How to ask without speech? On quantifying zero-evidence speech

"The Privacy ZEBRA"

Andreas Nautsch

Picture taken in Heidelberg Zoo, 2020 2021-05-21

Context: VoicePrivacy 2020 Challenge

- Task: audio pseudonymisation ⇒ modify raw audio
 - Voice biometrics should fail
 - "Same person or different person?"
 - Speech recognition should work
 "What was said?"
- Metric: Zero-Evidence Biometric Recognition Assessment

Intuition: benefit to decision making?

- Motivation in forensic sciences
 - What is the <u>benefit</u> of *evidence reporting* to decision making?
 - How to validate?

- Empirical cross-entropy (ECE)
 - Less uncertainty with evidence than without?

- Strength-of-evidence: likelihood ratios
 - Which decision is more supported?

Textbook: empirical cross-entropy (ECE)

Ramos & Gonzalez-Rodriguez: Cross-entropy Analysis of the Information in Forensic Speaker Recognition, in Proc. Odyssey, 2008 Ramos, Franco Pedroso, Lozano-Diez, Gonzalez-Rodriguez: Deconstructing Cross-Entropy for Probabilistic Binary Classifiers, Entropy 20(3), 2018

Disclosure: worst-case?

- Motivation: privacy for the individual; not for the average only
- Analogue from forensic sciences to privacy preservation
 - Prosecutor & defendant in a tug of war \Rightarrow i.e. strength-of-evidence Ο
 - Decision maker: the adversary Ο
- Categorical tags

Tag	Category	Posterior odds ratio (flat prior)
0	$l = 1 = 10^{0}$	50:50 (flat posterior)
А	$10^0 < l < 10^1$	more disclosure than 50 : 50
В	$10^1 \le l < 10^2$	one wrong in 10 to 100
C	$10^2 \le l < 10^4$	one wrong in 100 to 10000
D	$10^4 \le l < 10^5$	one wrong in 10 000 to 100 000
E	$10^5 \le l < 10^6$	one wrong in 100 000 to 1 000 000
F	$10^6 \leq l$	one wrong in at least 1 000 000

Categorical scale of privacy disclosure (adapted from forensic sciences)

- \Rightarrow i.e. what is the worst case?

ZEBRA framework, an example

- VoicePrivacy 2020 Challenge audio pseudonymisation
 - Task: speech recognition should work voice biometrics should fail 0
 - Unprotected data: state-of-the-art voice biometrics Ο
 - B1: DNN baseline \bigcirc
 - B2: signal processing baseline Ο

The Privacy ZEBRA

