
Pre-processing Memory Dumps to Improve Similarity Score of Windows Modules

Miguel Martín-Péreza, Ricardo J. Rodrígueza,∗, Davide Balzarottib
aDpto. de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain
bEURECOM, France

Abstract

Memory forensics is useful to provide a fast triage on running processes at the time of memory acquisition in order to avoid
unnecessary forensic analysis. However, due to the e�ects of the execution of the process itself, traditional cryptographic
hashes, normally used in disk forensics to identify �les, are unsuitable inmemory forensics. Similarity digest algorithms allow
an analyst to compute a similarity score of inputs that can be slightly di�erent. In this paper, we focus on the issues caused by
relocation of Windows processes and system libraries when computing similarities between them. To overcome these issues,
we introduce two methods (Guided De-relocation and Linear Sweep De-relocation) to pre-process a memory dump.
The goal of both methods is to identify and undo the e�ect of relocation in every module contained in the dump, providing
sanitized inputs to similarity digest algorithms that improve similarity scores between modules. Guided De-relocation
relies on speci�c structures of the Windows PE format, while Linear Sweep De-relocation relies on a disassembling
process to identify assembly instructions having memory operands that address to the memory range of the module. We
have integrated both methods in a Volatility plugin and evaluated them in di�erent scenarios. Our results demonstrate that
pre-processing memory dumps with these methods signi�cantly improves similarity scores between memory modules.

Keywords: similarity digest algorithms, memory forensics, Windows, relocation

1. Introduction

Memory forensics is a branch of the computer forensics
process, normally carried out as part of the detection and
analysis stage in an incident response process (Cichonski
et al., 2012). In particular, memory forensics, unlike disk
forensics, deals with the recovery of digital evidence from
computer memory instead of computer storage media.
The recovery of evidence from volatile instead of non-

volatile storage is useful in scenarios where encrypted or
remote storage media are used, enhancing the traditional
forensic techniques that are more focused on non-volatile
media (Ligh et al., 2014). For instance, memory forensics
enables a forensic examiner to retrieve encryption keys or to
analyze malicious software (malware) that solely resides in
RAM. Furthermore, the initial triage in memory forensics is
faster than in persistent storage forensics since the quantity
of data to be analyzed is smaller.
Thememory of a system can be acquired in di�erent ways,

depending on the underlying operating system and the hard-
ware architecture. A recent complete survey of state-of-the-
art memory acquisition techniques is given in (Latzo et al.,
2019). In memory forensics, the current state of the system’s
memory is acquired and saved to disk as a memory dump
�le, which is later taken o�-site and analyzed with dedi-
cated software (such asVolatility (Walters andPetroni, 2007),

∗Corresponding author
Email address: rjrodriguez@unizar.es (Ricardo J. Rodríguez)

Rekall (Rekall, 2014), or Helix3, to name a few) to seek evi-
dence of the security incident. Among other items (such as
logged users or open sockets), amemory dump contains data
regarding the running processes in the system at the acqui-
sition time. Any data susceptible to analysis in the memory
dump is called a digital artifact.
A memory forensic analyst can triage the list of processes

running at the acquisition time to discard well-known pro-
cesses or to focus her attention on particular ones. Thus,
she needs some way to identify processes. In disk forensics,
cryptographic hash (one-way) functions (Goldreich, 2006)
such as MD5, SHA-1, or SHA-256 functions are commonly
used for data integrity and �le identi�cation of a seized de-
vice (Harichandran et al., 2016). A desirable property of
any cryptographic hash function is the avalanche e�ect prop-
erty (Webster and Tavares, 1986), which guarantees that the
hash values of two similar, but not identical, inputs (e.g., in-
puts where only a single bit has been �ipped) produce rad-
ically di�erent outputs. Due to this property, these crypto
hash functions are unsuitable for identifying common pro-
cesses that belong to the same binary application, but in dif-
ferent executions.
A common pitfall is to think that the content of a running

process and its corresponding executable �le (i.e., the con-
tent of the �le stored on the disk) are identical. In fact, the
OS loader may apply a number of transformations when the
executable �le is mapped into memory. For instance, soft-
ware defense techniques such as Address Space Layout Ran-

Preprint submitted to Computers & Security November 16, 2020

domization (ASLR) ensure that executable �les are mapped
inmemory regions that are di�erent among consecutive exe-
cutions (in GNU/Linux and other UNIX-base systems alike)
or among consecutive system reboots (inWindows systems).
Furthermore, the size of the executable �le in the memory
may be larger than on disk due to memory alignment is-
sues, as the granularity of the memory subsystem OS man-
ager determines the minimum quantity of memory space
that is allocated (for instance, 4 KiB in Windows, macOS,
and GNU/Linux).
To overcome these limitations, approximate matching or

similarity digest algorithms have emerged in recent years as a
prominent approach that ismore robust against active adver-
saries than traditional hashing (Harichandran et al., 2016).
A similarity digest algorithm identi�es similarities between
two digital artifacts providing a measure of similarity, nor-
mally in the range of [0, 100]. This similarity score enables
an analyst to �nd out whether artifacts resemble each other
or whether an artifact is contained in another artifact (Bre-
itinger et al., 2014a).
As mentioned above, the di�erences between processes

are mainly motivated by the work of the relocation process
as well as the memory subsystem: certain parts of a process
which are unused in a given moment can be swapped out
frommemory to free space for other applications. These dif-
ferences, in turn, negatively a�ect the similarity scores pro-
vided by the similarity digest algorithms (in some cases even
resulting in a similarity close to zero).
To minimize the e�ect of these di�erences, in this paper

we propose twomethods to process the input given to a simi-
larity digest algorithm prior to computing its similarity hash.
We focus on Windows OS (Windows, for short), since at
the time of writing it is the most predominant target of at-
tacks (AV-TEST GmbH, 2019). Both pre-processing methods
undo the work performed by the relocation process, but in
di�erent ways: the method called Guided De-relocation
relies on particular kernel-space structures that might be
contained in the memory dump, while the Linear Sweep
De-relocationmethod performs a linear sweep disassem-
bly of the binary code of a process. Both methods work on
Windows small memory page granularity (4 KiB in size). We
have evaluated both methods by comparing the similarity
scores generated by the dcfldd, ssdeep, sdhash, and TLSH
similarity algorithms, and shown that the similarity score is
improved when any of these methods is used. Let us remark
that our pre-processingmethods improve the similarity score
in terms of similarity accuracy between compared objects.
Otherwise, when no pre-processingmethods are applied, the
similarity score between similar objects quickly drops even
when few bytes are di�erent.
In addition, we have also evaluated to what extent the

similarity score of each algorithm considered in the paper
is a�ected by the loading process. We found that these
algorithms are particularly sensitive to byte modi�cations,
and that intelligent byte modi�cations can dramatically af-
fect the similarity score for some of these algorithms (such
as ssdeep).

In summary, the contribution of this paper is two-fold:

• We have developed two pre-processing methods that
undo the work performed by the Windows relocation
process. These methods can be applied in a memory
dump to extract the dumped modules in a way that fa-
cilitates the comparison between them. Recall that due
to relocation, there are byte changes in the binary code
that make the comparison between the same modules
coming from di�erent memory dumps di�cult. To fa-
cilitate this comparison, our methods detect and undo
these changes.

• We have evaluated the e�ect of the Windows program
binary loading process on the similarity scores of four
similarity digest algorithms widely used in forensics:
dcfldd, ssdeep, sdhash, and TLSH.

The outline of this paper is as follows. Section 2 introduces
previous concepts needed to understand our work. Namely,
we describe the structure of Windows applications, theWin-
dowmemory subsystem, and the similarity digest algorithms
evaluated in this paper. Section 3 reviews related work. Sec-
tion 4 is devoted to the two pre-processingmethods proposed
in this paper. Section 5 presents our evaluation of bothmeth-
ods. We have also studied the robustness of the similarity di-
gest algorithms to byte changes. Finally, Section 6 concludes
the paper and states lines of future work.

2. Background

This section introduces �rst the structure of Windows ap-
plications, how the Windows memory subsystem works and
then the similarity digest algorithms that we have evaluated.

2.1. Windows PE

The Windows Portable Executable (PE) format is the
standard format used by Windows to represent executable
�les (Microsoft Software Developer Network, 2019). Win-
dows PE was introduced from WinNT 3.1 onward as a re-
placement for the previous executable format, Common Ob-
ject File Format (COFF). As an interesting historical remark,
let us remember that COFF was also used on the Unix-based
systems before being replaced by Executable and Linkable
Format (ELF), the current format of executable �les.
The Windows PE format is a data structure de�ned in the

Windows’ SDK WinNT.h �le, divided into di�erent parts as
sketched in Figure 1. First, there are the MS-DOS headers
for backward compatibility. These headers comprise theMS-
DOS header and the MS-DOS stub, which is a piece of code
to inform that the program binary cannot run in DOS mode.
Then come the PE/COFF headers, which include the magic
bytes of the PE signature as an ASCII string (“PE” followed
by two null bytes), the PE �le header (de�ning characteris-
tics of the program binary such as the machine architecture
for which the PE �le was compiled, the endianness, whether
it is stripped, etc.), and optionally the PE optional header.

2

MS-DOS header

MS-DOS stub

PE signature

PE �le header

PE optional header

Section header

Section
(binary opcodes)

MS-DOS
headers

PE/COFF
headers

Section table
(section
headers)

Section
content

Figure 1: The Windows PE format.

This last part of the PE/COFF headers is only optional for
object �les, and is always present for executable �les. The
optional header includes important information about the
programbinary, such as its preferred virtualmemory address
and a structure named DataDirectory, which contains rele-
vant data such as the export and import directories of the pro-
gram binary, as well as its relocation table. The relocation ta-
ble is used by the Windows PE loader to change any instruc-
tion or data reference when the program binary is mapped
into a virtual address di�erent from its preferred one.
After the PE/COFF headers appear the Section headers.

For every section containedwithin the programbinary, a sec-
tion header exists which de�nes the section size in the binary
�le as well as in thememory, apart from other characteristics
(whether the section data is executable, readable, writable,
etc.). Finally, the content of each section follows as a linear
byte stream. The starting and ending limits of every section
are de�ned in each section header.

2.2. The Windows Memory Subsystem

Every Windows process has a private memory address
space, named virtual address space, that de�nes the set of
virtual addresses available for the process. Although amem-
ory address space belongs to a process, a user-space process
cannot modify its own address space layout since it is only
accessible in kernel-mode.
The default size of the virtual address space of a 32-bit

Window process is 2 GiB (prior to Windows 8) (Yosifovich
et al., 2017). On 64-bit Windows 8.1 (and later), this size
grows theoretically to 128 TiB although in practice it is lim-
ited at the time of this writing to less than 24 TiB.
The Windows memory subsystem handles the virtual

memory by dividing it into memory pages (Hu�man, 2015).
A memory page is a �xed-length contiguous block of virtual
memory. Windows de�nes two di�erent page sizes: small
pages of 4 KiB and large pages that range from 2MiB (in x86
and x64 architectures) to 4 MiB (in ARM).

Fstart R C

VirtualFree,
VirtualFreeEx

VirtualAlloc,
VirtualAllocEx

VirtualAlloc,
VirtualAllocEx

VirtualFree,
VirtualFreeEx

Figure 2: State machine of memory page states in Windows: F (free), R (re-
served), C (committed). The state color indicates whether the page is acces-
sible to the process (green) or not (red). Edge labels indicate the Windows
system call used to transition between states.

Note that a process virtual address space might be larger
(or smaller) than the physical memory on the machine.
Thus, the Windows memory subsystem maintains the page
table entries to ensure that when a thread in the context of
a process reads/writes to a virtual address space, the correct
physical address is referenced (Microsoft SoftwareDeveloper
Network, 2018a). The page table entries map a process vir-
tual memory page into a physical memory page.
Apart from maintaining page table entries, the Windows

memory subsystem is also responsible for paging memory
pages to disk when the memory required by the running
threads exceeds the available physical memory. Likewise,
it also retrieves the memory paged out to disk and brings it
back into the physical memory when needed.
A memory page can be in di�erent states in a process vir-

tual address space (Microsoft Software Developer Network,
2018b). A memory page is free, when the page has never
been used or is no longer in use. Initially, all memory pages
of a process are free pages. A process cannot access a free
page (an access violation exception arises if a free page is
read), but the process can reserve, commit, or simultane-
ously reserve and commit pages using Windows APIs such
as VirtualAlloc or VirtualAllocEx. Amemory page is re-
served when the process has reserved memory pages within
its virtual address space for future use. Note that a reserved
page only guarantees that its range of addresses is unusable
by other memory allocation functions, since the page can-
not yet be accessed for the process. Furthermore, a reversed
page can be committed. A memory page is committed when
the page has been allocated from the physical memory and
is ready to be used by the process.
Windows provides several system calls to manage mem-

ory pages at a process level. Figure 2 depicts the states of a
memory page and the state transitions (every arrow is labeled
with the appropriate system calls). The red states indicate
that the memory page is not accessible to the process, unlike
the green states. Note that Windows allows a programmer
to reserve and commit a memory page with a single call, as
well as to free a committed memory page.

2.3. Similarity Digest Algorithms

A similarity digest algorithm (also known as approximate
matching algorithm (Breitinger et al., 2014a)) identi�es simi-
larities between digital artifacts. In particular, the algorithm

3

outputs a similarity digest (also known as signature, �nger-
print, or simply hash) which depends on the input data, and
can then be compared with other digests. The comparison
value provided by the algorithm is named similarity score,
and normally ranges from 0 to 100, where 0 represents no
similarity while 100 means total similarity between the digi-
tal artifacts. Note that the similarity score is not a percentage
of similarity between artifacts, it is just a value that ranges
from 0 to 100.
There are three main categories of similarity digest algo-

rithms (Breitinger et al., 2014a): bytewise algorithms, which
rely on the raw sequence of bytes of digital artifacts to com-
pute similarity; syntactic, when the algorithm relies on inter-
nal structures present in the digital artifacts under analysis;
and semantic, when the algorithm uses contextual attributes
to interpret digital artifacts and estimate their similarity.
In this work, we have focused on bytewise similarity di-

gest algorithms. The underlying methods on which byte-
wise similarity digest algorithms rely characterize the fam-
ily of the algorithm. Block Based Hashing (BBH) algorithms
split data into blocks and concatenate their cryptographic
hashes to build the output. Context Trigger Piecewise Hash-
ing (CTPH) algorithms use parts of the input to decide how
data must be split. Statistically Improbable Features (SIF)
algorithms select the most relevant blocks of the input us-
ing statistical methods. Locality Sensitive Hash (LSH) algo-
rithms cluster equivalent elements into buckets and com-
pare the number of elements per bucket. In this work, we
have selected for evaluation the most relevant algorithm of
each family. The selected algorithms are dcfldd, ssdeep,
sdhash, and TLSH, respectively. We brie�y introduce each of
these algorithms below.
Before describing the properties of these algorithms that

are relevant to understanding our work, we �rst state the no-
tation used throughout the paper.

Terminology

Inspired by (Baier and Breitinger, 2011; Breitinger et al.,
2014a), we de�ne the following general terms to establish a
common ground for understanding:

Chunk. A chunk is the byte sequence in which the input is
divided. Some similarity digest algorithms determine
its length dynamically, while others use a �xed length.

Window. A window is a sliding �xed-length sequence of
bytes that the similarity digest algorithm uses to process
the input.

Feature. A feature is a unique identi�er of a chunk. It is
usually the cryptographic hash of the chunk.

Compression function. A compression function is a func-
tion that processes chunks and produces features as out-
put.

Similarity digest. A similarity digest is the �nal output of
a similarity digest algorithm. This digest can be com-
pared with other digests. In fact, a digest is an aggrega-
tion of features.

Similarity function. A similarity function is a function that
receives two similarity digests, compares them, and pro-
vides a similarity score as output.

Similarity score. A similarity score is a value provided by a
similarity function that gives insights into the similarity
between the similarity digests.

2.3.1. dcfldd
The dcfldd is a similarity digest algorithm that belongs to

theBlock BasedHashing family. Published in 2002 (Harbour,
2002), it is an enhanced version of the well-knownGNU’s dd
command-line tool. dcfldd was initially developed to en-
sure data integrity during forensic imaging.
The compression function of dcfldd splits input data into

�xed-length chunks (by default, 512 bytes) and computes a
cryptographic hash (it supports MD5, SHA-1, and almost all
SHA-2 variants; MD5 is used by default) as a feature for every
chunk. These features are concatenated to form the similar-
ity digest. As a similarity function, it computes the ratio of
equal features (i.e., the number of chunks having the same
cryptographic hash). Its similarity score ranges in the integer
interval [0, 1,… , 99, 100].
The most signi�cant issue of dcfldd is the alignment ro-

bustness problem: just adding (or deleting) a single byte at
the beginning of the input changes the o�set of all subse-
quent bytes and thus all the computed features are modi�ed.
In addition, when a byte within a chunk changes, its corre-
sponding feature changes dramatically due to the avalanche
e�ect of cryptographic hashes (Webster and Tavares, 1986).

2.3.2. ssdeep
ssdeep is an example of Context Triggered Piecewise Hash-

ing (CTPH), developed by Jesse Kornblum in 2006 to avoid
the alignment robustness issue of dcfldd (Kornblum, 2006).
ssdeep splits input into chunks based on certain bytes

of the input itself. In particular, it uses a sliding win-
dow of 7 bytes and a customized Alder32 checksum func-
tion (Deutsch, Peter and Gailly, J, 1996) to generate a valuev that is compared against a trigger value t, initially set tot = 3 ⋅ 2⌊log2 N3⋅S ⌋, where N is the size of the input (in bytes)
and S = 64 is the desirable number of chunks generated by
the algorithm. A chunk is built sliding the window through
the input andwhen v mod t = t−1 holds, the end of the cur-
rent chunk is identi�ed and the construction of a new chunk
is started. When the algorithm ends the 63rd chunk, the re-
mainder of the input makes up the last chunk. In contrast,
if the algorithm �nishes the input processing with less than
32 chunks, t is halved and the process of identifying chunks
starts again. Simultaneously, a second sequence of chunks is

4

calculated for a value equal to 2t. The calculation of the sec-
ond sequence of features increases the possibilities of com-
paring digests from �les of di�erent sizes.
As a compression function, ssdeep processes each chunk

with the Fowler–Noll–Vo (FNV) function, which is a non-
cryptographic hash algorithm with good dispersion proper-
ties (Fowler et al., 2011), and encodes the last 6 bits of the
FNV output with base64 encoding, providing a single char-
acter as a feature. The similarity digest is then built as the
concatenation of the value t and the two sequences of fea-
tures after processing chunks built with t as the trigger value
and chunks with 2t. The digest also ends with the path of
the input �le. The size of the digests provided in the similar-
ity digest ranges from 67 to 137 bytes, since the number of
generated chunks may vary.
As a similarity function, ssdeep checks the existence of

feature sequences that have the same trigger value in the di-
gests. If no pair exists, then the similarity score drops to 0.
Otherwise, if both pairs of feature sequences t and 2t have a
common trigger value, the similarity score is the maximum
of the similarity scores of t and 2t. To compare two feature
sequences, all repeated character sequences are reduced to
three characters. Then, they need to share at least a sequence
of 7 bytes to reduce the false positive rate. Otherwise, the
similarity score will be 0. Finally, the Damerau-Levenshtein
edit distance between these sequences is calculated (Wal-
lace, 2015), and its value is normalized between 0 and 100.
This normalized value is the similarity score between both
digests.

2.3.3. sdhash
Vassil Roussev introduced in 2010 a new family of similar-

ity digest algorithms that rely on statistically improvable fea-
tures (Roussev, 2010). In particular, they use entropy to pick
features that are very unlikely to occur and store them inside
Bloom �lters. A Bloom �lter is a probabilistic data structure
used to test set membership (Bloom, 1970).
In this case, the input is divided into 64-byte overlapping

sequences with overlapping bytes (i.e., a 68-byte input has
5 chunks), and sdhash yields a normalized entropy for all
chunks. Then, each entropy value is mapped to a prece-
dence rank to highlight the improvable chunks (Roussev
et al., 2008). This precedence rank is empirically determined
as the probability of having a chunk with a given entropy in
a given ground truth dataset (the higher the probability, the
higher the precedence rank). Chunks with extremely high
(over 990) or low (100 or below) entropy values are discarded
to reduce the false positive rate. Next, the algorithm iterates
the sequence of precedence ranks in awindowof 64 elements
to calculate the popularity of each chunk, selecting the chunk
with the lowest value and left-most position in the sequence.
Finally, all chunks with a popularity higher than or equal to
a threshold t (by default, t = 16) are selected as statistically
improvable chunks.
sdhash uses the cryptographic hash SHA-1 as a compres-

sion function over the selected chunks and the features are
added into the Bloom �lters. Every �lter has a maximum of

160 elements. When a �lter is full, a new�lter is created. The
similarity digest is the concatenation of the Bloom �lters.
To compute the similarity between two digests d and d′,

sdhash calculates the similarity score as the average of the
similarity �lter scores. In particular, the similarity �lter score
between each digest �lter with fewer Bloom �lters and each
�lter of the other digest is computed, and the maximum
value of these scores is considered for the average. A mini-
mum of 16 elements is needed in a �lter, otherwise, the sim-
ilarity �lter score is −1 (Vassil Roussev, 2013).
2.3.4. TLSH
J. Oliver et al. developed in 2013 a new similarity digest al-

gorithmbased on aLocality Sensitive hashing (LSH) scheme,
named TLSH (Oliver et al., 2013). LSH was previously used
to detect spam emails (Damiani et al., 2004).
TLSH populates an array of 128 counting buckets with 1-

byte identi�ers that are computed for all tri-grams gener-
ated using a sliding window of 5 bytes over the input. Then,
it calculates the �rst, second, and third quartile points of
the counting buckets. The similarity digest is composed of
two parts: �rst, the header digest (3 bytes), computed as the
checksum (modulo 256) of the input, the logarithm of length
(modulo 256), and the ratio between the �rst and third quar-
tiles and between the second and third quartiles (both ratios
are in modulo 16); and second, the body digest (32 bytes),
which consists of 2 bits per bucket to indicate in which quar-
tile the bucket is contained.
To compare two similarity digests, TLSH calculates the

weighted Hamming distance between the body digests and
sums to it the weighted Hamming distance between the
lengths and quartile ratios from the header digests. When
the Hamming distance between any of the quartile ratios is
greater than one, the value to be summed up is multiplied
by 12. This implies that variations of a few bytes in the in-
put can modify the quartile distribution, increasing the odds
of changing the quartiles ratios. An increment of 2 units in
both quartile ratios implies an increment of 48 units in the
similarity score. Note that TLSH, unlike the other algorithms
described here, works in an opposite manner: a zero similar-
ity score represents that the inputs are nearly identical inputs
while the greater the score, the lower the similarity between
the inputs.

3. RelatedWork

Similarity digest algorithms have been applied mainly
in the forensics analysis area to identify total or partial
�les (Harbour, 2002; Kornblum, 2006; Roussev, 2010; Oliver
et al., 2013). Likewise, the authors in (Breitinger and Bag-
gili, 2014) proposed these algorithms to identify known �les
in network tra�c. These algorithms have also been pro-
posed to cluster malware, since they allow similarities be-
tween binary �les to be captured (Li et al., 2015; Upchurch
and Zhou, 2015). Unlike our work, these works only con-
sider executable �les as they are stored on disk.

5

In 2014, the NIST published a technical report establish-
ing a common de�nition and terminology for approximate
matching (Breitinger et al., 2014a). The list of desirable
properties for a new similarity digest was recently proposed
in (Moia andHenriques, 2017). Among others, these proper-
ties are a high compression rate, full coverage, ease of digest
generation and comparison, obfuscation resistance, random
noise resistance, and a GPU-based design to speed up the
generation and comparison function. Some of these prop-
erties are inherited from cryptographic hashes while others
are the consequences of common issues detected among sim-
ilarity digest algorithms.
Several authors have studied how similarity digest al-

gorithms behave in terms of performance and robustness.
Their performance has been extensively studied (Breitinger
et al., 2013, 2014b; Breitinger and Roussev, 2014). These ar-
ticles propose and develop a generic framework to evaluate
similarity digest algorithms. The authors consider ssdeep,
sdhash, and mrsh for comparison. The robustness of sim-
ilarity digest algorithms against random byte modi�cation
attacks is evaluated in Oliver et al. (2014). In particular,
they study the e�ects of image manipulation, text �le ma-
nipulation, and executable manipulation, that is the modi-
�cation of source code before compiling the executable. In
this study, the authors evaluate ssdeep, sdhash and TLSH.
Finally, in (Pagani et al., 2018) the authors study the simi-
larity score of sdhash, TLSH, and mrsh-v2, which is an en-
hancement of ssdeep that uses a similar feature function
with a minimal feature size and Bloom �lters to store fea-
tures (Breitinger and Baier, 2012). In particular, they evalu-
ated the similarity scores in three di�erent scenarios: library
identi�cation, di�erent tool-chains and optimizations, and
di�erent versions of an application. The authors stated that
sdhashwas betterwhen dealingwith compilation tool-chain
changes, while TLSH is preferable when the changes involve
source code modi�cations.
Similarity measurement is also used as a matching tech-

nique for secure computing and forensics applications in
other works, but focused on other underlying models in-
stead of program binary code. For instance, in (Nia et al.,
2019) the authors used a similarity measurement to evalu-
ate the similarity in attribute-based attack graphs. Likewise,
random-walk computation to evaluate similarities between
subgraphs has been proposed especially in the context of col-
laborative recommendation and natural language process-
ing (Fouss et al., 2007; Minkov and Cohen, 2008).
Regarding pre-processing methods, in (Moia et al., 2020)

the authors propose excluding common features to enhance
the performance of sdhash and mrsh-v2. In particular, the
features that appear above a given threshold are considered
as a common feature and are thus discarded. Unlike their
method, our methods are independent of the particular di-
gest algorithm used for computing similarity since our pre-
processing inputs work in the input rather than in the inner
working of the algorithms.
Finally, in (White et al., 2013) the authors propose a pre-

processing method that normalizes the bytes a�ected by the

relocation process and the imported functions of a binary �le
by overwriting the full addresses with constant values. In the
�rst phase, their approach recreates theWindows PE loader,
transforming the PE into its virtual layout. The method uses
a cryptographic hash to create one signature per memory
page and stores the o�set of normalized addresses. When
they need to validate a memory page, ensuring that the page
has been unmodi�ed in the memory, the method uses the
stored o�sets to normalize the addresses inside the page and
then to compare the hash computed over the memory page.
Unlike their approach, our pre-processing methods do not
need binary �les to identify the bytes a�ected by relocation.
In addition, we are less conservative since we normalize the
possible bytes a�ected by relocation (or ASLR) considering
64-byte memory alignment.

4. Pre-Processing Methods

As previously mentioned, the relocation process random-
izes the locations of memory segments where a program
binary is mapped, including code and data memory seg-
ments. Likewise, ASLR ensures this relocation occurs as a
software defense technique to thwart control-�ow hijacking
attacks (Szekeres et al., 2013). ASLR can be seen as a special
relocation process. By default, these data and code reloca-
tion processes are performed in Windows’s system libraries
every time the OS is rebooted.
Note that these byte modi�cations may a�ect the simi-

larity score of the bytewise similarity digest algorithms in-
troduced in Section 2.3. To assess this possibility, we have
evaluated to what extent the relocation processes a�ect each
of these bytewise similarity digest algorithms when compar-
ing similarity between image �les. In this regard, we have
calculated the similarity score and the number of dissimilar
bytes between pairs of memory pages. In particular, we have
considered 868,673 comparisons over 44,398 valid memory
pages (more details about the experimental data are given in
Section 5). Figure 3 shows boxplots of the similarity scores
for each algorithm with respect to the ratio of dissimilar
bytes. Themean values of the boxplots are plottedwith a dot.
Our results indicate thatmore than 46% of thememory pages
compared contain dissimilar bytes, and the similarity score
of all the algorithms drops quickly when the ratio of di�erent
bytes is between 1% and 10%. Note that the similarity score of
TLSH is normalized to be comparable with the other scores.
The normalization process performed is further explained in
Section 5. Based on these results, we consider that bytewise
similarity digest algorithms do not provide a good degree of
con�dence for a forensic analysis due to the dropping of the
similarity scores when the number of di�erent bytes grows
slightly, as well as due to the high score variability.
Let us recall that these byte di�erences in the image �les

coming from the same application are due to program binary
relocation. In this paper, we propose to pre-process the im-
age �les prior to the application of bytewise similarity digest
algorithms to mitigate these problems. In particular, we in-

6

0 10 20 30 40 50 60 70 80 90 100
Ratio of different bytes

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

0 10 20 30 40 50 60 70 80 90 100
Ratio of different bytes

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

0 10 20 30 40 50 60 70 80 90 100
Ratio of different bytes

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

0 10 20 30 40 50 60 70 80 90 100
Ratio of different bytes

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(a) dcfldd (b) ssdeep (c) sdhash (d) TLSH

Figure 3: Similarity scores with respect to the ratio of dissimilar bytes. The similarity score of TLSH is normalized to be comparable with the other scores.

troduce two pre-processing methods of image �les that rely
on the available information within the image �le.

Problem Statement

Figure 4 sketches the system model of our problem. A
memory dump Di , obtained in a forensically sound man-
ner (e.g., using Volatility (Walters and Petroni, 2007) or
Rekall (Rekall, 2014) tools), is pre-processed before extract-
ing the modules {mi,1, ..., mi,N′ } contained in the dump with
any of the pre-processing methods proposed in this work.
The extracted modules have been appropriately derelocated
and thus the similarity scores of each pair (mi,j , mi,k), j ≠k, 1 ≤ j ≤ N′, 1 ≤ k ≤ N′, are more accurate than when the
pre-processing method is not applied. We have highlighted
in the �gure where the pre-processing methods take place.
To formally present the algorithms of pre-processing

methods, we have adopted the notation described in Table 1.
Below, we explain in detail how our proposed pre-processing
methods work.

4.1. Pre-Processing Method 1: Guided De-relocation
We have named the �rst method Guided De-

relocation, since it simply “undoes” the work performed
by the Windows OS due to the program binary relocation
process guided by information contained within PE mod-
ules. Roughly speaking, this method identi�es and changes
every byte a�ected by the program binary relocation process
by relying on the .reloc section of an image �le.
The .reloc section is a section within the Windows PE

structure (see Section 2.1) added to a program binary by the
compiler. It contains the necessary information to allow the
Windows PE loader to make any adjustment needed in the
program binary code and data of the application due to re-
location. Recall that the relocation process occurs when the
program binary cannot be mapped into its preferred address
(because there is already another element mapped to a con-
�icting region) and thus instructions or variables within the
program binary can be relocated with that information.
The information of the .reloc section is divided into

blocks, where each block represents the adjustments
needed for a 4K memory page. Every block contains
an IMAGE_BASE_RELOCATION structure, which contains the

Notation DescriptionD = ⟨ℱD,ℳD⟩ Amemory dumpD.ℱD = {f1, ..., fN} Set of �le objects contained inD.ℳD = {m1, ..., mM} Set of modules contained inD.
memory_range(m) Returns the range of virtual memory

addresses of a modulem.
PEheader_datadir(m) Returns the �elds of the PE header

and data directories of a modulem.
points_to(p) Returns the address pointed by the

�eld p.
derelocate(m, a) De-relocates the address a in themod-

ulem.
�le_object(m) Returns the �le object associated to a

modulem.
sections(f) Returns the set of section names of a

�le object f.
copy(m) Returns a byte copy of the modulem.
blocks(f) Returns the set of blocks of the .reloc

section of a �le object f.
rvaddress(b) Returns the relative virtual address of

the block b.
entries(b) Returns the set of entries of a block b.
o�set(e) Returns the o�set of an entry e.

section_code(m) Returns the bytes contained in the
code section of a modulem.

lookup_tables(C) Returns the set of lookup tables con-
tained in C.

32bit_image(m) Returns a boolean indicating whether
the modulem is a 32-bit image.

strings_padding(C) Returns the set of (UNICODE and
ASCII) strings and padding bytes con-
tained in C.

byte_patterns(C) Returns the set of common byte pat-
terns in C.

subsequent(p) Returns the subsequent bytes of a pat-
tern p.

build_sequences(b) Returns the sequences of valid assem-
bly instructions, considering as �rst
byte of each sequence bi , 0 ≤ i ≤14, b0 = b (see further explanation
and example in Section 4.2).

memoperand(i) Returns thememory operand of an as-
sembly instruction i.

Table 1: Summary of formal notation used in the pre-processing algorithms.

7

D1…DN
Memory dumps

Pre-processing
method mi,1…mi,N′Unrelocated modules of Di

Compute
similarity score of(mi,j , mi,k)for each Di

for every pair(mi,j , mi,k), j ≠ k,1 ≤ j ≤ N′,1 ≤ k ≤ N′
Figure 4: Sketch of the system model. The place where our proposed methods can take place has been highlighted.

RVA of the page and the block size. The block size �eld is
then followed by any number of 2-byte entries (i.e., a word
size), which codi�es a value that indicates the type of base
relocation to be applied (�rst 4 bits of the word) and an o�-
set from the RVA of the page that speci�es where the base
relocation is to be applied (the remaining 12 bits).
However, the .reloc section is normally stripped o� from

an image �le once the Windows PE loader has relocated it
appropriately (Uroz and Rodríguez, 2020). Luckily, a mem-
ory dump may contain other elements rather than the im-
age �le that represent the image �le and do contain such a
.reloc section, such as File Objects (Microsoft Corpora-
tion, 2019a). A File Object is an internal Windows struc-
ture which represents the �les mapped into the kernel mem-
ory, and acts as the logical interface between the kernel and
the user-space and the corresponding data �le stored in a
physical disk (Yosifovich et al., 2017).
In particular, this kernel-level structure contains a pointer

to another structure which in turn is made up of three
opaque pointers: DataSectionObject, SharedCacheMap,
and ImageSectionObject. An opaque pointer points to a
data structure whose contents are unknown at the time of its
de�nition. From these structures, both DataSectionObject
and ImageSectionObject may point to a memory zone
where the program binary was mapped either as a data �le
(that is, containing all its content as in the program binary it-
self) or as an image �le (that is, once theWindows PE loader
has relocated). Both memory representations contain the
.reloc section of the program binary, as stated in (Uroz and
Rodríguez, 2020).
Algorithm 1 shows the pseudo-algorithm of the Guided

De-relocation pre-processing method. As input, it takes a
memory dumpD = ⟨ℱD,ℳD⟩, where ℱD = {f1, ..., fN} andℳD = {m1, ..., mM} are the set of �le objects and modules
contained in D, respectively. As output, it returns the list of
unrelocated modules U obtained from D. Line 1 initializesU with empty set. Then, the list of �le objects ℱ is retrieved
from D. In this regard, we have used the Volatility plugin
filescan, which �nds File Object structures in physical
memory using pool tag scanning. Next, we iterate for each
modulem inℳD. The list of modules ofℳD is retrieved us-
ing the Volatility plugin modules. We �rst retrieve the rangeA of virtual memory addresses of m, obtaining its base ad-
dress and its image size (which is the size of the program
binary in virtual memory; line 4). Then, we walk through
the PE structure looking for every PE �eld which is a mem-
ory address pointing toA (line 5). When found, we leave the

Input: Amemory dumpD = ⟨ℱD,ℳD⟩
Output: Set of unrelocated modules U

1 U = ∅
2 ℱ ← ℱD = {f1, ..., fN}
3 foreachm ∈ℳD do
4 A← memory_range(m)
5 ∀p ∈ PEheader_datadir(m) ∶ points_to(p) ∈A ∴ derelocate(m,p)
6 if ∃f ∈ ℱ ∶ �le_object(m) =f, sections(f)⋂{“.reloc”} ≠ ∅ then
7 m′ ← copy(m)
8 ℬ ← blocks(f)
9 foreach b ∈ ℬ do
10 a ← rvaddress(b)
11 ℰ ← entries(b)
12 foreach e ∈ ℰ do
13 derelocate(m′, am + o�set(e))
14 end
15 end
16 U = U⋃{m′}
17 end
18 end
Algorithm 1: Guided De-relocation pre-processing
method.

two-less signi�cant bytes of such a �eld unmodi�ed, while
zeroing the others (for the sake of brevity, in the following
we refer to this process as the de-relocation process). We then
check if f ∈ ℱ such that f corresponds to the retrievedmod-
ule m and if f has a .reloc section. If so, the de-relocation
process in m is performed, using the information given by
the .reloc section of f (lines 6–15). First, a copy m′ of the
module m is created (line 7). The set of blocks contained in
the .reloc section is retrieved next, and stored inℬ (line 8).
Then, for each block b ∈ ℬ the RVA of its memory page
is taken as a. The set of entries of the block b is stored inℰ (line 11). Next, for each entry block e ∈ ℰ, the memory
address a plus the o�set of the entry e is unrelocated in the
modulem′ (line 13). Recall that we leave the two-less signif-
icant bytes of the address [a+ o] inm′ unmodi�ed while ze-
roing the others, since we assume that the relocation process
always takes place with 64-byte alignment (as ASLR indeed
does (Yosifovich et al., 2017)). Once the de-relocation pro-
cess �nishes, the modulem′ is added to the set U (line 16).
Note that this method, however, does not check in ad-

vance whether the memory page corresponding to a blockb is paged out (i.e., its content is zeroed). In fact, the time

8

Input: Amemory dumpD = ⟨ℱD,ℳD⟩
Output: Set of unrelocated modules U

1 U = ∅,V = ∅
2 foreachm ∈ℳD do
3 V = V⋃

empty(m)
4 A← memory_range(m)

/* Phase 1: structured data processing */
5 P ← PEheader_datadir(m)
6 V = V⋃P
7 ∀p ∈ P ∶ points_to(p) ∈ A ∴ derelocate(m,p)

/* Phase 2: unstructured data processing */
8 C← section_code(m)

/* Tag lookup tables */
9 ℒ← lookup_tables(C)
10 V = V⋃ℒ
11 ∀l ∈ ℒ ∶ points_to(l) ∈ A ∴ derelocate(m, l)
12 if 32bit_image(m) then

/* Tag strings */
13 S← strings_padding(C)
14 V = V⋃S

/* Tag byte patterns */
15 ℬ ← byte_patterns(C)
16 ∀p ∈ ℬ,U ← subsequent(p) ∶ a = points_to(U) ∈A∴derelocate(m, a),V = V⋃U

/* Process the rest of bytes in C */
17 foreach b ∈ C ⧵ V do
18 ℐ ← build_sequences(b)
19 I = {I ∈ ℐ ∶ ∀Si ∈ ℐ, Si ≠ I, |Si| < |I|}
20 ∀i ∈ I ∶ a = memoperand(i) ∈ A∴derelocate(m, a)
21 V = V⋃ ℐ
22 end
23 end
24 U = U⋃{m}
25 end
Algorithm 2: Linear Sweep De-relocation pre-
processing method.

required to iterate over every entry of the block b is less than
the time required to test if the memory page is full of zero
bytes. The computational complexity can be expressed asO(M ⋅ F ⋅ B ⋅ E), where M is the number of modules and F
is the number of �le objects contained in the memory dump,
respectively, B is the total number of blocks per �le object,
and E is the total number of entries per block.

4.2. Pre-Processing Method 2: Linear Sweep De-
relocation

Our previous pre-processing method, sketched in Algo-
rithm 1, relies heavily on the existence of .reloc sections in
the File Object structures retrieved from amemory dump.
However, this section is not always found in the modules of
a memory dump. In addition, it may happen that the physi-
cal memory page into which the .reloc sectionwasmapped
has been outswapped to disk and so it cannot be fully re-
trieved. Therefore, we propose a second pre-processing
method, named Linear Sweep De-relocation, which
works independently from the File Object structures.
Algorithm 2 shows the pseudo-algorithm of the new pre-

processing method. As input, it takes a memory dump D =⟨ℱD,ℳD⟩, where ℱD = {f1, ..., fN} andℳD = {m1, ..., mM}
are the set of �le objects andmodules contained inD, respec-
tively. Line 1 initializesU and V (which will be a set to store

the bytes marked as visited) with empty sets. Then, we iter-
ate for each module m that can be retrieved from ℳD. We
use again the plugin modules of Volatility. In line 3, we �rst
identify all memory pages of 4096 bytes swapped out from
memory by means of the Volatility framework. In particu-
lar, we retrieve the memory address space of every module
and then check whether the �rst byte of each memory page
is valid. A memory page is valid if it resides in the memory.
Every byte of the outswapped memory page is tagged as vis-
ited (that is, they are incorporated to the set V). Then, in
line 4 we retrieve the range A of virtual memory addresses
of m, obtaining its base address and its image size (which is
the size of the program binary in virtual memory).
This algorithm works in two phases. In the �rst phase,

it processes all the structured data of the PE header of m,
walking through the PE structure and tagging every byte
within the PE structure as visited byte (lines 5 and 6). In
addition, we also look for �elds in the PE structure which
are memory addresses pointing to A and if found, the de-
relocation process takes place (line 7). As before, we assume
that the relocation process always takes place with 64-byte
alignment (Yosifovich et al., 2017). In this part of the PE
structure processing, the entries of the import address table
of the module are de-relocated and tagged.
Then, the second phase of the algorithm begins (from

line 8 to the end). We �rst retrieve the memory space C ⊂A into which the code section of m is mapped (line 8).
In this regard, we consider as PE code section the section
that has IMAGE_SCN_CNT_CODE, IMAGE_SCN_MEM_READ, and
IMAGE_SCN_MEM_EXECUTE section �ags (Microsoft Corpora-
tion, 2019b). In this phase, our aim is to locate sequences of
bytes which arememory addresses targeting toC. Therefore,
di�erent work is needed depending on the target architec-
ture of the modulem.
Note that the 64-bit mode in Intel introduced a new ad-

dressing form named relative Instruction Pointer address-
ing (RIP-relative addressing), which is the default for many
64-bit instructions that reference memory in any of their
operands (Intel Corporation, 2016). Therefore, none of the
64-bits instructions contain absolute memory addresses tar-
geting to C and hence there is no need to locate and de-
relocate them. If m is a 64-bit image �le, we only need to
identify lookup tables of memory addresses targeting to C
and mark them as visited bytes (line 9 and 10). For each en-
try of these tables, the de-relocation process takes place if the
entry targets to C. Note that six bytes would be zeroed in this
case, assuming a 64-byte alignment (Yosifovich et al., 2017).
The same process is applied when the module m is a 32-bit
image �le, although zeroing two bytes instead of four.
In addition, ifm is a 32-bit image �le, a little more of work

is needed (line 12 to line 23). We �rst aim to identify known
byte patterns (lines 13 to 16). In this regard, we identify null-
terminatedUNICODE andASCII strings inC, looking for se-
quences of printable characters. We have set aminimumof 5
characters to identify the byte sequence as a string (line 13).
Every byte of the identi�ed strings is tagged as a visited byte
(line 14). In our experiments, we found that some bytes that

9

make up a memory address were preceded by easily recog-
nized byte patterns. Therefore, as a next step we identify
common byte patterns in C, looking for sequences of bytes
such as FE FF FF FF or FE FF (line 15). For every match,
we check if the next two double words arememory addresses
that point to A. If so, the de-relocation process takes place.
As before, every pattern byte identi�ed and the subsequent
addresses are also tagged as visited bytes (line 16).
Finally, the last part of the algorithm (lines 17 to 22) it-

erates in each byte b ∈ C which was not visited by any of
the aforementioned processes. For every non-visited byte,
we build sequences (in bytes) of valid assembly instruction ℐ.
In this regard, we get slices of the contiguous 15 bytes start-
ing at the address of b, considering the maximum length of
Intel assembly instructions (Intel Corporation, 2016). Note
that we get the contiguous bytes of b, regardless of whether
they are visited bytes or not. Then, we get a set of sequences
of valid instructions ℐi starting at bi , 0 ≤ i ≤ 14, b0 = b,
and whose bytes are not already visited (line 18). Our al-
gorithm processes these sequences in an optimized way to
avoid redundant disassembling. In particular, we iterate in
each instruction of the sequence, marking the beginning of
every instruction in an auxiliary structure until we detect an
instruction which was previously marked as the beginning
of an instruction in another sequence. In such a case, we
discard the current sequence of instructions since we have
reached a subsequent sequence of instructions already rec-
ognized by another previous sequence of instructions and
thus, the previous sequence will always be greater in length
than the current one. We rely on the Capstone disassembly
framework (Capstone) to obtain the valid sequences of in-
structions.
Then, we select the longest byte sequence of valid assem-

bly instructions I ∈ ℐ (line 19). We iterate in each instruc-
tion in this sequence, tagging every byte of the instruction
as a visited byte and checking if the instruction i ∈ I has an
operand which is a memory address that points to A. If so,
the de-relocation process takes place (line 20). This iteration
�nishes marking every byte of the instructions stored in ℐ as
visited (line 21).
The iteration process of the algorithm ends adding the

modi�ed module m to the set of unrelocated modules U
(line 24). Note that unlike Algorithm 1, this algorithm is
more complete since U contains all the modules retrievable
from the given memory dump (recall that Algorithm 1 only
returns the modules that have a relocation section). The
computational complexity can be expressed as O(M ⋅ 4S),
whereM is the number ofmodules contained in thememory
dump and S is the total size of the code section (in bytes) per
module. Note that every operation of Algorithm 2 that works
onC is iterating in every byte contained inC. Comparedwith
the previous algorithm, note that B ⋅E < S, since blocks and
entries are subparts of a module. Likewise, F ≪ S, since S
is much greater than the number of �le objects available in a
memory dump (about three orders of magnitude greater).
Let us illustrate how the processing of sequences of in-

structions works by providing an example. Assume the fol-

lowing snippet of real assembly code of a Windows library
(instructions are shown in hexadecimal representation and
inmnemonics) whose bytes were not identi�ed by any of the
previous steps of the algorithm:
FC CLD
FEFF ???
FFFF ???
E8 39000000 CALL 0x1043
8B45 08 MOV EAX ,DWORD PTR SS:[EBP+0x8]
E8 A487FFFF CALL KernelBa .752917 F0
C2 0C00 RETN 0xC
90 NOP
FE ???
FFFF ???
FF00 INC DWORD PTR DS:[EAX]
0000 ADD BYTE PTR DS:[EAX],AL
00CC ADD AH,CL
FFFF ???

We �rst get a slice of 15 bytes, starting at byte FC. Figure 5
shows the initial condition of a scenario where no bytes in
the slice were previously visited. The sequence of valid in-
structions starting at FC is as follows (we consider 0x1000 as
the base address of the code snippet):
0x1000: cld

This sequence is solely one byte. In each iteration in the
slice, we have highlighted in yellow the byte considered as
the starting byte. As an optimization method, to avoid the
selection of bytes that we already knowmake up some other
valid sequence, we de�ne a length vector and iterate in
each instruction of the sequence, setting a value of -1 in the
length vector in the byte following the end byte of the in-
struction. In this case, the second position in the length
vector is updated with -1 to indicate the end of this instruc-
tion. In addition, the �rst component of the length vector
is updated with the value of 1, which is the length of the se-
quence of instructions already processed and starting at byte
FC. Then, we move to the next non-visited byte in the slice
and whose length is still set to zero value in the length vec-
tor.
The byte FF is then considered. Since this constitutes

an empty sequence of valid instructions, its position in the
length vector is updatedwith a -1 value. The same situation
occurs with the following bytes, until the byte E8 is reached.
The valid sequence of assembly instructions is:
0x1005: call 0x1043
0x100a: mov eax , dword ptr [rbp + 8]
0x100d: call 0xffffffffffff97b1
0x1012: ret 0xc
0x1015: nop

In this case, the sixth component of the length vector is
updated with the value of 17, while the eleventh and four-
teenth components are updated with the value of -1. How-
ever, since the next instruction in the sequence is out of the
current slice, the length vector is no longer updated. Start-
ing the disassembly in byte 39, the sequence of valid instruc-
tions is:
0x1006: cmp dword ptr [rax], eax
0x1008: add byte ptr [rax], al
0x100a: mov eax , dword ptr [rbp + 8]
0x100d: call 0xffffffffffff97b0
0x1012: ret 0xc
0x1015: nop

10

Here, �rst the ninth component is updated
with a value of -1 (the beginning of instruction
add byte ptr [rax], al). When processing the next
instruction, our optimization algorithm sees that the in-
struction at byte 0x1008 has already been visited by a
previous sequence of instructions. In this case, the process-
ing of this sequence is skipped and the seventh component
of the vector is updated with -1. Therefore, the rest of the
instructions in the sequence after the third instruction are
no longer disassembled.
Then, we move to the byte 00, obtaining the following se-

quence:
0x1007: add byte ptr [rax], al
0x1009: add byte ptr [rbx - 0x5b17f7bb], cl
0x100f: xchg edi , edi
0x1011: inc edx
0x1013: or al, 0
0x1015: nop

This sequence has a size of 14 bytes. However, since its last
instruction is the same as the last instruction in the previous
sequence, its component is updated with -1. Note that the
tenth component of the vector is also updated with a value
of -1. The next byte to be considered as a starting byte is
therefore 45:
0x100b: inc ebp
0x100c: or r8b , r13b
0x100e: movsb byte ptr [rdi], byte ptr [rsi]
0x100f: xchg edi , edi
0x1011: inc edx
0x1013: or al, 0
0x1015: nop

Again, its component in the length vector is updatedwith
-1 since the fourth instruction in the sequence has already
been processed. Prior to reaching the repeated instruction,
the thirteenth and the last component are also set to the value
of -1.
Since all bytes in the slice have been checked, now the se-

quence starting at the sixth byte is considered as the longest
sequence of instructions. All the bytes in the slice are now
marked as visited, as well as all the bytes that make up the
sequence obtained starting at byte E8. In addition, if any of
the instruction in this sequence has a memory operand that
targets to A, its address is de-relocated. The next slice of 15-
byte length would start at the byte FE which follows the NOP
assembly instruction, since all the previous bytes are now
marked as visited.

4.3. Implementation
We have implemented both pre-processing methods in a

plugin for the Volatility memory analysis framework (Wal-
ters, 2007). Our plugin, called Similarity Unrelocated
Module (SUM), is an improvement of our previous tool intro-
duced in (Rodríguez et al., 2018). We have released the code
of SUM under GNU A�ero GPL version 3 license in (Martín-
Pérez, 2020).
Unlike our previous tool, SUM yields a similarity digest for

every non-zero memory page from every module which is
retrieved from a memory dump, while the comparison is an
array of similarity scores by pages. The forensic analyst can

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Initial condition

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

After processing the sequence of instructions starting at FC

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0

After processing the sequence of instructions starting at FF

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 0 0 0 0 -1 0 0 -1 0

After processing the sequence of instructions starting at E8

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 0 -1 0 -1 0 0 -1 0

After processing the sequence of instructions starting at 39

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 0 0 -1 0

After processing the sequence of instructions starting at 00

slice FC FE FF FF FF E8 39 00 00 00 8B 45 08 E8 A4
length 1 -1 -1 -1 -1 17 -1 -1 -1 -1 -1 -1 -1 -1 -1

After processing the sequence of instructions starting at 45

Figure 5: Example of selection of the longest sequence of instructions, per
15-byte slices.

choose to pre-process every module with the Guided De-
relocation method only (when the .reloc section is re-
trievable), with theLinear SweepDe-relocationmethod
only, or with both (it �rst tries to recover the .reloc sec-
tion to apply the �rst pre-processingmethod, and applies the
second method if it fails). By default, SUM applies no pre-
processing method.
The plugin also supports the use of more than one simi-

larity digest algorithm at once, the selection of only speci�c
sections of the modules for similarity comparison, and se-
lecting processes by PID or processes and shared libraries by
name.

5. Experiments and Discussion

In this section, we assess our pre-processingmethodsmea-
suring the similarity betweenmoduleswith di�erent similar-
ity digest algorithms (speci�cally, dcfldd, ssdeep, sdhash,
and TLSH). Apart from this assessment, we have also studied
to what extent the similarity score of each similarity digest
algorithm is a�ected when bytes are changed.

Description of Experiments

As experimental settings, we have considered three ver-
sions of Windows (Windows 7 6.1.7601, Windows 8.1
6.3.9600, and Windows 10 10.0.14393) in both 32-bit and 64-
bit architectures, running on top of the VirtualBox hypervi-
sor. We acquired the memory of these virtual machines ten
minutes after a fresh boot, without interacting with the vir-
tual system. This process was repeated ten times. The vir-
tual machines were rebooted between consecutive memory
acquisitions to guarantee that ASLR takes place and thus sys-
tem �les are relocated.
As experimental software, we have used Volatility 2.6.1

and Capstone 4.0.0 for the disassembling process performed

11

by our Linear Sweep De-relocation pre-processing
method.
For comparison, we have selected three sets of mod-

ules such that they have a .reloc section and thus
are valid for our �rst pre-processing method: system
libraries, which are used in almost all processes (we
chose ntdll.dll, kernel32.dll, and advapi32.dll); sys-
tem programs, which are system processes common to
all Windows OS considered in the evaluation (we chose
winlogon.exe, lsass.exe, and spoolsv.exe); and work-
station programs, which include common workstation soft-
ware such as Notepad++ version v7.5.8 and vlc version 3.0.4.
For every memory dump, we extracted these modules

and computed the similarity hashes under three scenarios:
no pre-processing (we termed this as Raw scenario), ap-
plying the Guided De-relocation pre-processing method
(Guided De-relocation scenario), and applying the Lin-
ear Sweep De-relocation method (Linear Sweep De-
relocation scenario).
Since our pre-processing methods work mainly on the PE

header and the code section of modules, we only consider as
input for the similarity digest algorithms the �rst memory
page of every module (this usually contains the PE header
since the header size is commonly less than 4KiB) plus the
memory pages containing the code section (that is, a subset
of the memory pages of every module).
The similarity of the modules is computed as an aggre-

gate similarity score of pairs of memory pages of the mod-
ules that are comparable. As similarity digest algorithms, we
use dcfldd, ssdeep, sdhash, and TLSH (described in Sec-
tion 2.3). Since the score provided by TLSH has an unclear
upper limit and works in a reverse mode (the lower the simi-
larity score, the greater the similarity between the inputs), it
is di�cult to compare TLSHwith other similarity digest algo-
rithms. Therefore, we normalize the similarity score yielded
by TLSH as follows.
Based on our experiments, we set the value of 80 as a

threshold t to indicate that there is no relation between two
memory pages. The value t = 80 is near to 85, which is the
threshold for comparing versions of program applications
proposed in (Oliver et al., 2013). The normalization function

is de�ned as: TLSHnorm(x) = ⎧⎨⎩100
(1 − xt) , if x ≤ t0 , otherwise

5.1. Related Comparison

In this case, we compare valid (i.e., non-null) mem-
ory pages in the same relative o�set, using the same pre-
processing method. We have considered here all memory
dumps. In total, we have 16710 valid pages from 38800 to-
tal pages in 32-bit scenarios, and a similar number of valid
pages (namely, 16831 valid pages) from 42350 total pages in
64-bit scenarios. On average, the number of non-null mem-
ory pages obtained in the memory dumps is around 40%. We
plan to study further the process of outswapping memory
pages in Windows.

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(a) 32-bit architecture

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) 64-bit architecture⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 6: Related comparison: similarity scores when none pre-processing
method is applied (Raw scenario).

We discuss below the results for each comparison sce-
nario. The results are plotted using violin plots (Hintze and
Nelson, 1998), which show the median as an inner mark,
a thick vertical bar that represents the interquartile range,
and the lower/upper adjacent values to the �rst quartile and
third quartile (the thin vertical lines stretching from the thick
bar). For the sake of readability, we have set for each similar-
ity digest algorithm a di�erent mark and color: ⬢ dcfldd,
$ ssdeep,' sdhash, and▴ TLSH.
Note that we compare memory pages versus memory

pages instead of memory pages versus PE �les on disk.
While the latter comparison would provide a better ground
truth, the former comparison is also applicable to situations
where data from disk is not present, such as when data
comes from packed executables or other types of dynamic-
generated code. Note that we compare memory pages ver-
sus memory pages instead of memory pages versus PE �les
as on disk. While the latter comparison would provide a bet-
ter ground truth, the former comparison is also applicable
to situations where data from disk is not present, such as
when data comes from packed executables or other types of
dynamic-generated code.

Raw scenario. Figure 6 shows the aggregated similarity
scores considering the sixty memory dumps, for every se-
lected module in 32-bit Windows (upper section of the �g-
ure) and in 64-bit Windows (lower section), when no pre-
processing method is applied. In total, we have performed a
total of 102214 and 99842 comparisons for every algorithm
in 32-bit and 64-bit architectures, respectively.
The results in 64-bit architecture are more stable than in

32-bit architecture. Note that the median of the similarity
score is near to 100 for all algorithms and all modules. Only
the lower adjacent values of advapi32.dll, lsass.exe, and
spoolsv.exe have a wider interval. We have manually
checked these results and found that they are due to themod-

12

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(a) 32-bit architecture

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) 64-bit architecture⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 7: Related comparison: similarity scores when the Guided De-
relocation pre-processing method is applied (Guided De-relocation
scenario).

ules retrieved from Windows 8. In particular, the dissimilar
bytes are caused by lookup tables within the code section of
the modules. These good results for 64-bit architecture may
be due to the new addressing form introduced with the 64-
bit mode in Intel. As explained previously, Intel introduced
RIP-relative addressing, which guarantees that no assembly
instruction incorporates an absolute memory address within
the binary representation of the instruction itself.
In the case of 32-bit architecture, the similarity scores are

more disperse and the lower/upper adjacent values are nor-
mally all in the range of possible scores, independently of the
module or the algorithm. Regarding the values of similarity
score, sdhash has the lowest score, followed by TLSH.
Note that the similarity scores are especially low for 32-bit

Windows OS and very good for 64-bit, with some data dis-
persion for some modules. Nevertheless, we expect that the
results in both architectures will be improvedwhen applying
our pre-processing methods.

Guided De-relocation scenario. Figure 7 shows the
results of the similarity score when the Guided De-
relocation pre-processing method is applied in the mod-
ules of every memory dump. Recall that this pre-processing
method is only applicablewhen the .reloc section is retriev-
able. Although the selected modules have a .reloc section,
sometimes thememory pages where it wasmappedwere not
present in some of thememory dumps of 32-bitWindows OS
machines. In particular, we found this issue when dealing
with memory dumps in 32-bit Windows 7. In this case, we
performed a total of 72036 and 99842 comparisons for every
algorithm in 32-bit and 64-bit architectures, respectively.
The results show that the Guided De-relocation pre-

processing method performs particularly well, having the
median values at the top of the plots for every algorithm
and every module in both architectures. Some outside val-
ues appear in the case of sdhash. This issue is caused by

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(a) 32-bit architecture

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) 64-bit architecture⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 8: Related comparison: similarity scores when the Linear Sweep
De-relocation pre-processing method is applied (Linear Sweep De-
relocation scenario).

the sdhash way of working. As explained in Section 2.3.3,
sdhash selects features based on entropy. In addition, the
algorithm requires at least 16 features to compare a digest.
When this minimum threshold of features is not reached,
the similarity score is zero. In our experiments, we found
that some memory pages, which were located at the end of
the memory address space of the module, contained a few
non-zero bytes followed by a large quantity of zero bytes
as padding bytes. However, these data are insu�cient to
yield 16 valid features, so although sdhash is able to pro-
duce digests, these digests are incomparable. Nevertheless,
the number of these outsider values are insigni�cant.
Note that after applying theGuided de-relocation pre-

processing method there are still di�erences among certain
memory pages. However, the percentage of these memory
pages is quite low (only 180 out of the 2327720 comparisons).
Furthermore, almost all of them occurred in the �rst mem-
ory page of the code section, which usually contains the IAT.
We have empirically observed that these changes are caused
by the IAT of themodules, which unfortunately was not cov-
ered by the .reloc section. Note that currentlyGuided De-
relocation does not consider any of the PE related �elds.
As future work, we will improve our pre-processing method
to consider them.

Linear Sweep De-relocation scenario. Last, Figure 8
shows the results of comparisons when the Linear Sweep
De-relocation pre-processing method is applied. As in
the �rst scenario, we performed a total of 102214 and 99842
comparisons for every algorithm in 32-bit and 64-bit archi-
tectures, respectively.
As in the previous scenario, the results of the similarity

scores are extremely good. Note that we are considering now
all thememory dumps of 32-bitWindowsOS, unlike the pre-
vious scenario in which we discarded the memory modules

13

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 9: Unrelated comparison: similarity scores aggregated for all Win-
dows OS and scenarios considered.

whose .reloc sections are unrecoverable. Thus, compar-
ing these similarity scores with those shown in Figure 6a,
it is proved that the application of the Linear Sweep De-
relocation pre-processing method helps to improve the
similarity scores of the modules. In 32-bit architecture, the
median values range from 90 to 100 while the lower adjacent
values are over 80 for all the algorithms, except for sdhash
and TLSH, which have lower adjacent values of less than 80
for lsass and notepad++modules. We have manually veri-
�ed these results, and found that they are caused bymemory
pages with very limited content and large portions of zero
bytes.
Similarly to the previous scenario, the results in the case

of 64-bit architecture have almost perfect similarity, having
some outsider values in the case of the sdhash algorithm. As
before, these almost perfect results may be motivated due to
RIP-relative addressing.

5.2. Unrelated Comparison
In this section, we compare valid memory pages from dif-

ferent modules (but with the same relative o�set within the
module) using the same pre-processingmethod. To limit the
number of comparisons, we have restricted them tomodules
coming from the samememory dump. Figure 9 shows the re-
sults in this case. As the results are very similar in all systems
and architectures, regardless of the pre-processing method
applied, we decided to aggregate all the results in a single
plot. We performed a total of 990776 and of 1055685 com-
parisons in 32-bit and 64-bit architectures, respectively.
In this case, only dcfldd has similarity scores greater than

0 in some modules, while all the other algorithms �nd no
similarity. We have manually veri�ed these dcfldd results
and found that they occur because the algorithm considers
sequences of zero bytes as relevant data. Therefore, the simi-
larity score of the end padding bytes of memory pages yields
a non-zero value.

5.3. Related Comparison with Cross Pre-processing Methods
As with the �rst comparison method, we now compare

valid memory pages with the same relative o�set. How-
ever, we pre-process the pages to compare using the dif-
ferent methods (either Guided De-relocation or Linear
Sweep De-relocation). The idea of this experiment is to
evaluate whether comparing similarity digests from one pre-
processing method against the other method is feasible. For

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(a) 32-bit architecture

ntdll kernel32 advapi32 winlogon lsass spoolsv notepad++ vlc
Modules

0

20

40

60

80

100

Si
m

ila
rit

y
sc

or
e

(b) 64-bit architecture⬢ dcfldd $ ssdeep ' sdhash ▴TLSH

Figure 10: Related comparison with cross pre-processing methods.

this experiment, we performed 160198 and 221967 compar-
isons in 32-bit and 64-bit architectures, respectively.
Figure 10 plots the results of this experiment. As shown,

the results in this experiment are very similar to those ob-
tained in the Linear Sweep De-relocation scenario of
the related comparison experiment. Therefore, these results
prove that both pre-processing methods are comparable and
that the similarity score results in this experiment are sim-
ilar to the worst results obtained when applying the pre-
processing methods individually.

5.4. E�ect of Byte Changes on the Similarity Score
As a �nal experiment, we have evaluated to what extent

the similarity score of each similarity digest algorithm is af-
fected when an arbitrary number of bytes is changed. In
particular, we have �rst grouped the memory page compar-
isons of the Raw scenario according to the similarity score
between them and then looked for the pair of memory pages
with the fewest dissimilar bytes in each value of the similar-
ity score.
The results are shown in Figure 11. Each algorithm is plot-

ted with a single line, keeping the colors as in the previous
plots for the sake of readability.
It is worthmentioning that the trend seems to be similar in

all cases, having di�erent sensitivity to byte di�erences. The
left-side of the plot shows high similarity scores, in which
we only appreciate the di�erent sensitivity between the al-
gorithms. In this regard, dcfldd is the algorithm that needs
more byte changes while TLSH is the algorithm less sensitive
to byte changes.
The algorithms tend to show di�erent behavior when the

similarity score is under 50 (right-side of the plot). For
ssdeep, the number of di�erent bytes seems to grow until
a similarity score value of 20, with 1200 di�erent bytes. Note
that the function seems to be a step-wise function, mainly
caused by the granularity of the algorithm: ssdeep generates
64 features as a maximum, and thus the number of bytes is

14

700

800

900

1000

1100

1200 dcfldd

ssdeep

sdhash

TLSH

020406080100

Similarity score

0

50

100

150

200

N
u

m
b

er
o
f

d
iff

er
er

t
b
y
te

s

Figure 11: Minimum number of di�erent bytes in a small memory page
(4096 bytes) that drops similarity score.

always limited. Likewise, ssdeep does not yield any score
under approximately 20, as this algorithm requires at least 7
common consecutive features between two digests to reduce
false positives (Baier and Breitinger, 2011). Based on our
�ndings, we conclude that the randomness of the a�ected
bytes by relocation causes this necessary condition does not
hold and then the similarity score drops quickly to zero.
Similarly, sdhash shows stable behavior until the last

value. According to the plot, there is one pair of identical
pages having zero similarity. This value is caused by the low
entropy of the memory pages, as sdhash does not select fea-
tures with low entropy, as well as the number of selected fea-
tures in the digest being fewer than the minimum number
required by sdhash to compare a digest. We have empiri-
cally corroborated that the generated digests in the last value
contain fewer than 16 features and thus they are incompara-
ble, yielding to a similarity score of zero value (Vassil Rous-
sev, 2013). TLSH shows the most stable behavior, although
it needs fewer di�erent bytes to provide a similarity score of
zero value.

6. Conclusions

Memory forensics is part of the incident response process,
carried out after a security incident has occurred. Common
approaches to identify similar content in�les (such as the use
of cryptographic hash functions) are unsuitable for identify-
ing similarities between processes or system libraries mainly
caused by the relocation process and the memory subsystem
operations (memory swapping and demand paging) that pro-
voke small byte modi�cations and partial content to be ze-
roed out.
Similarity digest algorithms can be used to overcome these

limitations. These algorithms provide a measure of similar-
ity, normally in the range of [0, 100], which enables an ana-
lyst to �nd out whether a memory artifact (data from mem-
ory suitable for forensic analysis) resembles another artifact
or whether it is contained in other artifacts.

In this paper, we have focused on Windows systems and
presented two methods that pre-process the memory mod-
ules of a Windows process to undo the work performed by
the relocation process in di�erent ways. The method called
Guided De-relocation relies on File Objects, a partic-
ular kernel-space structure that may be found in a memory
dump. These structures are useful for identifying the relo-
cated bytes. The other method, called Linear Sweep De-
relocation, performs a linear sweep of the binary code of
the given process to identify instructions that contain (abso-
lute) memory addresses as operands. Hence, it also helps
to identify relocated bytes too. Both methods have been
assessed in di�erent scenarios with di�erent similarity di-
gest algorithms (speci�cally, dcfldd, ssdeep, sdhash, and
TLSH). Our evaluation has shown that the similarity score is
improved when any of the pre-processing methods is used.
We have also evaluated the sensitivity of these algorithms

to byte modi�cations, and found that intelligent arbitrary
byte modi�cations can dramatically a�ect the similarity
score for some of these algorithms (e.g., ssdeep). This is an
interesting �nding that deserves further study.
As future work, we aim to improve the disassembling pro-

cess of the binary code to better detect the scope of each func-
tion. We also aim to incorporate other sections contained in
the memory modules, such as memory regions with execu-
tion permission, into the input provided to the similarity di-
gest algorithms.

Acknowledgements

The research by Miguel Martín-Pérez and Ricardo J. Ro-
dríguez was supported in part by the SpanishMinistry of Sci-
ence, Innovation and Universities under grant MEDRESE-
RTI2018-098543-B-I00 and by the University, Industry and
Innovation Department of the Aragonese Government un-
der Programa de Proyectos Estratégicos de Grupos de Investi-
gación (DisCo research group, ref. T21-20R). The research
by Miguel-Martín Pérez was also supported by the Span-
ish National Cybersecurity Institute (INCIBE) “Ayudas para
la excelencia de los equipos de investigación avanzada en
ciberseguridad”, grant numbers INCIBEC-2015-02486 and
INCIBEI-2015-27300. This work was also supported in part
by the European Research Council (ERC) under the Euro-
pean Unions Horizon 2020 research and innovation pro-
gramme (grant agreement No 771844 BitCrumbs). This
research has been developed during a short-research term
in EURECOM supported by Campus de Excelencia Interna-
cional del Valle del Ebro (Campus Iberus), “Convenio de sub-
vención Erasmus+ Educación Superior para prácticas Con-
sorcio Iberus+”, and Universidad de Zaragoza, Fundación
Bancaria Ibercaja y Fundación CAI “Programa Ibercaja-CAI
de Estancias de Investigación”, grant number IT 7/19.

References
AV-TEST GmbH, 2019. AV-TEST Security Report 2018/19. [On-

line, https://www.av-test.org/�leadmin/pdf/security_report/AV-TEST_
Security_Report_2018-2019.pdf.]. Accessed on April 15, 2020.

15

https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2018-2019.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2018-2019.pdf

Baier, H., Breitinger, F., 2011. Security aspects of piecewise hashing in com-
puter forensics, in: 2011 Sixth International Conference on IT Security
Incident Management and IT Forensics, IEEE. pp. 21–36.

Bloom, B.H., 1970. Space/time trade-o�s in hash coding with allowable
errors. Communications of the ACM 13, 422–426.

Breitinger, F., Baggili, I., 2014. File detection on network tra�c using ap-
proximate matching. Journal of Digital Forensics, Security and Law 9,
15.

Breitinger, F., Baier, H., 2012. Similarity preserving hashing: Eligible prop-
erties and a new algorithmmrsh-v2, in: International conference on dig-
ital forensics and cyber crime, Springer. pp. 167–182.

Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D., 2014a.
Approximate Matching: De�nition and Terminology. techreport NIST
Special Publication 800-168. National Institute of Standards and Tech-
nology.

Breitinger, F., Roussev, V., 2014. Automated evaluation of approximate
matching algorithms on real data. Digital Investigation 11, S10–S17.

Breitinger, F., Stivaktakis, G., Baier, H., 2013. FRASH: A framework to test
algorithms of similarity hashing. Digital Investigation 10, S50–S58.

Breitinger, F., Stivaktakis, G., Roussev, V., 2014b. Evaluating detection error
trade-o�s for bytewise approximate matching algorithms. Digital Inves-
tigation 11, 81–89.

Capstone, . Capstone – the ultimate disassembler. Online, http://www.
capstone-engine.org/. Accessed on July 10, 2020.

Cichonski, P., Millar, T., Grance, T., Scarfone, K., 2012. Computer Security
Incident Handling Guide. techreport SP 800-61 Rev. 2. National Institute
of Standards and Technology (NIST). Special Publication (NIST SP).

Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P., 2004. An
Open Digest-based Technique for Spam Detection. ISCA PDCS 2004,
559–564.

Deutsch, Peter andGailly, J, 1996. Zlib compressed data format speci�cation
version 3.3. Technical Report. RFC 1950, May.

Fouss, F., Pirotte, A., Renders, J., Saerens, M., 2007. Random-Walk Com-
putation of Similarities between Nodes of a Graph with Application to
Collaborative Recommendation. IEEE Transactions on Knowledge and
Data Engineering 19, 355–369.

Fowler, G., Noll, L.C., Vo, K.P., Eastlake, D., Hansen, T., 2011. The FNV
non-cryptographic hash algorithm. Ietf-draft .

Goldreich, O., 2006. Foundations of Cryptography: Volume 1. Cambridge
University Press, New York, NY, USA.

Harbour, N., 2002. Dc�dd. Defense Computer Forensics Lab.
http://dc�dd.sourceforge.net 5, 1.

Harichandran, V.S., Breitinger, F., Baggili, I., 2016. Bytewise Approximate
Matching: the Good, the Bad, and the Unknown. Journal of Digital
Forensics, Security and Law 11.

Hintze, J.L., Nelson, R.D., 1998. Violin Plots: A Box Plot-Density Trace Syn-
ergism. The American Statistician 52, 181–184.

Hu�man, C., 2015. Chapter 4 - Process memory, in: Hu�man, C. (Ed.),
Windows Performance Analysis Field Guide. Syngress, Boston, pp. 93 –
127.

Intel Corporation, 2016. Intel® 64 and IA-32 Architectures Software
Developer’s Manual–Volume 2 (2A, 2B, 2C & 2D): Instruction Set Refer-
ence, A-Z. Intel Corporation. Online; https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-instruction-set-reference-manual-325383.pdf.
Accessed on July 10, 2020.

Kornblum, J., 2006. Identifying almost identical �les using context triggered
piecewise hashing. Digital investigation 3, 91–97.

Latzo, T., Palutke, R., Freiling, F., 2019. A universal taxonomy and survey of
forensic memory acquisition techniques. Digital Investigation 28, 56–69.

Li, Y., Sundaramurthy, S.C., Bardas, A.G., Ou, X., Caragea, D., Hu, X., Jang,
J., 2015. Experimental Study of Fuzzy Hashing in Malware Clustering
Analysis, in: 8th Workshop on Cyber Security Experimentation and Test
(CSET 15), USENIX Association, Washington, D.C.. p. 8.

Ligh,M.H., Case, A., Levy, J.,Walter, A., 2014. TheArt ofMemoryForensics:
Detecting Malware and Threats in Windows, Linux, and Mac Memory.
John Wiley & Sons, Inc.

Martín-Pérez, M., 2020. Similarity Unrelocated Module Volatility plu-
gin. [Online; https://github.com/reverseame/similarity-unrelocated-
module]. Accessed on Jul 20, 2020.

Microsoft Corporation, 2019a. FILE_OBJECT structure. [online;

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/
content/wdm/ns-wdm-_�le_object]. Accessed on September 30, 2019.

Microsoft Corporation, 2019b. PE Format. [Online; https://docs.microsoft.
com/en-us/windows/win32/debug/pe-format]. Accessed on Mar, 2020.

Microsoft Software Developer Network, 2018a. Memory Manage-
ment. [Online; https://docs.microsoft.com/en-us/windows/win32/
memory/memory-management]. Accessed on February 15, 2020.

Microsoft Software Developer Network, 2018b. Page State. [Online; https:
//docs.microsoft.com/en-us/windows/win32/memory/page-state]. Ac-
cessed on February 15, 2020.

Microsoft Software Developer Network, 2019. PE Format. [Online; https:
//docs.microsoft.com/en-us/windows/win32/debug/pe-format]. Ac-
cessed on June 3, 2020.

Minkov, E., Cohen, W.W., 2008. Learning Graph Walk Based Similarity
Measures for Parsed Text, in: Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, Association for Computa-
tional Linguistics, USA. pp. 907–916.

Moia, V.H.G., Breitinger, F., Henriques, M.A.A., 2020. The impact of exclud-
ing common blocks for approximatematching. Computers& Security 89,
101676.

Moia, V.H.G., Henriques, M.A.A., 2017. Towards a new approximatematch-
ing function for digital forensics investigations, in: X DCA/FEEC/Uni-
versity of Campinas (UNICAMP) Workshop (EADCA), p. 4.

Nia, M.A., Bahrak, B., Kargahi, M., Fabian, B., 2019. Detecting new gen-
erations of threats using attribute-based attack graphs. IET Information
Security 13, 293–303.

Oliver, J., Cheng, C., Chen, Y., 2013. TLSH–a locality sensitive hash, in:
2013 Fourth Cybercrime and Trustworthy Computing Workshop, IEEE.
pp. 7–13.

Oliver, J., Forman, S., Cheng, C., 2014. Using randomization to attack sim-
ilarity digests, in: International Conference on Applications and Tech-
niques in Information Security, Springer. pp. 199–210.

Pagani, F., Dell’Amico, M., Balzarotti, D., 2018. Beyond precision and recall:
understanding uses (andmisuses) of similarity hashes in binary analysis,
in: Proceedings of the Eighth ACMConference on Data and Application
Security and Privacy, pp. 354–365.

Rekall, 2014. TheRekallmemory forensic framework. [Online; http://www.
rekall-forensic.com/]. Accessed on April 15, 2020.

Rodríguez, R.J., Martín-Pérez, M., Abadía, I., 2018. A Tool to Compute Ap-
proximation Matching between Windows Processes, in: Proceedings of
the 2018 6th International Symposium on Digital Forensic and Security
(ISDFS), pp. 313–318.

Roussev, V., 2010. Data �ngerprinting with similarity digests, in: IFIP In-
ternational Conference on Digital Forensics, Springer. pp. 207–226.

Roussev, V., Richard, G., Marziale, L., 2008. Class-aware similarity hash-
ing for data classi�cation, in: IFIP International Conference on Digital
Forensics, Springer. pp. 101–113.

Szekeres, L., Payer, M.,Wei, T., Song, D., 2013. SoK: EternalWar inMemory,
in: 2013 IEEE Symposium on Security and Privacy, pp. 48–62.

Upchurch, J., Zhou, X., 2015. Variant: a malware similarity testing frame-
work, in: 2015 10th International Conference on Malicious and Un-
wanted Software (MALWARE), IEEE. pp. 31–39.

Uroz, D., Rodríguez, R.J., 2020. On Challenges in Verifying Trusted Exe-
cutable Files in Memory Forensics. Digital Investigation Accepted for
publication. To appear.

Vassil Roussev, C.Q., 2013. sdhash 3.4. [online; https://github.com/sdhash/
sdhash/blob/master/sdbf/sdbf_de�nes.h#L58]. Accessed on Mar, 2020.

Wallace, B., 2015. Optimizing ssDeep for use at scale. Virus Bulletin. Cited
Nov .

Walters, A., 2007. The Volatility framework: Volatile memory artifact ex-
traction utility framework.

Walters, A., Petroni, N., 2007. Volatools: Integrating Volatile Memory
Forensics into the Digital Investigation Process, in: BlackHat DC.

Webster, A.F., Tavares, S.E., 1986. On the Design of S-Boxes, in:
Williams, H.C. (Ed.), Advances in Cryptology — CRYPTO ’85 Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 523–534.

White, A., Schatz, B., Foo, E., 2013. Integrity veri�cation of user space code.
Digital Investigation 10, S59–S68.

Yosifovich, P., Ionescu, A., Russinovich, M.E., Solomon, D.A., 2017. Win-
dows Internals, Part 1: System architecture, processes,threads, memory
management,and more. 7th ed., Microsoft Press, Redmond, WA, USA.

16

http://www.capstone-engine.org/
http://www.capstone-engine.org/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://github.com/reverseame/similarity-unrelocated-module
https://github.com/reverseame/similarity-unrelocated-module
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ns-wdm-_file_object
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/ns-wdm-_file_object
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/memory/memory-management
https://docs.microsoft.com/en-us/windows/win32/memory/memory-management
https://docs.microsoft.com/en-us/windows/win32/memory/page-state
https://docs.microsoft.com/en-us/windows/win32/memory/page-state
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/
https://github.com/sdhash/sdhash/blob/master/sdbf/sdbf_defines.h#L58
https://github.com/sdhash/sdhash/blob/master/sdbf/sdbf_defines.h#L58

	Introduction
	Background
	Windows PE
	The Windows Memory Subsystem
	Similarity Digest Algorithms
	dcfldd
	ssdeep
	sdhash
	TLSH

	Related Work
	Pre-Processing Methods
	Pre-Processing Method 1: Guided De-relocation
	Pre-Processing Method 2: Linear Sweep De-relocation
	Implementation

	Experiments and Discussion
	Related Comparison
	Unrelated Comparison
	Related Comparison with Cross Pre-processing Methods
	Effect of Byte Changes on the Similarity Score

	Conclusions

