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ABSTRACT

Knowledge graphs (KGs) form the basis of modern intelligent search
systems – their network structure helps with the semantic reason-
ing and interpretation of complex tasks. A KG is a highly dynamic
structure in which facts are continuously updated, added, and re-
moved. A typical approach to ensure data quality in the presence
of continuous changes is to apply logic rules. These rules are auto-
matically mined from the data using frequency-based approaches.
As a result, these approaches depend on the data quality of the KG
and are susceptible to errors and incompleteness.

To address these issues, we propose Colt, a few-shot rule-based
knowledge validation framework that enables the interactive qual-
ity assessment of logic rules. It evaluates the quality of any rule by
asking a user to validate only a few facts entailed by such rule on
the KG. We formalize the problem as learning a validation function
over the rule’s outcomes and study the theoretical connections to
the generalized maximum coverage problem. Our model obtains
(i) an accurate estimate of the quality of a rule with fewer than 20
user interactions and (ii) 75% quality (F1) with 5% annotations in
the task of validating facts entailed by any rule.
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1 INTRODUCTION

In recent years, systems such as DeepDive [40] and Knowledge
Vault [11] have made it increasingly easy to automatically construct
vast knowledge graphs (KGs) from structured and unstructured
data. These systems often consist of many different components
designed to extract and integrate facts from multiple sources. Many
of these components are based on machine learning techniques,
which are rarely error-free. Thus, despite dramatic improvements
using deep learning techniques, it is not possible to ensure the
correct extraction, linkage, and discovery of relationships between
textual entities, which form the facts of a knowledge graph. Knowl-
edge graphs suffer not only from incorrect but also from missing
facts, which in their sum negatively affect all downstream appli-
cations. Correcting these errors by adding missing or removing
incorrect facts represents a key task that can be approached from
two different directions.

The first, often used to add missing facts, leverages knowledge
graph embeddings (KGE) [44], such as TransE [6] or HolE [32], in
training link prediction models. These models are widely studied
and can be used to predict new facts; however, their quality de-
pends on the correctness and completeness of the underlying KG.
While correctly capturing large portions of the graph, they fail to
model noisy or underrepresented entities and relationships [35].
Additionally, KGEs are difficult to interpret as they cannot explain
why a fact should be included in the KG.

The second approach is applying logic rules, which can be derived
by rule learning systems, such as AMIE [13, 14, 25] and RuDiK [34].
By executing such rules on a KG, missing facts can be added and
incorrect facts removed. For example, the rule

isMarriedTo(a, c) ∧ livesIn(c, b)⇒ livesIn(a, b)
states that if a person a is married to another person c, they most
likely live in the same place (b). By applying this rule, i.e., when the
left-hand-side of the rule is satisfied, a new livesIn fact between
a person and a place can be added to the KG. While rules are easier
to interpret than embeddings, their discovery also suffers from
noisy and missing KG data. Moreover, rules are rarely completely
correct or completely incorrect. Commonly, a rule applies only to
a certain percentage of KG facts [13, 34], without providing exact
and complete information in which cases it can be safely applied.

Ideally, a rule should only be applied if it contributes to the
quality improvement of a KG. Although rule learning systems come
with a statistical measure for the support of a discovered rule, this
measure is derived from the KG facts and assumes their correctness.
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In practice, this dependence often leads to incorrect estimates of a
rule’s confidence value [2]. Most systems refer to the confidence of
a rule as a value between 0 and 1, describing how likely the rule in
question implies valid facts, which in turn defines the validity of
the rule itself.

Addressing such data quality issues of a KG requires external
information to make necessary corrections. The natural way to
verify facts is to consult experts on the topics covered by the KG at
hand. As KGs often consist of millions of facts, a comprehensive
manual verification becomes infeasible. Thus, we aim to radically
reduce the manual effort by efficiently utilizing existing domain
knowledge.

To retain the understandability of rule-based approaches, we
focus on a solution that (i) computes reliable rule confidence mea-
sures and (ii) complements the rules by a probabilistic model that
validates their resulting facts.

To address the data quality problems of KGs, we train a classifier
for each rule that balances the exploration of new facts and the
exploitation of already learned knowledge. This allows us to effec-
tively reduce the number of annotations to a few interactions also
referred to as a few shots. Unlike logic rules, the classifiers contain
additional knowledge in the form of (i) information captured by the
KGEs and (ii) user feedback, enabling the classifiers to make better
predictions than the original rule. The learned classifiers allow the
conditional application of each rule, according to the predicted
validity of its facts. Compared to a data-driven estimation approach,
these predictions enable us to calculate a rule’s confidence with
far greater accuracy. Although the learned classifier can be used as
a replacement for the learned rule, it reduces the role of the rule
only to a limited extent. As the classifier itself is quite complex and
therefore difficult to interpret, the rule serves as an explanation of
the classifier, making its behavior more comprehensible. Beyond its
use in curating data quality problems, the creation of precise rule
confidence estimates also plays a fundamental role in reasoning sys-
tems, such as those used in fact checking [1]. In these applications,
the quality of the conclusion depends on the precise measurement
of the rule quality. However, verifying the correctness of a large
number of facts to precisely assess rule quality is cost-intensive. We
therefore reduce the amount of work by utilizing a sampling strat-
egy. This strategy limits the effort for manually verifying facts to
an adjustable budget, while simultaneously maximizing the benefit
from the verified facts.

Our core contribution constitutes the development of a model
that theoretically and empirically aims to validate the confidence
and precision of logical rules by posing as few questions as possible
to a human oracle. In doing so, we answer the key question of
whether there is a model capable of achieving maximum precision,
provided that 100% of the annotated data is available. By reducing
the problem to maximum coverage, we show that such a model
exists, but has its drawbacks. As active learning methods guarantee
no perfect precision, which is confirmed by our experiments, we
turn to Gaussian processes (GP), that theoretically ensure maximum
precision as the number of interactions approaches infinity. Our
proposed approach learns the characteristics of a particular rule
from humans who annotate a small number of its generated facts
and addresses the limitations of GPs (e.g., instability of matrix
inversion) by means of deep kernel learning.

We summarize our contributions as follows:
(1) We propose the Colt framework capable of assessing the qual-

ity and confidence of a particular rule by using KG embeddings
and expert-validated facts (Section 3).

(2) Using a classifier, we enable the conditional application of
declarative rules and compute their confidence (Section 4).

(3) We establish a connection between our problem, the weighted
coverage problem (Section 4.1), and quality-preservingGaussian
processes (Section 4.2).

(4) We show how our interactive learning approach effectively
exploits embeddings to improve the classifier with minimal
human effort. Using only 20 user interactions, we halve the error
in confidence obtained with rule learning systems (Section 6).

(5) We publish our dataset consisting of 26 rules with more than
23 000 annotated facts.

2 RELATEDWORK

This section covers the topics related to our method, namely, rule
discovery and their interactive application, followed by graph em-
beddings and hybrid methods using both rules and embeddings.
Rule discovery. The derivation of logic rules fromKGs has been in-
vestigated formany years [8]. Recent systems, such as AMIE [13, 14]
and RuDiK [34], can derive rules from large KGs using structural in-
formation, such as frequently occurring graph patterns. The mined
rules can be used to derive new facts, find errors, derive conclusions,
and better understand the underlying data. However, it is difficult
to automatically estimate the quality of a discovered rule [2]. Al-
though AMIE and RuDiK report statistical measures for every rule,
such as the standard and PCA confidence, these metrics are based
on pattern frequencies that are affected by data quality issues in the
KG. We improve the confidence assessment of a rule by including
a user as an additional source of knowledge. As such, the quality
assessment of a rule does not depend solely on the KG.
Interactive rule execution. Different approaches have studied
how to execute KG rules for a specific task with user involvement.
For data repair, potential KG corrections are derived from a set of
rules and suggested to the user [3, 12]. The user validates these cor-
rections, thus improving the underlying KG until it is transformed
into a consistent state. This line of work assumes that the given
rules are correct and reliable, such as those manually written by
experts. Our approach handles rules that are automatically gener-
ated, thus possibly approximate or erroneous. Our solution can be
seen as a preliminary step to create an understanding of the rules
to be fed to the data repair step.

Interactive error detection has also been studied for relational
data [17, 19, 30]. However, such methods cannot be directly applied
to graph data; while a rule can be materialized into a relational
model by flattening a portion of the KG, the resulting “view” disre-
gards other information in the graph.
Knowledge graph embeddings. Knowledge graph embeddings
(KGEs) provide a compact representation of a KG by projecting its
entities and relations into an n-dimensional space while retaining
its structural information. These embeddings are used to improve
tasks [44], such as relation extraction [49] and link prediction [27].

Besides semantic matching models [33], translational methods,
such as TransE [6] and its extensions [21, 45], are widely used for
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the generation of embeddings. These methods maximize a score
associated with each fact. Often interpreted informally as the plau-
sibility of a fact, the score is a distance measure between the entities
of the evaluated predicate. As these methods use the KG facts to
produce a representation of the graph, data quality problems, such
as incorrect facts, directly affect the quality of the generated em-
beddings [35] and thus also downstream tasks.

We address quality issues by learning classifiers that incorporate
human knowledge during their training and do not solely rely on
the KG data. By integrating user feedback, the classifier learns how
to counteract poor embeddings and mitigate their negative effects.
This limits the impact of noisy and missing KG information.

KGEs and rules. Although all methods use the KG facts for com-
puting KGEs, some approaches can consume additional information,
such as textual descriptions [48], literals [15], or logical rules [16,
50]. We focus on the approaches that rely on rules during their
learning process, as they are closest to our work.

One approach jointly models logical rules and fact triples in
a unified framework, representing triples as atomic and rules as
complex formulae, while learning takes place by minimizing a
global loss function that spans both formulae [16]. Another system
creates high-quality rules from noisy KGs using KGEs to control
the rule generation process [20]. A third approach uses rules to
generate new triples for the training of the KGEs, which are used
to derive new rules [50]. These works address a problem different
from ours: we train a classifier on top of existing KGEs and existing
rules that counteracts poor embedding quality by incorporating
user feedback into its learning process. Our goal is to interactively
learn a model that can both assess the quality of a given rule and
predict when the rule should be applied.

Active learning.Methods that actively sample data points to be
labeled are called active learning methods [38]. They exploit the
properties of model and data and perform well with human asses-
sors and exploratory tasks [24, 28]. Our work builds on the general
idea of active learning but establishes important connections with
weighted coverage and GP-UCB algorithm based on Gaussian pro-
cesses [41] to devise quality-preserving solutions. For consistency,
we evaluate the most common active learning strategies described
in Section 4.4.

3 BACKGROUND AND PROBLEM

A knowledge graph (KG) is a triple G : ⟨E,R,F⟩, where E is a set
of entities, R a set of relationships, and F ⊆ E × R × E is a set of
facts. For instance, a general-purpose KG contains the entities "Max
Planck" and "Germany", connected via "isCitizenOf" relationship.
A triple (e1, r , e2) with e1, e2 ∈ E, and r ∈ R is called a fact; as r
is a relationship in the pair (e1, e2), each fact can be equivalently
represented as an atom r (e1, e2). The set of triples constitutes the
knowledge graph, also known as knowledge base [9], information
graph [29], or heterogeneous information network [39].

A knowledge graph might contain errors, such as ("Max Planck",
"isCitizenOf", "China"). The set of all true facts (knowledge) is de-
noted by K ⊆ E × R × E, and we assume that at least a part of
the knowledge graph is correct, i.e., F ∩K , ∅. Partial correctness
constitutes a reasonable assumption regarding the soundness of

the KG construction process. An atom is the smallest logic state-
ment composed by facts, including variables. For example, the atom
hasChild(x, "John") denotes all entities (by the variable x ) that have
a child named John.

Definition 1. A rule A1 ∧ A2 ∧ . . . ∧ An ⇒ C is a logical
implication consisting of a head and a body. The head is a single atom
C , and the body is a conjunction of atoms A1 ∧ . . . ∧An .

The rule ρ0 : hasChild(a, c)∧isCitizenOf(a,b)⇒ isCitizenOf(c,b)
describes that if a has a child c and is a citizen of country b, their
child must also be a citizen of b. This is a positive rule, which asserts
the existence of specific facts in the head, given the body. We also
consider negative rules to identify inconsistencies in the data [3],
which denote sets of facts that lead to contradictions. For example,
the rule ρ1 : hasChild(x, y) ∧ isMarriedTo(x, y)⇒ ⊥ identifies
possible inconsistencies in the KGs. The rule can also be expressed
as ρ ′1 : hasChild(x, y)⇒ ¬isMarriedTo(x, y) to derive false facts
from the KG.

The instances IG (ρ) ⊆ E × R × E of a rule ρ in the knowledge
graph G are the set of facts expressed by the right-hand-side of the
rule, assuming the left-hand-side is true. For example, the instances
of rule ρ0 are facts of the form isCitizenOf(c,b), given that both
hasChild(a, c) and isCitizenOf(a,b) are true.

Ideally, if we knew the true facts K , we could validate the con-
fidence of the rule on the knowledge graph G by computing the
instances in K that are correctly captured by a rule ρ via the ratio
|IK (ρ)∩IG (ρ) |
|IK (ρ) | . As K is, in reality, unavailable, we model the valida-

tion as a benefit function f : IG (ρ)→ [0, 1] over the instancesIG (ρ).
f returns a value that converges to 1 if the fact (e1, r , e2) ∈ IG (ρ)
is confidently correct, i.e., (e1, r , e2) ∈ K , otherwise it converges
to 0. Access to (parts of) K can be obtained by an external oracle,
e.g., by a domain expert who verifies whether a fact is true or not.
Assessing the validity of facts by consulting an oracle can be costly,
which is why we limit the number of evaluations to a budget B,
thus bounding the evaluation effort.

The rule-driven knowledge validation problem aims at finding a
benefit function f within a budget B that maximizes the knowledge
over the instances IG (ρ) of rule ρ:

Problem 1. Given a knowledge graphG : ⟨E,R,F⟩, a rule ρ with
instances IG (ρ) ⊆ E × R × E, and a budget B, find a set of facts L

argmax
L⊆IG (ρ)

∑
x ∈L

f (x ) subject to C(L) ≤ B

where C represents the sum of costs of all the facts in L.

In many practical scenarios, the cost of a fact is 1, as the budget
quantifies the number of questions to the oracle. In our setting,
we make this assumption but note that the problem, even if the
benefit f is known, is NP-hard [43] with a non-constant cost.

4 THE COLT FRAMEWORK

In practice, the benefit function f in Problem 1 is unknown. As such,
excerpting the knowledge f from an oracle makes the direct opti-
mization in Problem 1 impossible. To circumvent this issue, Colt
makes two assumptions. First, the benefit function can be equiva-
lently represented by a classifier f̃ on the facts trained on the eval-
uations seen so far. Second, since facts are related to one another,
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we assume the existence of a similarity κ:(E×R×E)× (E×R×E) 7→
[0, 1] among pairs of facts. Such similarities naturally manifest in
knowledge graphs by means of relationships among entities. As
facts themselves are too sparse and fail to capture implicit KG rela-
tionships, it takes a different approach to capture their similarity.
Section 5 provides more insights on how to compute expressive
similarities.

Our Colt framework, presented in Algorithm 1, proceeds itera-
tively by using the information in the classifier and asking the user
to evaluate facts until a specified budget B is depleted. In the be-
ginning, the classifier is initialized (Line 2) using the instances and
the similarity function. At every iteration t , the algorithm selects
a new fact xt using the classifier’s knowledge (Line 5). The user
then validates the fact (Line 6) providing a value yt = 1 if the fact is
true and yt = 0 otherwise. Finally, the algorithm updates its beliefs
by incorporating the true value yt for the fact xt . The classifier
serves as a proxy for the unknown function f , which encodes the
true facts K for the instances IG (ρ) of rule ρ. This classifier is then
used to (i) estimate a confidence value for the current rule and
(ii) determine for which facts a rule is likely to be correct.

The classifier f̃ is of crucial importance, as it should guarantee
a high classification accuracy with few evaluated facts. Section 4.1
describes a theoretical connection to maximum set coverage and a
greedy baseline that fully relies on the correctness of the similarity
measure. In Section 4.2, we relax the constraint on the similar-
ity with a model that combines neural networks and probabilistic
Gaussian processes to overcome the rigidity of maximum coverage.
Algorithm 1 The Colt framework
Input: knowledge graph G ; rule instances IG (ρ)
Input: similarity κ ; budget B
Output: A classifier f̃
1: U ← IG (ρ) ▷ Unlabeled facts
2: f̃ ← Initialize(U , κ ) ▷ Initialize classifier
3: L ← ∅ ▷ Initialize set of labeled facts
4: for t = 1 . . . B do

5: xt ← Select(f̃ , U , κ ) ▷ Select next fact
6: yt ← f (xt ) ▷ User validates xt
7: L ← L ∪ {(xt , yt )} ▷ Add validated fact to L
8: Update(f̃ , κ, L) ▷ Update classifier using new fact
9: U ← U \ {xt } ▷ Remove xt from U
10: return f̃

4.1 Colt-MC: A maximum coverage baseline

We observe a connection between Problem 1 and the maximum
coverage (MaxCover) problem [31] and devise a greedy baseline
for our problem. Given some sets over a universe of elements and
a fixed number B, the MaxCover problem finds B sets that overall
contain the maximum number of elements from the universe.

To appreciate the commonalities between Problem 1 and Max-
Cover, first note that every fact x identifies a set κ(x , ·) in which
each of its elements has a different similarity weight. Second, the
benefit f (x) of each fact x corresponds to the sum of similari-
ties f (x) =

∑
x ′ κ(x ,x ′). As such, Problem 1 translates into find-

ing a set of facts that maximizes the weighted coverage identified
by each fact’s similarity set κ(x , ·). The variant of MaxCover
in which every element’s weight varies with respect to the set

containing the element is called generalized maximum coverage
(GenMaxCover) [7]. Generalized maximum coverage admits a
greedy (1−1/e)-approximate solution. Also, the generalized version
allows each element’s cost to be different, which is not our case as
the cost is determined by the number of facts evaluated by a user.
We relax the GenMaxCover assumptions and devise a greedy solu-
tion for the problem with fixed cost. Such a greedy scheme selects
at each iteration the fact that maximizes the weighted marginal
gain,

∆(x |L) =
∑

x ′∈IG (ρ)
κ(x ,x ′) − max

x ′′∈L
κ(x ′,x ′′) (1)

which quantifies the increment in similarity if the fact x is added to
the set L. As soon as the set L contains B facts, the algorithm stops.
We refer to the greedy baseline in Algorithm 2 as Colt-MC.

The classifier f̃ is a 1-nearest-neighbor (1-NN) classifier that pro-
vides a binary label for each fact. The evaluation of f̃ on unlabeled
facts returns the label of the most similar fact among those evalu-
ated so far. In the end, the approximation of the benefit function f

provided by the classifier f̃ is

f̃ (x ) =
{

f (x ) if x ∈ L
f (argmaxx ′∈L κ(x ,x ′)) otherwise

One convenient property of Colt-MC is that it ensures maximum
quality if all the facts in the instances of the rule are evaluated. We
observe this property also empirically in Section 6.3.
Algorithm 2 Colt-MC
1: function Initialize(U , κ )
2: f̃ ← 0 ▷ Initialize uniform classification
3: function Select(f , U , κ )
4: return argmaxx∈U ∆(x |L) ▷ See Eq. 1
5: function Update(f̃ , κ, L)
6: (xt , yt )← Lt ▷ Last labeled fact
7: f̃ (xt )← yt

4.2 Colt-GP: A learning-based solution

The Colt-MC baseline implicitly assumes that both the similarity
function κ on the facts as well as the user’s validation are correct
and reliable. To relax these assumptions, we propose a method
based on deep kernel learning (DKL) that combines the advantages
of neural networks and Gaussian processes (GPs) (Section 4.3).

To estimate the uncertainty value of f̃ , our proxy of the benefit
function, we assume that the benefit function at step t is a Bernoulli-
distributed randomvariable sampled from a logit-transformedGauss-
ian distribution. The Gaussian random variable is represented by
a Gaussian process [5, Ch. 6], which models points in space as in-
dividual Gaussians related through a kernel function representing
the similarity κ between facts.

A GP is determined by the mean µ and covariance matrix, C
in which each element Ci j = κ(xi ,x j ) represents the similarity
between a triple pair xi and x j . GPs define a distribution over func-
tions where the prior of such distribution is a Gaussian N(0,C)
with mean 0 and covariance C(IG (ρ),IG (ρ)) among all instances
in IG (ρ). In practice, the prior is never computed. Instead, we are
interested in the posterior probability P (x ∈ K|L) of a fact x belong-
ing to the true facts K knowing the labeled facts L. The posterior
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of a GP is Gaussian; however, in order to classify the facts, the
function sampled from the posterior needs to be transformed to
return a value between 0 and 1, with high probability. This trans-
formation is made by a logistic sigmoid function s(x ) = 1

1+e−x . The
final posterior is the expectation of the predictions over the sample
of logistic-transformed Gaussian functions:

P (x ∈ K|L) =
∫

s(f∗)P (f∗ |L) d f∗ (2)

The integral in Eq. 2 is analytically intractable but can be approxi-
mated with sampling methods or analytical approximations, such
as the Stochastic Variational Inference (SVI) used in Section 4.3.

The choice of GPs for classification has two significant implica-
tions. First, a GP is a Bayesian model that allows sampling using
the predictions from the posterior. As the choice of the sampling
strategy is critical for such models, we analyze multiple choices
for different sampling strategies in Section 4.4. Second, GPs are
non-parametric models; thus, they can easily update their beliefs
by using Bayes’ theorem on the posterior computation.

We are now ready to describe Colt-GP (Algorithm 3), repre-
sented in Figure 1. For the sake of completeness, Algorithm 3 re-
ports on the prior initialization of the random variable (Line 2),
even though it is never explicitly computed. The model parameters
(µ,C) are updated using the posterior inference in Eq. 2. Each it-
eration step samples an unlabeled fact using the Select function,
which retrieves an element according to one of the strategies in
Section 4.4. The sampled fact is then presented to a user who eval-
uates its correctness. For example, given the supposed fact ⟨"Jon
Landau", "produced", "Avatar"⟩, a user verifies whether or not
Jon Landau produced the movie Avatar. The labeled triple is then
added to the training set L.

The posterior calculates the probability of a fact being true, which
is estimated by Eq. 2. To convert this probability into a label of 0 or 1
for each fact x , f̃ (x )1 returns 1 if the probability ≥ 0.5, otherwise 0.

f̃ (x ) =
{

1 if P (x ∈ K|L) ≥ 0.5
0 otherwise

We experimentedwith different probability thresholds and observed
good results by choosing a threshold of 0.5. This is also confirmed
by our experiments in Section 6.1.
Algorithm 3 Colt-GP

1: function Initialize(f̃ , U , κ )
2: f̃ ∼ s (N(0, C)) ▷ Gaussian prior, not explicitly computed
3: function Select(f , U , κ )
4: return xt sampled with one strategy in Sec. 4.4
5: function Update(f̃ , κ, L)
6: f̃ ← Update the posterior using SVI [47] for Eq. 2

4.3 Learning with deep kernels

The inference step for GPs requires the inversion of their covari-
ance matrix, which grows with the number of evaluated facts. The
numerical instability of this inversion coupled with modest per-
formance on high dimensional data [10] is detrimental to the final

1With a little abuse of notation f̃ indicates both the posterior and the classifier.
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Figure 1: Overview of our interactive model-building.

classification quality. To circumvent the GPs’ deficiencies, we lever-
age deep kernel learning (DKL) [46], which scales linearly with the
number of evaluated facts and combines the strengths of both neu-
ral networks and GPs in one unified model. We use DKL to learn a
flexible similarity function, while at the same time incorporating the
user’s evaluations of the facts. To learn the model parameters and
perform posterior inference, we use stochastic variational inference
(SVI) [47], which enables the use of non-Gaussian likelihoods.

Equation 3 defines the general model architecture as a composi-
tion of functions. It consists of two main components: a set of fully
connected network layers (FC1-FC4) and one GP layer applied to
the network’s output vector. This combination results in a deep
probabilistic neural network that meets our requirements.

ϕ(x) = GP (FC3(FC2(FC1(x)))) (3)

The neural network part of the model (ϕ) consists of three fully
connected layers FCn (x) = σ (Wx + b), whereW and b correspond
to the weight and bias terms, and σ denotes the activation function,
which in our case is set to ReLU. The network part of the model
effectively performs a dimensionality reduction, by transforming
n-dimensional input vectors x = (x1...xn ) into a low-dimensional
vector representation, which is then passed to the GP layer.

The GP part of the model is connected to the output layer of
the network and consists of j Gaussian Processes д1 . . .дj , each
having their own corresponding kernel k1 . . .kj operating on a
subset of the vector generated by the network. When selecting the
number of GPs in this layer, we follow Wilson et al. [47] and use
one GP for each dimension in the output vector (j = 4). To obtain
the final result, the individual GPs are first additively combined and
then transformed by an observation model, which in our case is a
Bernoulli likelihood, to receive the final result Y .

4.4 Sampling strategies

As stated in Section 4.2, the sampling strategy is at the heart of our
Colt-GP algorithm, as it is responsible for the incremental selection
of new facts. A good sampling strategy aims to select training
examples of high information density that are likely to improve



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Michael Loster, Davide Mottin, Paolo Papotti, Jan Ehmüller, Benjamin Feldmann, and Felix Naumann

classifier performance when used for training. In the following, we
present the sampling strategies considered in our experiments.

Random. Random sampling is the simplest sampling technique: it
randomly selects training examples from the data and adds them
to the training dataset, ignoring any prior knowledge.

Maximumuncertainty.Maximumuncertainty sampling (MAXU)
uses the model itself to assess how valuable the labeling of each
data point is in terms of confidence gain [26]. The sampling uses
the model’s uncertainty on unlabeled data points: the data points
for which the classifier is most uncertain are those closest to its
decision boundary. The incremental labeling of the data points
with maximum uncertainty leads to the refinement of the decision
boundary. In binary classification, the binary entropy measure de-
termines the classifier’s uncertainty with respect to its classification
where p is the uncertainty provided by the model on the class label
X = 1 (e.g., logistic regression provides p as output):

H (X ) = −p log2(p) − (1 − p) log2(1 − p)

with X =

{
1 with probability p
0 with probability 1 − p

As mentioned in [36], a disadvantage of this strategy can be its
sensitivity to outliers, which is tackled by GP-UCB.

GP-UCB. The Gaussian process upper confidence bound algorithm
(GP-UCB) by Srinivas et al. [41] defines a sampling criterion that
aims at finding a trade-off between exploring the function space
and exploiting maximal function areas. To this end, the authors
propose the following sampling strategy:

xt = argmax
x ∈U

µt−1(x ) +
√
βtσt−1(x )

whereU denotes the unlabeled facts as defined in Algorithm 1. The
exclusive selection of elements x ∈ U where the model has either
a high variance (σt−1) or a high expected reward (µt−1) cannot be
regarded as the optimal strategy, as useful information is neglected
and the model’s ability to generalize is compromised. To overcome
this issue, the proposed GP-UCB sampling strategy strikes a bal-
ance between exploration by selecting elements where the model
has a certain degree of uncertainty (large σt−1), and exploitation
by choosing elements with high belief (large µt−1). By simultane-
ously optimizing both criteria, the strategy seeks to achieve an
equilibrium between exploration and exploitation.

The parameter βt trades-off exploration and exploitation. A large
βt corresponds to more exploration, while a small βt leads to more
exploitation. The GP-UCB strategy ensures a logarithmic growth
of the regret, the deviation in quality with respect to the optimal
sampling, by setting βt = 2 log(|IG (ρ)|t2π 2/6δ ) with δ ∈ (0, 1). In
other words, the regret on the evaluations tends to 0 when the
number of validated facts tends to infinity.

According to the above formula, βt starts at a relatively small
value, which encourages it to be more exploitative. Along with the
increasing number of sampling steps t , βt also increases, making
it more exploratory. We use this policy to update βt during our
experiments.

5 COMPUTING SIMILARITIES

The choice of an adequate similarity measure κ depends on the
specifics of the data and the application domain. We avoid the need
to design an ad-hoc similarity measure by proposing a flexible one
based on knowledge graph embeddings [44] to represent a graph in
a low-dimensional space. These methods implicitly capture struc-
tural and semantic information and are agnostic to the application
domain. Although errors and missing data in the knowledge graph
affect the quality of the generated embeddings [35], they consti-
tute a solid starting point. The design of such embedding methods
is outside of the scope of this work, thus we refer to [44] for a
comprehensive survey on these methods.

For our purposes, we employ HypER [4], an expressive and fast
embedding method. For each fact ⟨s, r ,o⟩ with subject s , object o,
and relationship r , HypER computes 200-dimensional vectors s, o,
and r. HypER maximizes the likelihood of the existence of a fact in
the knowledge graph. Additionally, the method aggregates informa-
tion from the subject and the relationship employing convolution
operators. The object o in the vector space is then computed as a
non-linear transformation of the subject and relationship vector.

These embeddings are calculated for all subjects, relationships,
and objects in a knowledge graph before any rule is processed.
The final embedding x of a fact x = ⟨s, r ,o⟩ is the 400-dimensional
vector concatenation x = s ◦ o of the subject and object vectors.
Since we consider one rule at a time, the relationship r in the rule
body always remains the same and can be omitted.

Colt builds on HypER embeddings, but any choice of superior
embedding technique would only enhance Colt’s performance.
Colt-MC: The similarity score between fact x = ⟨s, r ,o⟩ and fact
x ′ = ⟨s ′, r ′,o′⟩ is the cosine similarity among the fact vectors:

kcos (x ,x ′) =
x·x′
∥x∥∥x′∥ =

(s ◦ o)·(s′ ◦ o′)
∥s ◦ o∥∥s′ ◦ o′∥

Colt-GP: The Gaussian processes included in Colt-GP are kernel
methods, which naturally incorporate similarity scores. The default
kernel for Gaussian processes is the RBF kernel:

kRBF (x, x′) = exp
(
− ||x − x

′ | |
2σ 2

)
The RBF kernel provides smoothness as the similarity exponen-

tially decreases with an increase of the Euclidean distance. The pa-
rameter σ is a learned parameter in the optimization. GPs with RBF
kernels implicitly project the points into an infinite-dimensional
space so that the GP layer represents a hidden layer with an infinite
number of neurons, thereby significantly increasing the model’s
flexibility. The transformation induced by deep kernel learning
(DKL) in Section 4.3 further modifies the embedding space through
a parametric non-linear function д. The final kernel is:

kDKL(x, x′) = exp
(
− ||д(x) − д(x

′)| |
2σ 2

)
6 EXPERIMENTAL EVALUATION

In the experimental evaluation, we answer the following questions.
Q1: Is Colt-GP able to learn the truth value for each rule (Sec. 6.1)?
Q2: How do different sampling strategies affect the training process
(Sec. 6.2)? Q3: How does Colt-GP fare in comparison to our strong
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baseline Colt-MC and active learning (Sec. 6.3)? Q4: What is the
relationship between user interactions, real confidence, and rule
support (Sec. 6.4)?
Datasets.We use YAGO [42], an open-source knowledge base, to
derive logical rules and graph embeddings. At the time of writing,
YAGO2 comprises 948 358 triples, 36 relationship types, and 470 485
entities2. We ran RuDiK [34] andAMIE [13] with default parameters
on YAGO to obtain positive and negative rules. Out of 1 517 mined
rules, 928 producedmore than 5 500 triples. Each rule can be thought
of as a query asking for triples in the KG that satisfy the rule’s left-
hand side.

To keep the annotation process manageable, we selected from
all generated rules those that did not exceed 5 500 generated in-
stances, reducing the number of candidate rules to 589. Out of
these 589 rules, we selected a set of rules that exhibit a variety
in their properties: the number of atoms, the set of triplets in-
duced, and the rule confidence. We decided to include mainly
rules with at least three atoms for two reasons. First, they are
more difficult for users to analyze and validate. Second, rules with
fewer atoms typically express simple facts, such as inverse relations
(isFatherOf(x, y)⇒ hasFather(y, x)), that are easily captured by
standard algorithms. Employing this selection strategy resulted in
the 26 rules (22 positive; 4 negative) listed in Table 1. For negative
rules whose execution resulted in a very high number of triples
satisfying the rule, we randomly selected 1,000 triples for annota-
tion. To cover a range of different output sizes, we annotated rules
with a small output, as few as 40 triples, up to a rule with 5 269
triples. Similarly, we annotated rules that are mostly right, rules
that are nearly always wrong, and rules with mixed confidence. For
the listed 26 rules, we manually annotated a total of 23 324 triples,
of which 5 524 corrected errors and missing facts in the underlying
KG. To encourage further research in this area, we provide the
annotated dataset for public access3.
Algorithms. In addition to Colt-MC (Section 4.1), we evaluate
the Colt-GP algorithm (Section 4.2) against two active learning
baselines. Both baselines follow the basic active learning procedure
as described in [38]. While the first baseline employs a linear regres-
sion model (AL-LogReg), the second uses a more expressive SVM
with RBF kernel (AL-SVM) [37]. Following the results of Section 6.2,
we choose maximum uncertainty as the selection strategy for both
active learning approaches.
Training details. To train the model presented in Section 4.3, we
use stochastic variational inference (SVI) and gradient descent. We
employ the ADAM optimizer [23] with default parameters α =
0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. We jointly train the
weights of the neural network and the parameters of the GPs with
batch size 32 until convergence or a maximum of 1000 epochs. To
initialize the weight matrices, we used the initialization scheme
proposed by He et al. [18]. We train the models on a Linux machine
with 2×2.20GHz CPUs, each with 10 cores, 251 GB RAM and one
Nvidia Titan X Pascal GPU.
Runtime. Recall that this work focuses on the study of methods
for quality assessment and confidence estimation of logic rules
2http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/yago2core_facts.
clean.notypes.tsv.7z
3https://hpi.de/naumann/projects/repeatability/datasets/colt-dataset.html

using a few human-validated rule instances. While a thorough
evaluation of the runtime deviates from the main focus of this
work, we observe that our methods run in real-time in less than 10
seconds on 20–100 evaluated instances. This result, obtained on a
commodity machine, endorses the use of the Colt framework and
its most expressive Colt-GP method on production systems. While
we did not explicitly measure the annotation time of the users, we
expect it to vary depending on the user’s experience and several
external factors that are independent of the proposed algorithm. In
our experience, most rules could be annotated within a time frame
of 30 seconds to 5 minutes, depending on their complexity.

6.1 Q1: Learning rule characteristics

Here we aim to show that Colt-GP is able to learn the charac-
teristics of a rule from the instances it generates. We divide the
annotated instances into training and test sets, using a ratio of 70 to
30. We train Colt-GP on the training and test the ability to predict
whether each rule’s instance holds for the unseen instances in the
test set. This scenario primarily aims to test the learned model’s
generalization capabilities and, at the same time, represents the
most challenging classification scenario.

Figure 2 summarizes the results by showing the ROC curves for
the annotated rules as well as the mean and variance of each of
the rule’s ROC curves. The ROC curves of the individual rules and,
hence, also the average ROC curve are all significantly above the
dashed line representing the behavior of a random classifier. Colt-
GP attains 89.78% average AUC, which testifies the correctness of
the classifier in predicting unknown facts. Even the lower end of
the variance line attains 79.38% AUC, which is significantly above
the performance of a random classifier. We conclude that Colt-GP
can learn a meaningful model by using individual facts.
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Figure 2: ROC curve for classifying relations.

6.2 Q2: Selecting the sampling strategy

The sampling strategies are responsible for collecting the data used
for training. The purpose of this experiment is to investigate how
the performance of our approach depends on the sampling strategy.
Experimental setup.With IG (ρ) being the set of all instances cre-
ated by the rule ρ, we follow Algorithm 1, as specified in Section 4.
To test the trained models, we make a prediction on all instances
in IG (ρ), which includes the instances added to the training set L.
This creates a realistic evaluation scenario where instances used
for training also remain in the KG. Without limiting the budget

http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/yago2core_facts.clean.notypes.tsv.7z
http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/yago2core_facts.clean.notypes.tsv.7z
https://hpi.de/naumann/projects/repeatability/datasets/colt-dataset.html
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ID Rule #KG #correct #total type

1 dealsWith(a, v0) ∧ isLeaderOf(v1, b) ∧ wasBornIn(v1, v0)⇒ dealsWith(a, b) 9 24 99 pos
2 dealsWith(v0, b) ∧ isCitizenOf(v1, a) ∧ isLeaderOf(v1, v0)⇒ dealsWith(a, b) 42 42 42 pos
3 dealsWith(v0, b) ∧ isCitizenOf(v1, a) ∧ isLocatedIn(v1, v0)⇒ dealsWith(a, b) 108 134 134 pos
4 isCitizenOf(v0, b) ∧ livesIn(v0, a)⇒ dealsWith(a, b) 18 664 734 pos
5 diedIn(a, v0) ∧ isKnownFor(v1, v0) ∧ livesIn(v1, b)⇒ diedIn(a, b) 808 815 838 pos
6 diedIn(a, v0) ∧ isLeaderOf(v1, v0) ∧ livesIn(v1, b)⇒ diedIn(a, b) 2,143 3,135 4,292 pos
7 actedIn(a, b) ∧ created(a, b)⇒ directed(a, b) 384 388 1,003 pos
8 actedIn(v0, b) ∧ created(a, b) ∧ directed(v0, b)⇒ directed(a, b) 421 414 804 pos
9 hasWonPrize(a, v0) ∧ hasWonPrize(b, v0) ∧ hasAcademicAdvisor(b, a)

⇒ ¬hasAcademicAdvisor(a, b) 85 85 85 neg
10 influences(a, b)⇒ ¬hasAcademicAdvisor(a, b) 1,000 1,000 1,000 neg
11 isCitizenOf(v0, a) ∧ livesIn(v0, b)⇒ hasCapital(a, b) 43 50 734 pos
12 dealsWith(a, v0) ∧ hasCurrency(v0, b)⇒ hasCurrency(a, b) 7 10 293 pos
13 hasCapital(v0, v1) ∧ hasCurrency(v0, b) ∧ isLocatedIn(v1, a)⇒ hasCurrency(a, b) 18 46 49 pos
14 dealsWith(v0, a) ∧ hasOfficialLanguage(v0, b)⇒ hasOfficialLanguage(a, b) 52 72 668 pos
15 hasOfficialLanguage(v0, b) ∧ isLocatedIn(v0, a)⇒ hasOfficialLanguage(a, b) 18 62 126 pos
16 hasOfficialLanguage(v0, b) ∧ isLocatedIn(v1, a) ∧ livesIn(v1, v0)

⇒ hasOfficialLanguage(a, b) 20 52 65 pos

17 hasOfficialLanguage(v0, b) ∧ isLocatedIn(v1, v0) ∧ livesIn(v1, a)
⇒ hasOfficialLanguage(a, b) 20 16 40 pos

18 influences(a, v0) ∧ isCitizenOf(v0, b)⇒ isCitizenOf(a, b) 146 547 1,382 pos
19 hasChild(a, b)⇒ ¬isMarriedTo(a, b) 991 990 1,000 neg
20 isLocatedIn(v0, b) ∧ livesIn(a, v0)⇒ isPoliticianOf(a, b) 130 2,257 5,269 pos
21 isCitizenOf(v0, b) ∧ isLeaderOf(v0, v1) ∧ livesIn(a, v1)⇒ livesIn(a, b) 416 863 882 pos
22 isMarriedTo(a, v0) ∧ livesIn(v0, b)⇒ livesIn(a, b) 181 442 537 pos
23 actedIn(a, b) ∧ created(a, b)⇒ produced(a, b) 207 261 1,003 pos
23 actedIn(v0, b) ∧ directed(a, b) ∧ produced(v0, b)⇒ produced(a, b) 246 281 702 pos
25 hasAcademicAdvisor(v0, a) ∧ worksAt(v0, b)⇒ worksAt(a, b) 47 163 543 pos
26 actedIn(a, b)⇒ ¬wroteMusicFor(a, b) 1000 998 1,000 neg

Table 1: Generated rules and their statistics: number of KG facts that satisfy the rule, number of correct facts,

total number of facts, and type of the rule (colors are for ease of reading).

B, L eventually contains the same elements as IG (ρ). We use this
validation approach as it is widely used in the evaluation of ac-
tive learning methods, where each iteration adds more instances
to the training set. This setup enables us to show that our model
improves incrementally, ideally leading to perfect quality (F1 score)
if all instances are available and the information capacity of the
proposed model is sufficiently large to fully capture the problem.
If a model cannot achieve an F1-score of 100% when training and
predicting on identical data, it is likely that its capacity is not high
enough to perfectly separate the classification space. We examine
this scenario in more detail in Section 6.3.
Evaluation. Figure 3 shows how the different sampling strategies
affect precision, recall, and F-measure. As expected, the random
selection of training instances proves to be the worst strategy. Al-
though its precision initially increases to 78%, it then decreases and
remains, on average, 3.93% and 6.22% below the precision value
of GP-UCB and max-uncertainty (MAXU), respectively. In terms
of F-measure, the random sampling strategy lags 4.42% and 6.72%
behind the GP-UCB and MAXU strategies, regardless of the per-
centage of training instances. GP-UCB takes up to 6% of training
instances to achieve a competitive precision value of 77.44% and
remains below the precision value of MAXU throughout the ex-
periment. Overall, the MAXU strategy provides the best results in
F-measure, outperforming the other two strategies at all times.

GP-UCB’s inability to achieve a better performance than MAXU
can be attributed to the βt parameter discussed in Section 4.4. While
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Figure 3: Impact of sampling strategies on predictions.

the formula in [41] for selecting βt provides a theoretical bound on
prediction quality, it appears to be too conservative for our problem.
As a result, GP-UCB makes too conservative choices and is unable
to outperform MAXU due to an unfavorable trade-off between
exploration and exploitation. As the MAXU strategy achieves 75%
F1 with only 5% training instances, we employ this strategy in all
subsequent experiments.

6.3 Q3: Model performance

This experiment analyzes the behavior of Colt-GPw.r.t. the amount
of training data and compares the performance to our Colt-MC and
two active learning baselines. We aim to answer question (Q3) on
the necessity of our learning strategy as opposed to active learning
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methods and direct use of similarities between KG embeddings in
Colt-MC.

Figure 4 shows precision, recall, and F1-score curves of all al-
gorithms for an increasing amount of training data. AL-LogReg
and AL-SVM rapidly fall behind the Colt algorithms. Although
AL-SVM, leveraging its nonlinear RBF kernel, provides better re-
sults than AL-LogReg, neither model possesses sufficient capacity
to meet the complexity of the problem. This is reflected in the
performance metrics of Figure 4, where after using 15% (AL-SVM)
and 20% (AL-LogReg) of the training data, improvements begin
to stagnate for both models, so that their respective F-measures
fluctuate around 84% and 80%. In contrast, Colt-GP and Colt-MC
outperform the active learning approaches and continue to improve
as training data increases.
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Figure 4: Colt compared to active learning.

While Colt-GP exceeds Colt-MC in all plots, it exhibits a faster
increase than Colt-MC. Regarding the F1-score, Colt-GP grows on
average 1.54% faster than Colt-MC between 5-8% of used training
instances and slows down to 0.85% on 22-25% range. In contrast,
Colt-MC increases almost linearly between 12% and 100% F1-score.

Variance in prediction for Colt-GP decreases with the amount
of training data, as the model becomes increasingly confident. In
terms of F-measure, Colt-GP achieves 100% when all training data
is used, proving that the model is expressive enough to gain the
necessary knowledge. Using only 5% and 10% of the training data,
Colt-GP achieves 75% and 80% F-measure.Wemeasured the biggest
improvement over Colt-MC when using 31% of the training data,
resulting in an F-measure of 92.8% compared to 80.2% produced by
Colt-MC. This represents an improvement of 12.6% in F-measure.
Looking at the evaluation of all four approaches, we conclude that
it is neither sufficient to solely rely on the similarities of knowledge
graph embedding nor to apply simple active learning techniques to
solve the problem adequately.

6.4 Q4: Rule confidence estimation

We compare the rule confidence estimation of Colt-GP with the
data-driven standard confidencemeasure (SCF ) as used byAMIE [13].
It is defined as #KG

#total in Table 1. We first determine the correct
confidence value for each rule based on its annotated facts and
use it to calculate the average estimation error over all rules. The
continuous red line (SCF) in Figure 5 shows that the average SCF es-
timate is 19.6% away from the correct confidence value. To calculate
the estimation error of Colt-GP, we use an increasing number of
instances to train a model for each rule and report the average error
of these models. For this calculation, we only use rules from Ta-
ble 1, that produce at least 100 instances. The blue line (Colt-GP)
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Figure 5: Error reduction in rule confidence estimation us-

ing an increasing number of training instances. Light blue

lines indicate individual rules error.

in Figure 5 shows that, from the beginning, Colt-GP estimates the
average rule confidence more accurately than AMIE’s SCF estimate.
As a result, 10 to 20 training instances are sufficient to achieve an
average estimated confidence error of 12.9 to 10.8 percent, which
corresponds to an improvement of 6.7 and 8.8 percentage points
over the SCF estimate. As the number of training data increases,
the estimation error decreases and reaches its lowest value of 4.5
percentage points when using 100 training instances. Figure 5 also
shows that, although the estimated error between 50-100 training
instances improves by only 1.3 percentage points, the variance de-
creases by 3.5%, indicating that Colt-GP gains more confidence in
its predictions.

7 CONCLUSION & FUTUREWORK

We introduced Colt, a few-shot rule-based knowledge validation
framework for interactive quality assessment of rules. Our algo-
rithm, Colt-GP, uses Gaussian processes and deep kernel learning
to interactively learn classifiers on rules. Colt-GP benefits from
knowledge graph embeddings and user feedback to remedy data
quality issues in KGs. We juxtapose Colt-GP with a strong base-
line based on maximum coverage. Colt-GP attains 10% error in
confidence estimation with only 20 user-validated facts and 75%
prediction quality in rule validation with only 5% labeled instances.
We release the code and dataset of 26 rules and 23 000 labeled facts.

While this work focuses on learning the characteristics of sin-
gle rules, we plan to extend our approach to efficiently learn the
confidence of multiple rules simultaneously. A promising step to-
wards this goal might be to harness the meta-learning capabilities
of neural processes [22]. Furthermore, the Colt framework could
generate refined rules on the facts validated by the model on each
rule to accomplish a fine-grained maintenance of KGs. We note
that Colt’s focus on rule-driven validation does not prevent its
adoption to triples returned by other query mechanisms.
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