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1
firstname.lastname@eurecom.fr,

2
firstname.lastname@univ-avignon.fr

Abstract

Anonymisation has the goal of manipulating speech signals

in order to degrade the reliability of automatic approaches to

speaker recognition, while preserving other aspects of speech,

such as those relating to intelligibility and naturalness. This pa-

per reports an approach to anonymisation that, unlike other cur-

rent approaches, requires no training data, is based upon well-

known signal processing techniques and is both efficient and

effective. The proposed solution uses the McAdams coefficient

to transform the spectral envelope of speech signals. Results

derived using common VoicePrivacy 2020 databases and pro-

tocols show that random, optimised transformations can out-

perform competing solutions in terms of anonymisation while

causing only modest, additional degradations to intelligibility,

even in the case of a semi-informed privacy adversary.

Index Terms: anonymisation, pseudonymisation, privacy, de-

identification, automatic speaker recognition

1. Introduction

Recent years have seen an increase in privacy legislation. Much

of it covers what is referred to as personally identifiable in-

formation (PII), e.g. biometric data such as speech [1, 2].

The community-led VoicePrivacy initiative [3] aims to foster

progress in the development of anonymisation techniques that

can be employed to conceal PII contained within speech sig-

nals.

The VoicePrivacy 2020 evaluation plan [4, Sec. 3.2] speci-

fies four requirements for successful anonymisation solutions.

They should: (i) produce a speech waveform; (ii) suppress

speaker-specific information as much as possible; (iii) preserve

intelligibility and naturalness; (iv) protect voice distinctiveness.

Anonymised speech should degrade the reliability of identifi-

cation applications such as automatic speaker recognition, but

should not interfere with the correct functioning of utility ap-

plications such as automatic speech recognition. Anonymised

speech recordings originating from the same source speaker

should have the same voice, while the linking of anonymised

voices to source speakers should be prevented. Given that each

speaker should retain a distinctive, but anonymised voice, the

task is perhaps referred to more appropriately as pseudonymi-

sation [5].

Best practice dictates that assessment is applied according

to different attack models or scenarios whereby a privacy adver-

sary has knowledge of, or access to, a similarly (but not identi-

cally configured) anonymisation system. To support assessment

according to the various VoicePrivacy scenarios, anonymisation

is required to be applied separately, with different configura-

tions, to two different data subsets, enrolment and test, such

that the anonymised voice for each speaker in each set is differ-

ent. Further details concerning the attack models are discussed

in [4, Sec. 3.3].

Two baseline anonymisation systems1 were made available

to VoicePrivacy 2020 participants: (i) a primary baseline based

upon state-of-the-art x-vector embeddings and neural wave-

form techniques [6]; (ii) a secondary baseline, inspired from

the McAdams coefficient [7], consisting of well-known signal

processing techniques [8]. The primary baseline is compara-

tively complex and requires substantial training data and com-

putational resources. Based upon a simple contraction or ex-

pansion of pole locations derived using linear predictive coding

(LPC), the secondary baseline requires no training data and is

comparatively straightforward and efficient. While the primary

baseline better suppresses speaker specific information [3] (re-

quirement ii), the secondary baseline better preserves voice dis-

tinctiveness [5] (requirement iv). The secondary baseline was

made available to provide additional inspiration, to expose a

broader potential solution space and to lower the cost of entry

to the VoicePrivacy initiative. The intention was to help attract

potential participants with a signal processing background that

might lack the background in speaker characterisation required

to explore the primary baseline. The secondary baseline was not

optimised in any way (other than through casual listening tests),

was applied in a deterministic fashion such that anonymisation

is easily reversible and was adopted by others [9, 10].

The work reported in this paper aims (i) to explore more

thoroughly the potential of well-known signal processing tech-

niques as a solution to the anonymisation problem, and (ii) to as-

sess the real need for and benefit of more complex, demanding

solutions. The paper reports our efforts to optimise the original

McAdams-based solution and its adaptation to a more stochas-

tic approach which affords better protection from reversibility.

Longer-term, it is hoped that this work might expose opportu-

nities to improve performance by combining the components or

techniques used by each baseline solution.

The remainder of this paper is organised as follows. Related

past work is described in Section 2. The proposed approach

to anonymisation is introduced in Section 3. Experiments are

reported in Section 4 while a discussion of findings, conclusions

and ideas for future work are presented in Section 5.

2. Previous work

A popular synthetic sound generation techniques in the field of

music signal processing is that of additive synthesis [11]. The

technique is used to generate timbre through the addition of

multiple cosinusoidal oscillations:

y(t) =

K∑

k=1

rk(t) cos(2π(kf0)
α
t+ φk) (1)

where k is the harmonic index, rk(t) is amplitude, φk is the

1https://github.com/Voice-Privacy-Challenge/Voice-Privacy-
Challenge-2020





Figure 2: An illustrative example of original pole positions and

pole shifts for values of α ∈ {0.9, 0.7, 0.5}. Only the top-

half of the pole-zero map is shown. Complex conjugate poles

undergo the same shift, but in the opposite direction.

voices for the same speaker. The goal here is to support experi-

mentation with different attack models and scenarios by ensur-

ing that the anonymisation of enrolment and test data results in

different, or sufficiently dissimilar pseudo-voices (see Section 1

and [4, Sec. 3.2]). The use of a fixed α in the original baseline

meant that the anonymisation of enrolment and test utterances

previously resulted in the same, or similar pseudo-voices.

The result is a stochastic approach to anonymisation

whereby the McAdams coefficient is sampled from within a

range of the uniform distribution, i.e. α ∈ U(αmin, αmax). The

application of anonymisation to enrolment and test data with

different, random McAdams coefficients drawn from different

ranges of the same uniform distribution should result in differ-

ent pseudo-voices for each speaker’s enrolment and test utter-

ances, while also providing some protection from reversibility.

We note that anonymisation is applied on a speaker-dependent

basis, with each speaker having a randomly chosen McAdams

coefficient. A privacy adversary would then need to know the

exact McAdams coefficient used to anonymise the speech of

any particularly speaker in order to revert the transform.

4. Experiments

This section describes the VoicePrivacy 2020 database used in

this work, the metrics used for assessment, the different attack

models or scenarios and our results.

4.1. Data and metrics

We used the VoicePrivacy 2020 database and protocols de-

scribed in [3, 4]. However, in contrast to the primary base-

line [6, 22], our anonymisation system has no requirement for

training data. Consequently, our solution makes no use of the

training partition. We report results for evaluation data only,

which is drawn from the LibriSpeech [23] and VCTK [24]

source datasets. While we have observed differences in perfor-

mance for each dataset, as well as gender dependencies, for rea-

sons of space limitations we report only average performance

here.2 Database, gender dependencies and other potential bi-

ases, obviously warrant investigation in further work. Assess-

ment is performed using the standard VoicePrivacy 2020 ASV

and ASR systems [3] both trained using the train-clean-360 par-

tition of the LibriSpeech database.

2Full results available at https://github.com/josepatino/Voice-
Privacy-Challenge-2020/blob/master/results/

Figure 3: Spectral envelopes for an original speech frame

and pole positions, and for anonymised versions for α ∈
{0.9, 0.7, 0.5}. Anonymisation results in an expansion or con-

traction of the spectrum either side of φ = 1 radiant or 2.5 kHz.

Degradation to intelligibility is measured through the ASR

word error rate (WER) whereas anonymisation performance is

measured through the ASV equal error rate (EER). Also re-

ported here are estimates of privacy using the zero evidence

biometric recognition assessment (ZEBRA) framework [25], a

recently proposed, adversary-agnostic, metric inspired by the

work of the forensic sciences community.

4.2. Scenarios

In adopting the terminology of [21], we investigated anonymi-

sation performance according to two different attack models

or scenarios. Both involve a privacy adversary who seeks

to determine whether two utterances belong, or not, to the

same speaker. In both cases there is a test utterance which is

anonymised, and an enrolment utterance which is either an orig-

inal utterance, or a similarly-anonymised utterance.

The first scenario assumes an ignorant privacy adversary

who has no knowledge of the test utterance being anonymised.

In this case the adversary attempts to determine the match be-

tween an original enrolment utterance and an anonymised test

utterance. This is referred to as the o-a scenario. The sec-

ond scenario assumes a semi-informed privacy adversary who,

while knowing that the test utterance has been anonymised and

having access to the systems used, does not know the config-

uration. In this case, the adversary will likely determine more

reliably the match between the two utterances by anonymising

the enrolment utterance such that the comparison is now be-

tween two similarly anonymised utterances, even though each

is anonymised with differently configured systems. It is referred

to as the a-a scenario. Like [21], we do not consider the unlikely

scenario of an informed adversary that has knowledge of both

the algorithm and the configuration.

We also report ASV and ASR results derived from systems

that are retrained on either original or anonymised data. These

experiments aim to determine robustness in the case that the

adversary is able to harness knowledge of the anonymisation

system to break the protection it affords. Similarly, we seek

to determine the improvements one can obtain in intelligibility,

if the ASR system is adapted to anonymised data. See [4] for

further details.

4.3. Results

Anonymisation results in terms of ASV EER are illustrated

in Figure 4. Results are shown for an original setup with-

out anonymisation, for the primary and secondary VoicePri-

vacy 2020 baselines (B1 and B2) and for B2 stochastic vari-

ants where the McAdams coefficient is drawn from different

intervals in α ∈ U(αmin, αmax). All systems based on the
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Figure 4: ASV performance in terms of the equal error rate

(EER, %) for various systems and for the VoicePrivacy 2020

test set. B1 is the primary baseline as in [3, 6, 22], while B2 is

the secondary baseline as in [8] with a fixed α = 0.8. Other

cases are for the proposed solution with α ∈ U(αmin, αmax).

McAdams coefficient have an LPC order of 20.

It is clear that all systems increase the EER from the origi-

nal 3.3%. Blue, left-most bars show EERs for ignorant privacy

adversaries (o-a scenario) when test utterances are anonymised

but enrolment utterances are not. Results show that B1 out-

performs B2 and all related systems by a substantial margin.

Yellow, middle bars show performance for semi-informed pri-

vacy adversaries (a-a scenario) when both enrolment and test

utterances are anonymised (with the same, but differently con-

figured algorithm). Now, B2 and related systems are more com-

petitive, e.g. 33.8% for U(0.7,0.9) cf. 32.3% for B1.

While lower values of αmin give better anonymisation, im-

provements are accompanied by degradations to intelligibility.

ASR results for the same setups are illustrated in Figure 5. An

original, baseline WER of 8.45% increases only to 10.95% for

B1, but to 13.7% for U(0.8,0.9) and worse for other configu-

rations. Thus, while the McAdams approach to anonymisation

can better protect privacy, it does so at the cost of reduced intel-

ligibility.

The question then is what level of improvement to intelli-

gibility can be delivered simply by retraining the ASR systems

with anonymised speech and what would be the correspond-

ing impacts to ASV. Answers are provided by the green bars in

Figures 4 and 5 for ASV and ASR systems respectively. For

ASV, the McAdams approach to anonymisation performs best,

e.g. 22.6% for U(0.8,0.9) cf. 13.7% for B1. Now, though, while

better anonymisation is achieved for αmin < 0.8, the corre-

sponding WER is much more competitive with the degradation

for B1. Whereas for the latter, the WER decreases from 10.95%

to 8.25%, it decreases from 45% to 9.6% for U(0.5,0.9), while

the EER is almost twice as high than for B1, e.g. up to 37.5%

for U(0.5,0.9).

Table 1 shows ZEBRA results which reflect the evidence re-

maining to a privacy adversary after anonymisation. They cor-

respond to the semi-informed scenario where the ASV system

is retrained on anonymised data, i.e. the green bars in Figures 4.

While the scales are inverted (less bits of disclosure infer bet-

ter privacy), ZEBRA results shown in column 2 confirm much

the same trend shown by EER results. Noting that anonymisa-

tion affords different levels of privacy to different individuals,

the ZEBRA framework also allows one to determine the worst

case level of privacy disclosure. According to [25], this is ex-

pressed according to categorical tags where a tag of ‘0’ reflects

no privacy disclosure, ’A’ is the next best case and where tag ‘F’

reflects the worst. Identical categorical tags of ‘C’ illustrated in

column 3 for each system suggest that the differences in perfor-

mance discussed above are not so great from the perspectives of

a worst case scenario.
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Figure 5: As for Fig. 4 except for the ASR performance in terms

of the word error rate (WER, %).

Table 1: ZEBRA results for the semi-informed (a-a) scenario

and where ASV systems are trained using anonymised data.

System
Expected privacy

disclosure (bits)

Worst case

categorical tag

Original 0.647 C

B1 0.403 C

B2 0.598 C

α ∈ (0.8, 0.9) 0.366 C

α ∈ (0.7, 0.9) 0.261 C

α ∈ (0.6, 0.9) 0.199 C

α ∈ (0.5, 0.9) 0.155 C

5. Conclusions

This paper shows that well-known signal processing techniques

can provide efficient and effective solutions to anonymisa-

tion for speech signals. The approach reported in this paper,

based upon transformations to the spectral envelope using the

McAdams coefficient, can increase by ten-fold the equal er-

ror rate of a baseline automatic speaker recognition system,

with only modest degradations to intelligibility, even in a semi-

informed privacy adversary scenario. This is achieved with a

randomised transformation which provides some level of pro-

tection from reversibility.

Despite this encouraging result, we must acknowledge that,

until error rates increase to the equivalent of random perfor-

mance, or a ZEBRA category of ‘0’, we remain far from meet-

ing the goal of true anonymisation. Database, gender and other

biases mean that an ‘averaged’ view of privacy tells an incom-

plete picture, especially when we know that even the stronger

anonymisation solutions still leave some with relatively weaker

protection. Encouragingly, there is plenty of scope to extend

this work. Thus far we have considered only adjustments to the

formant positions in terms of frequency. Future work should

explore more elaborate transformations to the spectral envelope

which could be investigated through random pole perturbations.

There is also scope to explore the resilience of the approach

to brute-force attacks, and new approaches which combine the

merits of our approach with those of the more sophisticated

VoicePrivacy primary baseline based upon state-of-the-art x-

vector embeddings and neural waveform techniques.

Last, all results reported in this paper are reproducible with

open source code and scripts available online3.

6. Acknowledgements

This work is partly funded by the VoicePersonae project which

is supported by the French Agence Nationale de la Recherche

(ANR) and the Japan Science and Technology Agency (JST). It

is also linked to the VoicePrivacy initiative and the Harpocrates

project also funded by the ANR.

3https://github.com/josepatino/Voice-Privacy-Challenge-2020/



7. References

[1] A. Nautsch, C. Jasserand, E. Kindt, M. Todisco, I. Trancoso, and
N. Evans, “The GDPR & speech data: Reflections of legal and
technology communities, first steps towards a common under-
standing,” in Proc. INTERSPEECH, 2019.
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