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Abstract—In 5G and beyond network architectures, operators
and content providers base their content distribution strategies
on small cell networks. On top of such networks, edge caching
and Coordinated Multi-Point (CoMP) Joint Transmissions are
used to improve performance. Online solutions for average
delay minimization problem have been studied in the related
literature, although only under the strong assumption that files
have equal sizes. In this paper we aim to fill this gap and propose
an online caching policy, qLRU-HS, that takes into account
heterogeneous sizes and asymptotically converges to the optimal
cache allocation under the Independent Reference Model. Our
experiments confirm such convergence in practice and reveal that
qLRU-HS outperforms other state-of-the-art solutions.

Index Terms—Edge caching, CoMP, joint transmission, hetero-
geneous cellular networks, optimization, distributed algorithms.

I. INTRODUCTION

Cellular data consumption has experienced an unprece-
dented increase. According to recent CISCO’s forecast [1],
by 2023 there will be 13 billion mobile connections, showing
an increase of nearly 50% over 2018. Network densification
is considered a key strategy to cope with traffic increase [2].
Specifically, 3G/4G macro-cell architecture will be incre-
mented with a large number of overlapping small cells (e.g.,
femto, pico), in order to improve both coverage and capacity.
In a dense cellular network, each user is in general in the
transmission range of many BSs and has access to the content
of their caches. Cellular networks with this architecture are
often call small cell networks.

On top of such a densified network, two additional tech-
niques have been proposed to provide higher Quality of
Experience (QoE). Assuming that every small base station
(BS) has limited data storage capacity, the first technique is
caching relevant content, e.g., the most popular content (with
a higher probability of being requested). It allows users to
directly access their desired content from the nearby BSs. As
a consequence, the access latency as well as the backhaul
congestion and servers’ load can be drastically reduced. The
second technique is Coordinated Multi-Point (CoMP) joint
transmissions [3]. The idea is that two or more BSs jointly
transmit the requested file to the user. By doing so, users
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experience higher rates and, consequently, smaller delays
to obtain the content. The problem is to define a caching
management strategy that is able to optimize the QoE taking
CoMP joint transmissions into consideration.

Some related work considers offline solutions, where there
is a centralized entity aware of the files popularities (assumed
to be constant over time) and of the whole network topol-
ogy [4]–[6]. With this information, it is possible to decide
which files should be cached at each BS to optimize a given
performance metric, e.g., the probability of finding requested
files in the cache, bandwidth usage, etc. However, having all
this information available is a very strong assumption and
is hardly satisfied in real systems. Moreover, if files have
different sizes, the problem complexity increases. Although
some works propose interesting solutions to take into account
heterogeneous sizes, e.g., through dynamic programming [7]
or greedy-based policies [8], the solution is often costly and
most of the related literature lacks theoretical bounds and
guarantees.

Alternatively, in the online caching framework, every BS
employs a local caching policy that dynamically updates the
local set of files reacting to the request process. Since the BSs
take decisions on-the-fly, online policies are more reactive to
files’ popularity short-term variability [9] and, in comparison
to offline solutions, each BS needs to know and exchange
much less information. For these reasons, online caching
policies are more appropriate to be deployed in real systems.
Some related work proposes online caching policies for small
cell networks, e.g., to maximize the hit ratio [10]–[12], or
minimize the average delay [13], etc. However, these studies
are all based on the strong assumption that files have equal
size. To the best of our knowledge, online caching policies
for different file sizes have been considered only in the single
cache setup [14]–[16].

In this paper, we propose an online caching policy that is
able to minimize the average delay in a small cell network
considering heterogeneous file sizes. In our proposed policy,
BSs estimate the marginal gain per byte for keeping a copy
of a cached content, calculated as the delay reduction due to
the copy divided by the file size. The marginal gain per byte
is used to drive the (probabilistic) caching decisions towards
the optimal performance.

The main contributions of this paper are summarized as
follows:



• In Section II, we present a model that captures file
retrieval delay under CoMP joint transmissions oppor-
tunities and heterogeneous files sizes.

• We define the offline optimization problem that we use as
a baseline for our proposed solution in Section III. To this
purpose we consider a greedy algorithm that computes a
possibly infeasible caching allocation but with desirable
approximation guarantees.

• We introduce our caching policy qLRU-HS in Sec-
tion IV. qLRU-HS is designed for delay minimization
with heterogeneous file sizes and is asymptotically opti-
mal as its parameter q converges to 0.

• In Section V, we provide numerical results based on
simulations that show our policy’s convergence to the
optimum when q vanishes. Then, we evaluate its perfor-
mance against other policies from the related literature.

II. SYSTEM MODEL AND OPERATION

We consider a set [B] of base stations (BSs) arbitrarily
located in a given area A ⊆ R2, where [n] denotes the set
{1, . . . , n}, for n ∈ Z+. There is a set [U ] of user equipments
(UEs) spread across area A. Because of the high density of
BSs, each UE u will, in general, be within communication
range of multiple BSs. We denote by Iu the set of UE u’s
neighboring BSs, i.e., all BSs that have UE u within their cov-
erage area and are able to receive requests and transmit content
back to u. In order to simplify our analysis, we consider that
the Signal-to-Noise Ratio (SNR) h(b)

u of the wireless channel
between BS b and UE u is constant, i.e., h(b)

u = h̄ ∈ R+, if u
and b are connected (b ∈ Iu), and h(b)

u = 0, otherwise.
Each BS b is equipped with a cache that can store up

to C(b) bytes. We consider a catalog of files [F ], where
file f ∈ [F ] has size equal to sf bytes and is requested with
probability λf over the area A (λf quantifies then the popu-
larity of content f ). In particular we assume that the request
process follows the Independent Reference Model (IRM): each
request is for file f with probability λf , independently from
the past. Let X(b)

f ∈ {0, 1} be a variable indicating whether
BS b caches file f (X(b)

f = 1) or not (X(b)
f = 0). Then, the

vector Xf =
(
X

(b)
f

)
b∈[B]

describes the allocation of f across

the caches, and the matrix X =
(
X

(b)
f

)
b∈[B],f∈[F ]

describes

the allocation of the entire catalog. Given UE u and allocation
Xf , we denote by Ju(Xf ) the set of neighboring BSs of u
that are caching f , that is Ju(Xf ) =

{
b ∈ Iu : X

(b)
f = 1

}
is

actually caching f .
When a UE requires a file, BSs can use CoMP techniques

to jointly transmit the file. The wireless channel access de-
lay [17], [18] for UE u to download f from k BSs is:

dWC
u,f (k) ,

sf

w·log2

(
1 + h̄ ·min(k, |Iu|)

) , (1)

where w ∈ R+ is the channel bandwidth and the denominator
is the aggregate capacity. The min operator captures the fact

that u can download from at most |Iu| neighboring BSs. We
consider dWC

u,f (0) = +∞.
The backhaul-access delay for any BS to fetch file f from

the back-end servers through the backhaul network is:

dBH
f , r +

sf
cBH , (2)

where cBH is the backhaul network capacity and r is a constant
that represents any sort of latency for accessing the back-end
servers (e.g., the round-trip time in the backhaul network),
henceforth generically referred to as backhaul latency.

When UE u wants to retrieve file f , it broadcasts an inquiry
message, which is received by u’s neighboring BSs in Iu.
Then, BSs in Iu estimate the download delay in two cases:

(i) The set of BSs caching f , i.e., Ju(Xf ), directly transmit
f to u with delay dWC

u,f (|Ju(Xf )|).
(ii) A random BS b′ ∈ Iu, not caching f , fetches f from the

backhaul. Then, BSs in set Ju(Xf ) ∪ {b′} transmit f to
u with delay dBH

f + dWC
u,f (|Ju(Xf )|+1).

Once the delays are estimated, the BSs proceed to transmit f
to u according to the case resulting in the smallest delay.

Therefore, we define the total end-to-end delay experienced
by UE u to download file f under allocation Xf as:

du,f (|Ju(Xf )|) , min
(
dWC
u,f (|Ju(Xf )|),
dBH
f + dWC

u,f (|Ju(Xf )|+1)
)
.

(3)

Note that (3) also captures the delay when misses at all caches
occur (Ju(Xf ) = ∅): one neighboring BS b′ will fetch the file
from the backhaul and transmit it to u.

III. OPTIMIZING STATIC CACHE ALLOCATIONS

In this section, we consider the static cache allocation
problem whose goal is to minimize the average end-to-end
delay, assuming that probabilities {λf ,∀f ∈ [F ]} and UEs
positions are known. Assuming these quantities are relatively
stable over time, the operator could use historical data to
estimate them, find the optimal allocation and then prefetch
the contents to caches during low-traffic periods of the day, as
considered in related works [5], [19].

In particular, if we assume that all UEs are equally likely
to generate a request, the delay minimization problem can be
formulated as follows:

Problem 1 (Average Delay Minimization Problem).

minimize
X

d̄(X) ,
∑
f∈[F ]

λf
1

U

∑
u∈[U ]

du,f (|Ju(Xf )|) (4)

subject to
∑
f∈[F ]

sf ·X(b)
f ≤ C(b), ∀b ∈ [B], (5)

X
(b)
f ∈ {0, 1},∀b ∈ [B],∀f ∈ [F ]. (6)

The objective (4) is the average experienced delay for a re-
quest over all files and UEs and du,f (·) is given by (3). The set
of constraints (5) guarantees that any feasible solution meets
each BS’s cache capacity. Problem 1 is NP-Hard because it
is a generalization of the single-cache problem with capacity



(“knapsack”) constraints, which is NP-Hard [20]. For a general
network setting with multiple caches, the problem is NP-hard
even in the homogeneous size case [21].

A. Approximate Solution
The following greedy algorithm was introduced in [8, Al-

gorithm 1] to solve the general submodular multiple knapsack
problem (SMKP) with a (1 − 1/e) approximation guarantee.
Starting from empty caches (X(b)

f = 0,∀b, f ), the algorithm
iteratively finds the placement (b∗, f∗) that maximizes the ratio
between the delay gain and the file size given the current
cache allocation X and adds a copy of f∗ to b∗, i.e., it
sets X

(b∗)
f∗ = 1. Whenever the placement (b∗, f∗) makes

b∗’s occupancy reach or exceed its caching capacity, b∗ is
considered “full” and disregarded in the upcoming iterations.
The algorithm stops when all BSs are “full.” From now on, we
will refer to it as Infeasible Greedy Algorithm (IGA), since
the resulting allocation is likely to violate constraints (5).

Symmetric instances of Problem 1, where BSs cover equiv-
alent groups of UEs, can be directly mapped to a general
instance of SMKP. Therefore, IGA can also be used as an
approximate solution in these cases. The objective function (4)
was studied in [21] as a set function and the authors proved
that it is monotone and submodular for the case where SNRs
are homogeneous.1 Although IGA’s solution is likely infeasi-
ble and the approximation guarantee is only valid for symmet-
ric setups, it can still be used as a heuristic to approximate
the minimum achievable average delay in general instances
of Problem 1. We use this approximation as a baseline for
the techniques introduced in Section IV. We show in detail in
Appendix A how the general solution proposed in [8] can be
adapted to Problem 1.

IV. ONLINE CACHING POLICIES

In this section, we assume that there is no centralized
intelligence controlling the caching decisions. Instead, BSs
manage their cache content on-the-fly, as new requests arrive.
Consider that BSs’ caches are implemented as ordered queues.
Files in the cache are ordered from the most recently used one
(at the front) to the least recently used one (at the rear). The
cache can perform three operations: (i) insert a new file to the
front, (ii) evict files from the rear, and (iii) move-to-the-front
a file already present.

At every request (u, f) from UE u for file f , after u’s
neighboring BSs serve the file, the respective caches react to
that request by performing some of the operations described
above. In what follows, we define a variant of qLRU [11]
caching policy whose operation depends on the quantity:

∆du,f(k)

sf
=
du,f (k − 1)− du,f (k)

sf
, (7)

which is the delay reduction UE u experiences thanks to the
k-th copy of file f divided by file f ’s size (i.e., its delay gain
per byte occupied in the cache).

1Note that, as the guarantee holds for the maximization of a non-decreasing
submodular function, we need to transform the minimization in Problem 1 in
an equivalent maximization problem.

We call our policy qLRU-HS as it is inspired by qLRU and
takes explicitly into account files with heterogeneous sizes. We
describe qLRU-HS operation as follows:

Upon a request (u, f), given the current allocation Xf :
• All neighboring BSs caching f (∀b ∈ Ju(Xf )) indepen-

dently move f from its current position in the queue to
the front with probability:

pu,f (|Ju(Xf )|) , β · ∆du,f(|Ju(Xf )|)
sf

, (8)

where constant β ensures that pu,f(·) ∈ (0, 1], e.g.,

β = min
u′,f ′,k′>0

{
sf ′

∆du′,f ′(k′)

}
. (9)

• For the remaining BSs (∀b ∈ Iu\Ju(Xf )): (i) If there
is enough cache space, f is directly inserted at the front;
(ii) otherwise, with probability q, they evict from the rear
enough files to make room for f and insert it to the front.
We refer to the file at the rear of the queue as frear.

We formalize qLRU-HS caching policy in Algorithm 1
from the perspective of each BS b.

Algorithm 1: qLRU-HS Caching Policy (for BS b)

Input: w, cBH, r, sf , Xf , Iu, and h̄.
1 if X(b)

f = 1 then
2 with probability pu,f (|Ju(Xf )|) in (8) do
3 Move-to-the-front f
4 end
5 else
6 if C(b) −

∑
f ′∈[F ] sf ′ ·X

(b)
f ′ ≥ sf then

7 Insert f to the front; X(b)
f ← 1

8 else
9 with probability q do

10 while C(b) −
∑
f ′∈[F ] sf ′ ·X

(b)
f ′ < sf do

11 Evict file frear from the rear; X(b)
frear
← 0

12 end
13 Insert f to the front; X(b)

f ← 1

14 end
15 end
16 end

Remark 1. We note that probability pu,f (·) only depends on
(i) sets Ju(Xf ) and Iu, (ii) the file size sf , and (iii) the
average SNR h̄. In cellular networks, UEs can measure the
SNR of neighboring BSs [22] and piggyback this information
in an uplink transmission from u to its neighboring BSs, with
negligible overhead.2

When each cache deploys qLRU-HS, the whole network’s
cache allocation probabilistically changes with time as new
requests arrive. Under the Characteristic Time Approximation

2The setting (9) would require each BS to be aware of the sizes of all
files in the catalog. To avoid this issue in practice, every BS can estimate β
on-the-fly, based on previous requests.



(CTA) [23], [24], and the Exponentialization Approximation
(EA) [10], we can represent such process, as a set of coupled
Continuous-Time Markov Chains (MCs). When q tends to 0,
these MCs admit stationary distributions, which, in turn,
correspond to the optimal solution of the continuous relaxation
of Problem 1. Therefore, although BSs run the qLRU-HS
policy individually, they implicitly coordinate to achieve the
optimal cache allocation. This result is formalized as follows:

Proposition 1. Under IRM, CTA, and EA, a network of
qLRU-HS caches asymptotically achieves an optimal caching
configuration, when q → 0, even if files have different sizes.

Proposition 1 is based on [25, Prop. IV.1], which states the
optimality of another policy for the case where all files have
the same size. Due to space limitations, we present the detailed
proof of Proposition 1 in Appendix B. Here, we provide an
intuitive explanation of why optimality holds.

Intuition: We observe that, as q converges to 0, the cache
exhibits two different dynamics: The insertion of new files
tends to happen more and more rarely (q converges to 0),
while the frequency of moves-to-the-front for files already in
the cache is unchanged (pu,f (·) does not depend on q). A file f
at cache b is moved to the front with a probability proportional
to the placement’s cost-benefit ∆du,f (|Ju(Xf )|)/sf , i.e., (i)
proportional to how much the file contributes to reducing the
delay of that specific request and (ii) inversely proportional
to how much cache space it takes. The expected number of
moves-to-the-front file f experiences depends on (i) how often
it is requested (λf ) and (ii) how likely it is to be moved
to the front upon a request (pu,f (·)). By the law of large
numbers, the random number of moves-to-the-front will be
close to its expected value and the least valuable file in the
cache likely occupies the last position. We can then think that,
when a new file is inserted in the cache, it will replace files
that contribute the least to the decrease of the expected cost.
qLRU-HS progressively replaces the least useful files from
the cache, until it reaches a global minimum.

V. NUMERICAL RESULTS

In this section, we first study qLRU-HS convergence to
the optimal cache allocation when q tends to 0 and then we
evaluate its performance in different scenarios by comparing
it against other policies from related literature, including:
• qLRU-∆d [13], it aims to minimize the average delay

in a small-cell CoMP-aware setup, but considers that all
files have the same size.

• greedy-dual-size [15], it aims to maximize the hit ratio in
a single-cache setup, considering sizes are heterogeneous.
We consider that all BSs run an instance of greedy-dual-
size and react independently to each request in their cell.
We refer to such operation as GDSIZE-ALL in analogy
to MULTI-LRU-ALL in [12].

• IGA greedy algorithm [8], as discussed in Section III, its
average delay reduction is guaranteed to be (1−1/e) far
from the optimal. Thus, we use it as a baseline for the
other policies.

In our experiments, we consider the Berlin topology: a
cellular network consisting of B = 10 BSs located according
to the positions of T-mobile BSs in Berlin extracted from [26].
We call network density, ρ, the average number of BSs
covering a UE and we assume that UEs are homogeneously
distributed within the BSs’ coverage area. In this network, all
BSs have the same cache capacity, i.e., C(b) = C,∀b ∈ [B],
and can store up to C = 50 GB. Unless otherwise specified,
we consider that the backhaul network is able to transmit data
at cBH = 100 Mbps with backhaul latency r = 10 ms. The
wireless channel bandwidth is w = 5 MHz and all connected
pairs BS-UE have average SNR of h̄ = 10 dB. All these values
are consistent with related literature [6], [25].

In our simulations, we consider that, at every request, a
file is chosen from a catalog of F = 104 files with probability
determined by a Zipf law with exponent α = 0.8. As suggested
by [7], real file sizes may be represented by a truncated
exponential distribution. We randomly generate the file sizes
according to an exponential distribution within the interval
[smin, smin + ∆s]. Unless otherwise specified, we consider
smin = 1 GB and ∆s = 9GB. We split the simulation into
warm-up and measurement phases, each having 107 requests.
A. Convergence Analysis

According to Proposition 1, as q tends to 0, qLRU-HS
converges to an optimal allocation. In our first experiments,
our goal is to observe this convergence in practice. We
consider the Berlin topology with density of ρ = 5.9 BSs/UE.

In Fig. 1, we show the average delay (left) and the hit ratio
(right) versus the parameter q. As a reference, we include the
the result of IGA for the same setup, which is independent
of parameter q. We emphasize that, although IGA may be
unfeasible, its delay saving is not farther than (1− 1/e) from
the optimal. As we observe in Fig. 1 (left), qLRU-HS gets
closer to IGA as q decreases, suggesting its convergence to
the optimal allocation. In addition to qLRU-HS results, we
also plot the results for qLRU-∆d, that is also guaranteed
to converge to the minimum delay as q vanishes, but only
when files have all the same size [21]. However, qLRU-∆d
converges to a value of average delay larger than qLRU-
HS’s one. This is due to fact that qLRU-∆d, while trying to
minimize the delay, tends to store large files, that indeed incur
large transmission delay, ignoring that they also occupy a large
amount of space in the cache. In particular, given two files f1

and f2 with λf1 > λf2 and sf2 � sf1 , qLRU-∆d would
prefer f2, while our caching policy qLRU-HS correctly bias
its choices in favor of f1 that leads to a larger benefit for byte
occupied in the cache. From Fig. 1 (right), we see that, for
this particular scenario, better average delay is associated with
a better hit ratio, which is not always necessarily the case.

In Fig. 2, we show the average delay (left) and the hit ratio
(right) versus the number of requests in the simulation. For this
plot, we simulate qLRU-HS and qLRU-∆d for q = 10−3 and
q = 10−4, and we indicate the results of IGA as reference.
As we observe in Fig. 2 (left), the average delay achieved
by each policy decreases over time, and reaches its minimum
value after about 106 requests (105 requests per BS).



Fig. 1: Average delay d̄ (left) and hit ratio (right) versus q.
C = 50.0 GB, ρ = 5.9 BSs/UE, r = 10.0 ms, smin = 1.0 GB,
and ∆s = 9.0 GB.

Fig. 2: Average delay d̄ (left) and hit ratio (right) versus
number of requests. Results of qLRU-HS and qLRU-∆d are
shown for q = 10−3 and q = 10−4.

B. Performance Evaluation
Now, we compare the performance of qLRU-HS with other

caching solutions in different scenarios. From now on, we
consider q = 10−3 for qLRU-HS and qLRU-∆d.

In Fig. 3, we show the performance for different values of
caching capacity, ranging from C = 10 GB to C = 100 TB.
We present the average delay (left) and the hit ratio (right)
versus the cache capacity size C. qLRU-HS provides a more
efficient management of the cache, outperforming all other
policies and presenting results close to the IGA ones. The
difference of performance across policies is maximal for
smaller values of C, in particular. for C = 10 GB. qLRU-
HS achieves a delay about 20% smaller than GDSIZE-ALL.
As expected, when the capacity increases, all policies perform
better because they can store more files and also differences
reduce until all policies perform equally when the cache is so
large to be able to store the whole catalog.

In Fig. 4, we fix the cache capacity to C = 30 GB
and observe the policies’ performances for different levels
of density, from ρ = 1.4 BSs/UE to ρ = 9.1 BSs/UE. We
control the network density by simply increasing the BSs’
transmission range, although we keep constant the SNR to
h = 10 dB. In this scenario, qLRU-HS again outperforms all
other policies and has results close to the IGA ones.

We observe in Fig. 4 (left) that all policies experience a
delay reduction as ρ increases. The reason is that the aggregate
cache available to each UE gets larger with ρ, then more files
are found in the neighboring caches. Because of the larger

Fig. 3: Average delay d̄ (left) and hit ratio (right) versus cache
capacity C. ρ = 5.9 BSs/UE, smin = 1 GB, q = 10−3, and
∆s = 9 GB.

Fig. 4: Average delay d̄ (left) and hit ratio (right) versus
network density ρ. C = 30GB, smin = 1 GB, ∆s = 9 GB,
and q = 10−3.

aggregate cache, also the difference between qLRU-HS and
qLRU-∆d becomes slightly smaller as ρ increases (similarly
to what observed in Fig. 3). On the contrary the performance
gap with GDSIZE-ALL increases: the fact that all BSs in Iu
react to a request from u leads to poor coordination.

Fig. 5 shows the average delay d̄P achieved by policy P
normalized by the average delay d̄IGA achieved by IGA.
Results are presented for different size variability (captured
by the parameter ∆s), on the left, and backhaul latency r, on
the right. For these experiments, we fix the network density to
ρ = 5.9 BSs/UE. We chose to show the results in a normalized
fashion due to the large excursion of d̄P values when both ∆s
and r change.

In Fig. 5 (left) we evaluate d̄P/d̄IGA for fixed smin = 1 GB
and change the ∆s from ∆s = 0 (homogeneous file sizes) to
∆s = 49 GB. We first observe that qLRU-HS and qLRU-
∆d both have results close to IGA in the homogeneous
size case. The more heterogeneous is the catalog, in terms
of size, the more noisy is the convergence process, as the
insertion of a single large file can lead to the eviction of many
other files and significantly change the quality of the current
allocation. This fact explains why the relative performance of
all dynamic policies worsens when size variability increases.
Despite the increasing trend shared by all policies, we observe
that qLRU-HS is always the closest to IGA. Interestingly,
although GDSIZE-ALL has the worst performance, it is less
sensitive to the variability of file sizes.

Finally, one interesting aspect in our model is how the



Fig. 5: d̄P/d̄IGA by size variability ∆s (left) and backhaul la-
tency r (right). C = 30.0 GB, q = 10−3, and ρ = 5.9 BSs/UE.

backhaul latency constant affects the policies operation and
results. In Fig. 5 (right), we show d̄P/d̄IGA when the backhaul
latency increases from r = 30 ms to r = 1 s. In this case, we
fixed smin = 1 MB and the size variability to ∆s = 9.0 MB.
In this experiment, we also observe dynamic policies perform
worse in comparison to IGA as the backhaul latency r
increases. When r becomes larger, the optimal caching strategy
changes from a scenario where it is convenient to store more
copies of the same files across the BSs’ caches (to create
CoMP opportunities) to a scenario where file diversity across
caches is preferred because it minimizes cache misses that
cause the largest delay. This means that, for large enough
values of backhaul latency, qLRU-∆d and qLRU-HS take an
equivalent strategy, to diversify files throughout the network
of caches. However, qLRU-∆d still erroneously prefer to
store large files. This leads to qLRU-∆d storing on average
less files, which decreases the hit probability and, in turn,
worsens qLRU-∆d’s performance. On the contrary, GDSIZE-
ALL correctly prefer the smallest files, but, as all caches react
at the same time, BSs tend to have similar cache content. This
replication of files throughout the BSs is suboptimal for high
latency, which explains GDSIZE-ALL’s worse performance.

VI. CONCLUSION

In this paper we proposed an online caching policy for
average delay minimization in a small cell architecture with
CoMP joint transmissions and heterogeneous file sizes. We
formulated the static optimization problem for which an in-
feasible greedy algorithm provides approximation guarantees
in the homogeneous SNR regime. Then, we introduced a
novel online caching policy able to converge to the optimal
caching allocation that minimizes the delay under IRM. In
our experiments, we observed qLRU-HS’s convergence and
evaluated its performance under different request processes
and SNR regimes. We conclude that qLRU-HS achieves
considerable performance gains with negligible additional de-
ployment complexity.
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APPENDIX A
NOTES ON IGA

A. Submodular Multiple Knapsack Problem (SMKP)

Let f : 2V → R+ be a non-negative, monotone, and submodular set function defined over a generic ground set V . Let
also w : 2V → R+ be the weight function defined for any subset of V . For singleton sets, the weight function represents the
storage cost of that particular element. In this case, we abuse the notation and denote the element weight as w({v}) = w(v).

There is a set K = {1, 2, . . . ,K} of knapsacks (or bins), such that each knapsack k ∈ [K] has total storage capacity C(k).
We denote the solution set by S ⊆ V and it may be partitioned into K disjoint subsets, i.e., S = (S(1), . . . , S(K)), indicating
the placement at every knapsack. For any feasible solution S, its elements may be arbitrarily placed into the available bins as
long as the knapsack capacity constraints are satisfied, i.e.,

w
(
S(k)

)
=
∑
v∈S(k)

w(v) ≤ C(k),∀k ∈ [K]. (10)

The goal of the Submodular Multiple Knapsack Problem (SMKP) is to find the optimal solution set SOPT ⊆ V that is
feasible and maximizes the objective function f(·). We formalize SMKP as follows:

Problem 2 (Submodular Multiple Knapsack Problem – SMKP).

maximize
S⊆V

f(S)

subject to w(S(k)) ≤ C(k),∀k ∈ [K].

We emphasize some important notes about SMKP:

1) The elements in a solution contribute to the objective function regardless of which knapsack they are placed at.
2) The same element cannot be placed at multiple knapsacks. By construction, replication represents no change to the

objective.

SMKP is an NP-Hard problem, so we present IGA (Algorithm 2) as an approximate solution, as introduced in [8]. In the
submodular optimization context, we define the objective’s discrete derivative as:

∆f(v|S) , f(S ∪ {v})− f(S), (11)

which is the marginal gain for adding element v to the current solution S. Note that, in line 3 of Algorithm 2, IGA considers
the marginal gain of a placement (its discrete derivative) relative to its weight (or its storage cost), as a way to reflect the
placement’s cost-benefit. We emphasize that, although IGA enjoys a (1− 1/e)-approximation guarantee (the proof is in [8]),
it is likely to provide an infeasible solution (the solution may violated the knapsack capacity constraints).

Algorithm 2: IGA algorithm for general SMKP
input : Sets V and [K]; Functions f(·) and w(·)
output: Solution set S and how it is partitioned.

1 S ← ∅
2 while ∃k ∈ [K] : w(S(k)) ≤ C(k) do
3 v∗ ← arg max

v′∈V \S

{
∆f(v′|S)
w(v′)

}
4 S(k) ← S(k) ∪ {v∗}
5 end
6 return S =

(
S(1), . . . , S(K)

)



B. Mapping Problem 1 to SMKP

First, we assume a symmetric setup for Problem 1, i.e., BSs are symmetrically located so that they cover an equivalent number
of UEs and operate under homogeneous conditions (e.g., same SNRs). In what follows, for the sake of ease of presentation,
we consider the simplest symmetric setup, where all B BSs completely overlap.

Let V = {vf,k : ∀[F ]× [B]} be the ground set, where element vf,k represents the k-th copy of file f in the cache network.
We consider a set of bins (knapsacks) [B], where each bin b ∈ [B] has capacity C(b).

We define the weight function w : 2V → R+, such that the weight of subset X ⊆ V is:

w(S) ,
∑
vf,k∈S

sf , (12)

where sf is the size of the file associated to element vf,k. For singleton sets, the weight function represents the storage cost
of that particular element. In this case, we abuse the notation and denote the element weight as w({vf,k}) = w(vf,k) = sf .

We represent the solution set by X ⊆ V , which is partitioned according to the set of bins, i.e., X = (X(1), . . . , X(B)). We
make a parallel between the set notation introduced here with the matrix notation used to described the system in Section II:
element vf,k is in solution X if, in the current allocation X,

∑
b∈[B]X

b
f = k. For any feasible solution X , its elements may

be arbitrarily placed into the available bins as long as the knapsack capacity constraints are satisfied, i.e.,

w
(
S(b)

)
=

∑
vf,k∈S(b)

sf ≤ C(b),∀b ∈ [B]. (13)

Now, we define a profit function d : V → R+ as follows:

d(vf,k) , λf
1

U

∑
u∈[U ]

(du,f (k − 1)− du,f (k)) = λf (df (k − 1)− df (k)) , (14)

where we can just drop references to multiple to UEs, such that df (k) = du,f (k),∀u ∈ [U ] and consider a single UE due to
the setup symmetry. Then, the goal is to maximize the total profit of allocation X , satisfying knapsack capacity constraints.
We formalize the new optimization problem as follows:

Problem 3 (Delay Reduction Maximization – DRMax).

maximize
X⊆V

D(X) ,
∑
v∈X

d(v) (15)

subject to w(X(b)) ≤ C(b),∀b ∈ [B],

where D : 2V → R+ is the total profit of all elements in X ⊆ V . Note that minimizing (4) is equivalent to maximizing (15).

Finally, we can define the objective function’s discrete derivative as follows:

D(vf,k |X) , D(X ∪ {vf,k})−D(X) =
∑

v∈X∪{vf,k}

d(v)−
∑
v∈X

d(v)

= d(vf,k) = λf (df (k − 1)− df (k)) .

This means that the marginal profit gain is actually the delay reduction of adding an extra copy of file f to the final solution
(at any BS). We also note that, in this symmetric setup, the marginal profit gain becomes independent of the current allocation

The following greedy algorithm can be used to approximate Problem 3 and it is an adapted version of Algorithm 2: Starting
from an empty solution (X ← ∅), at every iteration, the algorithm finds the the element v∗ ∈ V \X that maximizes the delay
reduction D(v|X)

w(v) related to its storage cost and adds it to the current solution X at any available bin. Whenever the element v∗

makes a bin’s occupancy reach or exceed its capacity, that bin is considered “full” and disregarded in the upcoming iterations.
The algorithm stops when all bins are “full.” This is IGA adapted to Problem 3 and we formalize it in Algorithm 3.

We emphasize that that, by construction (see definition (14), elements are added to the final solution in order, i.e., first
vf,1, then vf,2, etc. This means that, when the algorithm adds the k-th copy of a file, it had already added all 1, . . . , k − 1
copies, necessarily. Moreover, in this symmetric setup, it does not make a difference at which BS files are being placed at
(or even if there is multiple copies of the same file at the same BS). The whole system works a single cache with expanded
capacity

∑
b∈[B] C

(b). Therefore, for the symmetric setup, IGA may be used to solve Problem 3 with (1−1/e)-approximation
guarantee. In general setups, although IGA no longer enjoys such optimality guarantee, it can still be used as an upper bound
(or a lower bound, if we consider Problem 1.)



Algorithm 3: IGA for (Symmetric) DRMax

input : Sets: [U ], [F ], and [B]; Parameters: w, cBH, r, λf , sf ,∀f ∈ [F ], C(b),∀b ∈ [B], Iu,∀u ∈ [U ], and
h

(b)
u ,∀b ∈ [B],∀u ∈ [U ]; and Functions: D(·) and w(·).

output: Solution set X and it is partitioned.
1 X ← ∅
2 while ∃b ∈ [B] : w(S(b)) ≤ C(b) do
3 v∗ ← arg max

v′∈V \X

{
∆D(v′|X)
w(v′)

}
4 X(b) ← X(b) ∪ {v∗}
5 end
6 return X =

(
X(1), . . . , X(B)

)

APPENDIX B
qLRU-HS OPTIMALITY PROOF

Consider the exponential-size linear reduction of Problem 1:

Problem 4 (ADMin Exponential-Size Linear Reduction).

minimize
Y

∑
f∈[F ]

∑
xf

Yf (xf ) ·Df (xf ) (16)

subject to
∑
f∈[F ]

∑
xf

sf ·Yf (xf )·x(b)
f ≤C

(b),∀b∈ [B], (17)

∑
xf

Yf (xf ) = 1,∀f ∈ [F ], (18)

where Df (xf ) , λf · 1
U

∑
u∈[U ] du,f (|Ju(xf )|).

In Problem 4, we introduce a new set of variables Yf (xf ) ∈ {0, 1},∀f ∈ [F ],∀xf ∈ {0, 1}B that indicate whether, for
file f , the allocation xf is considered in the solution. Then, objective (16) is equivalent to (4). Constraints (17) are the cache
capacity constraints adapted to the new variables Yf (xf ). Finally, we introduce a new set of constraints (18) to guarantee that
only one assignment xf is considered in the final solution for each file f . Therefore, Problem 1 and Problem 4 are equivalent.

A. Assumptions and Notation

In the framework of Section IV, the content of caches change over time as new requests arrive, sporadically causing new
insertions and moves-to-the-front. These operations are based on probabilities, so we introduce the random variable Xf (t) to
represent the allocation of file f across the network of caches at time t. Any actual assignment of Xf (t) can be generically
expressed by xf ∈ {0, 1}B . Therefore, {Xf (t) : t ≥ 0} (or simply Xf (t)) is the stochastic process representing the evolution
of file f ’s allocation across the network of qLRU-HS caches over time.

Under Characteristic Time Approximation (CTA) the instant cache capacity constraints (5) can be violated. Instead, any file
inserted at BS b has an associated timer with fixed duration T (b)

c , the characteristic time. Only by the end of T (b)
c , the file is

evicted from b’s cache. Moreover, the timer is reset upon every subsequent cache hit, such that the expected sojourn time of
file f at BS b’s cache in a given starting cache configuration xf is:

E[T
(b)
S,f (Xf (t))] =

eβ·∆D
(b)
f (Xf (t))·Tc − 1

β ·∆D(b)
f (Xf (t))

=
1

ν
(b)
f

, (19)

where ∆D
(b)
f (xf ) = Df (xf 	e(b))−Df (xf ) is the delay gain for keeping file f at BS b’s cache and ν(b)

f is the rate at which
f is evicted from b.

Second, we consider the Exponentialization Approximation (EA), where the stochastic process Xf (t) can be simplified by
a Continuous-Time Markov Chain (CTMC). EA treats the dynamics of each file individually and independently of other files.
Lastly, we note that the CTMC representation of the heterogeneous size content case is analogous to the homogeneous size
content case, as originally proposed in [25]. In Figure 6, we show an example of a CTMC for a given file f and a scenario
with B = 2 BSs. The set of states consists of each possible assignment of Xf (t), in this case {(0, 0), (0, 1), (1, 0), (1, 1)},
and any transition from state xf to yf has rate ρ[xf → yf ].

Consider two states xf ,yf , such that ‖yf‖ > ‖xf‖. There are two types of transitions:



xf = (1, 1)
(3)

xf = (1, 0)
(2)

xf = (0, 1)
(1)

xf = (0, 0)
(0)

ρ[(3)→ (2)]

ρ[(3)→ (1)]ρ[(2)→ (3)]

ρ[(2)→ (0)]

ρ[(1)→ (3)]

ρ[(1)→ (0)]

ρ[(0)→ (3)]

ρ[(0)→ (2)]

ρ[(0)→ (1)]

Fig. 6: CTMC Xf (t) for B = 2 BSs.

• Upward transitions with rate ρ[xf → yf ] ∝ qsfγ>(yf−xf )

• Downward transitions with rate ρ[yf → xf ] ∝ q∆G
(b0)

f (yf ), where xf = yf 	 e(b0).

The direct resistance rf (xf ,x
′
f ) of transition xf → x′f is defined as the exponent of parameter q, i.e., upward transitions

have resistance rf (xf ,yf ) = sfγ
>(yf − xf ) and downward transitions have resistance rf (yf ,xf ) = ∆G

(b0)
f (yf ).

By sampling the CTMC Xf (t) every τ time units, we obtain the corresponding DTMC X̂f (k) = Xf (kτ). The transition
probability matrix Pf,q is defined for every value of parameter q. The probability of transition xf → x′f is Pf,q(xf ,x′f ) ∝
qrf (xf ,x

′
f ).

Let Gf be a weighted, directed graph, where nodes are all states xf ∈ {0, 1}B and each possible transition of X̂f (k)
is mapped to an edge with weight equal to the corresponding transition’s direct resistance. For example, for B = 2, Gf is
represented in Figure (7a). Let T (xf ) be an in-tree on Gf rooted to xf containing all nodes and I(xf ) be the set of all
possible in-trees built this way. Figure (7b) shows an example of in-tree over Gf . The resistance rf (T (xf )) of in-tree T (xf )
is the sum of the resistances of the transitions composing it, i.e., rf (T (xf )) ,

∑
(yf ,y′f )∈T (xf )

rf (yf ,y
′
f ).

Definition 1: The resistance rf (xf ) of state xf is rf (xf ) , min
T ∈I(xf )

rf (T ).

For q → 0, X̂f (k) is irreducible, aperiodic, and finite. Thus, X̂f (k) admits stationary probabilities, which are denoted by
vector πf,q = {πf,q(xf ),∀xf ∈ {0, 1}B}.

Definition 2: If lim
q→0

πf,q(xf ) > 0, then xf is called a stochastically stable state.

Property 1. By [25, Lemma IV.3], πf,q(xf ) ∝ q
rf (xf )− min

x′
f
∈{0,1}B

rf (x′f )

, i.e., stochastically stable states are those with minimal
resistance. This happens because q → 0 and any exponent different from 0 will result in probability 0 (as well as any exponent
equals 0, will result in a probability proportional to 1.)



xf = [1, 1]

xf = [0, 1]

xf = [0, 0]

xf = [1, 0]

(3)

(1)(2)

(0)

w1,3 = sf · γb1

w0,1 = sf · γb0
w0,2 = sf · γb1

w2,3 = sf · γb0

w0,3 = sf · (γb0 + γb1
)

w3,1 = ∆G
(b1)
f

([1, 1])

w1,0 = ∆G
(b0)
f

([0, 1])

w3,2 = ∆G
(b0)
f

([1, 1])

w2,0 = ∆G
(b1)
f

([1, 0])

(a) Full graph Gf .

xf = [1, 1]

xf = [0, 1]

xf = [0, 0]

xf = [1, 0]

(3)

(1)(2)

(0)

w0,3 = sf · (γb0 + γb1
)

w1,0 = ∆G
(b0)
f

([0, 1])

w3,2 = ∆G
(b0)
f

([1, 1])

(b) Example of in-tree on Gf rooted to state (2).

Fig. 7: Graph Gf for B = 2.

Definition 3: The system of modified balance equations for Gf is: max
xf∈A,zf∈Ac

{νf (xf )− rf (xf , zf )} = max
xf∈A,zf∈Ac

{νf (zf )− rf (zf ,xf )} , ∀A ⊂ {0, 1}B

max
xf∈A,zf∈Ac

νf (xf ) = σ
(20)

Property 2. Given {νf (xf )} the unique solution of the system for a specific σ, it holds

rf (xf )−min
x′f

rf (x′f ) = σ − νf (xf ). (21)

Then, all SS states have the LHS of the equation above equals to 0, so the solution for all SS states are the same (equal σ).

Definition 4: The potential of state xf is:
φf (xf ) , Gf (xf )− sfγ>xf . (22)

Lemma 2. The set {φf (xf ),∀xf ∈ {0, 1}B} is the solution of the system (20), for a particular value of σ.

Proof. First, we show that max
xf∈A,yf∈Ac

φf (xf )− rf (xf ,yf ) is achieved by a pair of parent-child nodes in Gf .

Let x̂f and ẑf be two nodes in Gf such that x̂f ∈ A, ẑf ∈ Ac, and |ẑf |> |x̂f |+1. The transition x̂f → ẑf has resistance
rf (x̂f , ẑf ). Now, consider a path from x̂f to ẑf that traverses nodes with strictly larger weights. By construction, there exists
a pair (x′f ,y

′
f ) in this path, such that x′f ∈ A and y′f ∈ Ac.

Then,

φf (x̂f )− rf (x̂f , ẑf ) = Gf (x̂f )− sfγ>x̂f − rf (x̂f , ẑf ) by def. of φf (·)
= Gf (x̂f )− sfγ>x̂f − sfγ>(ẑf − x̂f ) by def. of rf (·, ·)
= Gf (x̂f )− sfγ>ẑf
≤ Gf (x′f )− sfγ>ẑf by monotonicty of Gf (·)
= Gf (x′f )− sfγ>x′f − sfγ>(y′f − x′f )− sfγ>(ẑf − y′f )

= φf (x′f )− sfγ>(y′f − x′f )− sfγ>(ẑf − y′f ) by def. of φf (·)
= φf (x′f )− rf (x′f ,y

′
f )− sfγ>(ẑf − y′f ) by def. of rf (·, ·)

≤ φf (x′f )− rf (x′f ,y
′
f ) ẑf − y′f is non-negative



Moreover, transitions to ancestors are not valid in the MCs, so we set the reverse edges’ resistances to infinite in Gf , i.e.,
rf (ẑf , x̂f ) = +∞. As a consequence, the system of modified balance equations can be simplified, considering only parent-child
pairs, as follows: 

max
xf∈A,yf∈Ac
|yf |=|xf |+1

νf (xf )− rf (xf ,yf ) = max
xf∈A,yf∈Ac
|yf |=|xf |+1

νf (yf )− rf (yf ,xf ), ∀A ⊂ {0, 1}B

max
xf∈A

νf (xf ) = σ
(23)

Finally, we show that, for every pair parent-child , φf (·) satisfies a pairwise balance equation. Consider a parent-child pair
xf ,yf such that yf = xf ⊕ e(b0). Then,

φf (xf )− rf (xf ,yf ) = Gf (xf )− sfγ>xf − rf (xf ,yf ) by def of phi

= Gf (xf )− sfγ>xf − sfγ>(yf − xf ) by def. of r

= Gf (xf )− sfγ>yf
= Gf (xf )−Gf (yf ) +Gf (yf )− sfγ>yf
= Gf (yf )−∆G

(b0)
f (yf )− sfγ>yf by def. of Delta

= φf (yf )−∆G
(b0)
f (yf ) by def. of phi

= φf (yf )− rf (yf ,xf ) by def. of r

Therefore, {φf (xf ),∀xf ∈ {0, 1}B} is the solution of the system (20).

Property 3. All SS states have (equal) maximal potential, i.e., φf (xf ) = arg maxx′f
φf (x′f ), if xf is SS.

B. Connection with the Static Optimization Problem
Consider the continuous relaxation Problem 4 as follows:

Problem 5 (ADMin Continuous Relaxation).

minimize
Z

∑
f∈[F ]

∑
xf

Zf (xf ) ·Df (xf ) (24)

subject to
∑
f∈[F ]

∑
xf

sf ·Zf (xf )·x(b)
f ≤ C

(b),∀b ∈ [B], (25)

∑
xf

Zf (xf ) = 1,∀f ∈ [F ], (26)

Zf (xf ) ≥ 0,∀f ∈ [F ],∀xf ∈ {0, 1}B . (27)

In Problem 5, we replace variable Y with its continuous counterpart Z ∈ RF×2B . The continuous relaxation of both capacity
and singularity constraints are represented in (25) and (26), respectively. We consider a new set of variables (27) to guarantee
that Zf (xf ) ∈ [0, 1],∀f ∈ [F ],∀xf ∈ {0, 1}B .

The Lagrangian function of Problem 5 is:

L(Z,χ, ζ) , `OF(Z) +
∑
b∈[B]

χb · `CC
b (Z)

+
∑
f∈[F ]

∑
xf

χ′f,xf · `
PC
f,xf

(Z) +
∑
f∈[F ]

ζf · `SC
f (Z)

(28)

If we replace functions ` in (28), we obtain:

L(Z,χ, ζ) =
∑
f∈[F ]

∑
xf

Zf (xf ) ·Df (xf )

+
∑
b∈[B]

χb ·

∑
f∈[F ]

∑
xf

sf ·Zf (xf )·x(b)
f − C

(b)


−
∑
f∈[F ]

∑
xf

χ′f,xf · Zf (xf )

+
∑
f∈[F ]

ζf ·

∑
xf

Zf (xf )− 1





Now, we focus on verifying whether the KKT conditions are satisfied for a particular assignment (Z∗,χ∗, ζ∗) defined as
follows: 

Z∗f (xf ) = πf,0+(xf ), ∀f ∈ [F ],xf ∈ {0, 1}B

χ∗b = γb, ∀b ∈ [B]

χ
′∗
f,xf

= max
x′f

φf (x′f )− φf (xf ), ∀f ∈ [F ],xf ∈ {0, 1}B

ζ∗f = max
x′f

φf (x′f ), ∀f ∈ [F ],

Lagrangian multipliers for the capacity constraints satisfy Condition 1 because γ � 0. Moreover, if xf is an SS state, its
potential is maximal, i.e., xf = arg maxx′f

{φf (x′f )}, then χ
′∗
f,xf

= 0 and χ
′∗
f,xf

> 0, if xf is not SS state. Thus, Lagrangian
multipliers for “positivity” constraints are also non-negative and satisfy condition 1.

Condition 2 is satisfied for capacity constraints multipliers χ∗b because the maximum utility is achieved if the cache space is
fully occupied, i.e.,

∑F
f=1

∑
xf
sf ·αf (xf ) ·x(b)

f −C = 0,∀b, which is always possible considering the optimization problem’s
continuous relaxation. Then, fb · χ∗b = 0,∀b ∈ [B]. For the positivity constraints multipliers: If xf is SS state, χ

′∗
f,xf

= 0,
otherwise, αf (xf ) = 0, and, therefore, f ′i,xi · χ

′∗
f,xf

= 0,∀i ∈ [F ],∀xi ∈ {0, 1}B .
Condition 3 is satisfied because the MCs were designed in a way that the expected occupancy (inequality constraints) are

used to determine the characteristic time and couple the MCs of different files.
Condition 4 is satisfied because the stationary probabilities must sum 1.
In order for condition 5 to hold, for each αf (xf ),

∂f0(α)

∂αf (xf )
+

B∑
b=1

χ∗b
∂fb(α)

∂αf (xf )

+

F∑
f=1

∑
xf∈{0,1}B

χ
′∗
f,xf

∂ff,xf (α)

∂αf (xf )
+

F∑
f=1

ζ∗f
∂hf (α)

∂αf (xf )

= −Gf (xf ) +

B∑
b=1

γb · sf · x(b)
f

− max
x′f∈{0,1}B

φf (x′f ) + φf (xf ) + max
x′f∈{0,1}B

φf (x′f )

= −φf (xf )− max
x′f∈{0,1}B

φf (x′f ) + φf (xf ) + max
x′f∈{0,1}B

φf (x′f )

= 0.


