIs.

Index Terms—Network slicing, 5G, Machine learn-
ing, Federated Learning, Service-level performance.

I. INTRODUCTION

5G system is rapidly growing to support var-
ious new use cases related to different vertical
industries [1] [2]. These use cases differ from
traditional mobile use cases in terms of imposed
heterogeneous requirements, such as low access
latency, high bandwidth, communication reliability,
the support for massive numbers of devices, etc. In
this context, network slicing is considered as one
of the key enablers of 5G to support these hetero-
geneous requirements [3]. Network Slicing aims at
allowing the share of common physical resources
(radio, network, computation) among several ten-
ants using the concept of network softwarization;
i.e. building flexible and virtual networks tailored to
services. Network softwarization relies on three key
technologies: Software Defined Networking (SDN),
Network Function Virtualization (NFV) and Cloud

computing (central and edge). Usually, a network
slice is described and composed by a set of Vir-
tual and Physical resources, in form of Network
Functions (known as VNF and PNF), deployed
and interconnected together on top of a shared
infrastructure. The description of a network slice is
based on a Network Slice Template (NST), which
is used by an orchestrator/management framework1,
to orchestrate and manage life-cycle of network
slices; instantiation, configuration, activation, run-
time management and destruction. Recent trends
in management and orchestration of network slices
aim to achieve the concept of Zero touch network
and Service Management (ZSM) [4]; which consists
in automating the orchestration and management
process of running network slices, without involv-
ing humans. Reaching ZSM objectives requires
a heavy usage of Machine Learning (ML) tech-
niques; aiming at building the necessary compo-
nents to analyse the network slice performances
and auto build the decision mechanisms to react
(or proactively react) accordingly. Usually, the first
step consists in monitoring the performances of
a network slice, and uses the monitored data to
run analytic functions (using learning mechanism
or predefined policies) that aim at detecting per-
formances degradation or Service Level Agreement
(SLA) violation. The performances of a network
slice or Key Performance Indicator (PKI), can be
network oriented, service-oriented or computation
oriented [5]. The network- and computing-oriented
KPI can be easily monitored via the SDN controller
and NFV Infrastructure (NFVI) manager. Neverthe-

13GPP uses the term Communication Service Management
Function (CSMF), while ETSI uses Management and Orches-
tration (MANO) to refer to the orchestration and management
element handling the Life Cycle Management (LCM) of network
slices



less, service-oriented KPIs, such as the response
time of the Mobility Management Element (MME),
IP address allocation of a Dynamic Host Control
Protocol (DHCP), the number of packets handled
by a router, are more difficult to obtain, as they are
linked to a running vertical service or application,
where privacy and confidentiality of the data re-
garding the service or the application are required.
Traditionally, ML schemes are cloud-centric and
require the data to be sent and processed in a
central entity, e.g. a cloud server or a data center.
However, these schemes are not suitable for the
network slicing case, due to: (i) the inaccessibility
of private data, since the service-level metrics may
contain personal and sensitive information of slice
tenants; (ii) Network slices are isolated from each
other, which makes difficult to collect data and build
centralized machine learning models that identify
the performances of network slices. Therefore, there
is a critical need to go toward decentralized learning
solutions to handle efficiently distributed private
sub-data sets of network slices.
Federated Learning (FL) [6] [7] is a novel concept
which is gaining momentum as a decentralized
approach in ML. In FL, agents use their local data
to train, cooperatively, local learning models. These
agents, then send the local models, i.e. models’
weights, to a FL server for aggregation. Thus, FL
allows keeping the private data where it is gener-
ated and training learning models in a distributed
manner. Accordingly, FL is much more appropriate
to build learning models, without exchanging data;
hence respecting privacy and confidentiality of the
training data. In this paper, we aim to use FL
to build a learning model that predicts service-
oriented KPI of running network slices. We focus
on predicting a service-level KPI of MME, which
is run as a VNF in a network slice [8]. This KPI
corresponds to the latency to handle UE attach
requests by a MME or the response time, when
considering different parameters: number of used
CPU, number of attach request per second, etc. We
use OpenAirInterface (OAI) [9] to generate two
different data sets, within two different network
slices. Then, we applied FL to build a learning
model to predict the KPI. Finally, we demonstrate
the performance of the FL model, by comparing it
to the centralized ML model. To the best of our
knowledge, this is the first work that relies on FL
to handle the service-level performances of network
slices.

The remainder of this paper is organized as

follows. Section II gives a background on the use
of FL concept for networks. Section III introduces
our proposed scheme and shows how we use the
FL concept to predict slices’ service-oriented KPIs.
We discuss the obtained results in section IV and
conclude the paper in section V.

II. FEDERATED LEARNING FOR NETWORKS

FL is a distributed learning approach that recently
was introduced by Google [6] [7]. The FL concept
is composed of two main entities: the clients (par-
ticipants) and the Federated Learning (FL) server.
Initially, the FL server generates an initial global
model G0 before broadcasting it, along with data
type requirements and training hyper parameters,
to targeted clients. Then, each participant i starts to
collect new data and updates parameters of its local
model Lj

i , based on the global model Gj , where j is
the current iteration index. When receiving the local
models from clients, the FL server aggregates them
and sends back the updated model parameters to
the participants. In order to aggregate local models,
the FL server uses an aggregation algorithm [7],
namely FederatedAveraging (or FedAvg); which is
based on distributed Stochastic Gradient Descent
(SGD) algorithm.

In [10], we highlighted possible applications of
FL in unmanned aerial vehicle (UAV) enabled
wireless networks by addressing the suitability and
the usage of FL to deal with UAVs’ challenges.
In [11], the authors address the challenge of pro-
viding an ultra-reliable and low-latency vehicular
communication, by proposing a new joint transmit
power and resource allocation framework based
on FL concept. Thus, a power minimization prob-
lem is formulated, while ensuring low latency and
high reliability. As end-to-end latency depends on
both over-the-air latency and queuing latency, each
vehicle collects statistics about when their queue
length can exceed a threshold, before building a
prediction model in a federated way. Vehicles then
share their local models with the RSU for aggre-
gation. Hence, the prediction of such information
about vehicles’ queues can be exploited to assign
the needed resources to each vehicle. The authors
in [12] study how the computation and commu-
nication latency of wireless nodes impact the FL
convergence time and accuracy. They formulate an
optimization problem which deals with two trade-
offs: (i) between communication and computation
latency determined by a learning accuracy level, and
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Fig. 1. Training Process of Federated Learning.

thus (ii) between users energy consumption and the
Federated Learning time.

III. FEDERATED SERVICE-ORIENTED KPIS
PREDICTION

In this section, we describe how the FL concept
is used to deal with the prediction of service-
oriented KPIs. Although the presented model is
applied to predict the service-level KPI of a MME,
it can be easily extended for other type of service-
oriented KPI and for other type of VNF. The main
requirement is to have access to the data on the VNF
running the service and monitor its performance.

A. Modeling the prediction of service-oriented
KPIs

As stated earlier a network slice is composed
mainly by VNFs, with some few PNFs. To ensure a
scalable management of network slices, in [13], the
authors introduced the concept of in-slice manager.
Besides monitoring service-level KPIs of its net-
work slice, the in-slice manager is in charge of tak-
ing local decision to ensure optimal performances
of the network slice. In this work, we assume that
the in-slice manager is in charge of monitoring the
service-level KPI, and training the local FL model.
Let M = {1, . . . , N} denotes the set of N local
in-slice manager (clients), and each j ∈ M has a
private Data Subset Dj∈M . Each in-slice manager
j trains a Local Model Lj using its local data

subset Dj∈M . It then sends only the local model
parameters, i.e. model weights, to a central node,
e.g. the slice orchestrator. It worth mentioning that
the latter is in charge of LCM of end-to-end network
slices [8], and interacts with the NFV Orchestrator
(NFVO), RAN (Radio Access Network) as well
as the SDN controller to deploy and monitor the
performance of the network slice. All received local
models are aggregated to create a Global Model
GLM = ∪j∈MLj , using the FedAvg algorithm.
Fig. 1 illustrates our FL training process.
To train the learning model, FL uses a deep neural
network (DNN) which comprises three main layers:
(i) an input layer, (ii) multiple hidden layers that
map an input to an output, and (iii) an output
layer. A weighted and bias-corrected input values
are passed over an activation function, such as
ReLu and Softmax functions [14], to obtain an
output [14]. In addition, the weights are updated
using the SGD method with a predefined rate (learn-
ing rate), such that the loss function, i.e., distance
between the real and model output, is minimized.
The training process is repeated over many epochs,
i.e., full passes over the training subset, for accuracy
improvement.

B. Data Collection
Like any ML model, FL requires data to build

the learning model. To generate the needed data,
we conducted a set of experimentation using Ope-
nAirInterface (OAI) platform. OAI provides a set of



open source software to run the 4G core network
and radio access network. We emulated a set of
UEs and one eNodeB using the OAI simulator
(OAISIM) and two instances of OAI MME, run
as VNF inside two separated network slices. It is
worth nothing that OAISIM allows to run both UE
and eNB stacks in a computer, and generates attach
request messages as well as real user plane traffic
following the LTE standard. The MME treats the
traffic received from OAISIM as real UE traffic.
By increasing the number of OAISIM instances, we
were able to generate up to 2500 attach per second,
covering different traffic intensity.
We considered two different configurations of MME
VNF: 1 CPU and 1 GB of memory (network slice
1); 2 CPUs and 2 GB of memory (network slice 2).
Thus, we generated a local dataset for each network
slice, by varying the number of attach request per
second. We obtained two datasets comprising four
features: Slice ID, number of CPU resource, num-
ber of memory resource, and number of attached
users, as input data, and average duration of user
attachment, as output data.
The size of input space is [d; f ], where the number
of samples is d = 500 rows for each network slice.
The number of columns corresponds to the number
of input data f = 4. The size of output space is
[d; 1], which corresponds to the UE attach duration
time value associated to the input feature.

C. Data Pre-Processing
Once the datasets are collected, the data should

be pre-processed in order to be fed to the local
learning algorithm for the local training phase. This
step is crucial as the data format can affect the
prediction accuracy of the local learning algorithm.
This step ensures that the data is on the same
scale, format and includes all required features. So,
formatting the data efficiently will enable learning
algorithms to learn more in the training phase, and
hence predict with high accuracy.

D. Federated Training Process
The process of training a global learning model

is composed of three main phases:
1) Training Initialization Phase: In this phase,

the central node specifies the training hyper pa-
rameters such as, the learning rate and the number
of epochs. It also builds an initial global model
GLM0, which along with the training hyper pa-
rameters are broadcasted to selected clients (partic-
ipants).

2) Local Models Training: Each in-slice man-
ager i starts to update parameters of its local model
LM j

i , where j is the current iteration index. To
do so, each learner splits its local data into many
batches. Then, it performs the average gradient on
each batch regarding the current model, with a given
learning rate and during a number of epochs. The
updated parameters are then periodically sent to the
central node. Algorithm 1 details the main tasks
performed by in-slice manager i.

Algorithm 1 FedAvg on in-slice manager i
Require: Local epochs EP , Batches size S, learn-

ing rate η.
Ensure: Local model LM j+1.

1:
2: SliceUpdate(i, LM)
3: for ep from 1 to EP do
4: batches← (split data Di into batches of size

S)
5: for Batch T ∈ batches do
6: LM ← LM−η∇f(LM,T ) (∇f(LM,T )

is the average gradient on batch T at the
current model LM )

7: end for
8: end for
9: return LM to the global slice orchestrator.

3) Global Model Aggregation: The slice orches-
trator first aggregates the receiving local model.
It then sends back the updated model parameters
to the in-slice managers. We note that the main
objective of the slice orchestrator is to minimize
the average global loss function Loss(GLM j).

Loss(GLM j) =
1

M

i=N∑
i=1

Loss(LM j
i ) (1)

Algorithm 2 gives details on the main tasks of the
global model runs at the slice orchestrator.

IV. IMPLEMENTATION AND RESULTS

In this section, we validate our FL-based scheme
through two implementation prototypes.

A. Implementation Setting

Using federated Tensorflow tool [15], we imple-
ment two artificial neural networks (ANN). The first
one (ANN1) comprises 2 hidden layers while the
second one (ANN2) 3 hidden layers. We also note
that both ANN share the same activation functions
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Fig. 2. Performance evaluation of centralized scheme. (A) MSE. (B) MAE.

Algorithm 2 FedAvg on the slice orchestrator
Require: Number of rounds Round, number of

network slices M , Batches size B, Learning
rate η, Local epochs E.

Ensure: Global model GLMk+1.
1:
2: Initialize GLM0

3: for k = 1 to Round do
4: P = set of network slices
5: for Each in-slice manager i ∈ P in parallel

do
6: Lk+1

i ← SliceUpdate(i, Lk)
7: end for
8: GLMk+1 ← 1

|P |
∑i=|P |

i=1 Lk+1
i

9: end for
10: return GLMk+1 to in-slice managers.

and optimizer (SGD). Besides evaluating the per-
formances of our FL-based scheme, we compare it
with a centralized learning scheme that implements
the same ANNs and uses both local dataset as one
central dataset. Moreover, we evaluate both schemes
using three main metrics:

• Mean Squared Error (MSE): it shows the av-
erage squared error of predictions. It measures
the square difference between predictions and
real values and then average them, as follows:

MSE =

∑n
i=1 (yi − ŷi)

2

n
(2)

Where n is the length of the test set, ŷi
indicates the predicted value, and yi is the real
value of the test data sample i.

• Mean Absolute Error (MAE): it shows how
wrong the predictions were by averaging the
absolute differences between prediction and

TABLE I
IMPLEMENTATION PARAMETERS.

Parameters Values
Dataset
Number of client (network slices) 2
Number of samples by a client 500
Number of input variables 4 variables
Number of output variables 1 variable
Percentage of training set 80% of the dataset
Percentage of test set 20% of the dataset
Deep Learning
Deep learning Tool Tensorflow
FDL Tool Federated Tensorflow
Aggregation algorithm FedAvg
Deep learning algorithm Artificial Neural Networks

(ANN)
Number of ANN1’s hidden layers 2 hidden layers
Number of ANN2’s hidden layers 3 hidden layers
Number of hidden layers’ neurons 6 neurons
Activation functions Relu (hidden layers)

Linear (output layer)
Optimizer Stochastic Gradient Descent

(SGD)
Loss functions MSE, MAE
Learning rate 0.01
Batch size 5 samples
Number of epoch [20, 130] epochs

real values, using the following formula:

MAE =

∑n
i=1 |yi − ŷi|

n
(3)

• Communication Overhead (samples): this met-
ric reflects all exchanged information between
the centralized node and participants, in terms
of data samples (centralized scheme), local and
global learning models (federated scheme).

Table I summarizes the parameters and their
settings in our simulation.

B. Results

Fig.2-(A) and (B) depict, respectively, the MSE
and MAE of the centralized learning scheme ac-
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Fig. 3. Performance evaluation of federated scheme. (A) MSE. (B) MAE.

(A) (B)

Fig. 4. Performances comparison between centralized and federated schemes. (A) MSE of ANN2 and on test dataset. (B) Real and
Predicted average delay values.

cording to the number of epoch. We observe that
the ANN2 improves prediction accuracy by mini-
mizing both loss functions (MSE and MAE), when
increasing the number of epochs. In addition, we
remark that both neural networks generate a lower
loss function using MSE, when compared to MAE.
Hence, for centralized scheme, the ANN2 using the
MSE is more adequate for our dataset as it gives a
good prediction accuracy.

On the other hand, Fig.3-(A) and (B) show the
MSE and MAE of FL scheme, respectively, while
varying the number of epoch. As we can see, the
ANN2 outperforms ANN1 when considering the
MSE, whatever the number of epoch. However, the
ANN1 improves prediction accuracy when using
the MAE. Also, we observe that the accuracy loss
is lower when using the MSE than MAE for both
ANN1 and ANN2. Like the centralized scheme, our
FL scheme is more accurate when implementing the
ANN2 and using the MSE as accuracy metric.

Fig. 4-(A) shows a comparison between both
schemes in term of MSE on the test dataset, which
allowed us to evaluate the performances of our
model on data that it has not seen before. We
focus only on ANN2 results, since it allows both
mechanisms to achieve the best performances. We

observe that both schemes exhibit almost the same
performances, even when the number of test sam-
ples increases. To validate these results, we drew
in Fig. 4-(B) comparison between the real and
predicted average delay values of ten test samples.

Mostly, we notice that the predicted delay values,
by both schemes, are the same and closer to the
real delay values. These results confirm Fig. 4-(A)
results; showing the efficiency and the accuracy of
the FL scheme in predicting the average delay.

Fig. 5 shows the generated communication over-
head between both schemes. Based on the frequency
of local model updates, we consider two federated
schemes: in the first one, the local learners update
their local models every one learning epoch (Fed-
erated Scheme(1-Epoch)), while the local models
are updated each ten epochs (Federated Scheme(10-
Epochs)). We remark that the federated learning
scheme significantly reduces the communication
overhead as compared to the centralized scheme.
We also observe that the centralized scheme gen-
erates a stable overhead whatever the number of
epoch. This is mainly due to the fact that FL avoids
transferring data samples to the central node and
sends only the local models periodically. Thus, the
communication overhead will mainly depend on



the transfer frequency (as discussed in the next
subsection). However, the learners in the centralized
scheme must send their data sample towards the
central node in order to generate the learning model.
This transfer is performed only once which causes
the communication overhead to be stable.

Fig. 5. Performance evaluation comparison in terms of generated
communication overhead.

Consequently, we can deduce that the FL scheme
is able to achieve the same performances as the cen-
tralized one, without explicitly accessing to privacy-
sensitive information of network slices. We can
also claim that the FL can help to preserve slices
isolation especially in multi-tenants environment;
while reducing significantly the data to transfer (i.e.
less communication overhead) to the central node.

C. Discussion and Open Issues

Although the FL scheme can reach the same
performances as the centralized one in terms of pre-
diction accuracy, while preserving network slices’
privacy-data and reducing communication over-
head, two main challenges remain to predict slices’
service-oriented KPIs. Firstly, in our study, we
considered only two network slices as we were
not able to run parallel network slices due to
resource constraint. But, the performance of FL,
in terms of prediction accuracy, depends highly
on the number of network slices participating to
the global learning model. Higher the number of
network slices is, higher the global model accuracy
is. But, considering a high number of network slices
requires a high usage of network resources (com-
munication and computation), which may affect
the global performance of running network slices.
Hence, more investigations are needed to study
the trade-off between FL scalability and global
learning performance. One potential solution to
address such challenge is to divide network slices

into clusters according to their type (low latency or
high bandwidth), or their UEs locations. Then, only
slices belonging to the same cluster are allowed to
participate in the global learning model.
Secondly, according to our results, we deduced
that the prediction accuracy increases as the num-
ber of epoch increases, which reflects directly the
frequency of local model updates. However, up-
dating local models with high frequency increases
the network overhead and consumes more network
and computing resources. Therefore, more studies
are required to deal with the trade-off between
capabilities of slices’ local resources and perfor-
mance of global learning model. The designed FL
algorithm must also be robust to such challenge
by, for instance, adjusting the frequency of local
model updates according to the available network
and computing resources.

V. CONCLUSION AND FUTURE WORKS

In this paper, we addressed the challenge of
predicting network slices’ service-oriented KPIs.
Due to privacy-sensitivity of data on services’
performances, we applied FL to predict slices’
service-oriented KPIs, by locally keeping data
in each network slice, and only slices’ local
learning models are aggregated in a central
entity. To demonstrate the feasibility of our
scheme, we focused on predicting one of the key
service-oriented KPI of a VNF running inside
a network slice, which is the response time
of the MME. We generated two datasets using
OpenAirInterface platform, while varying the
CPU, memory dedicated to the VNF (MME) as
well as the number of attach request per second.
Then, we applied a federated learning algorithm
to predict the attachment duration of UE by using
the generated datasets locally at each network
slice. We implemented the devised model using
Tensorflow, and the obtained results showed the
efficiency of our scheme in reaching a good
prediction accuracy, while ensuring the privacy
issues of such service-oriented KPI.
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