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Abstract

Next generation wireless systems shall satisfy the increasing demand of higher and

higher data rates at very competitive prices as well as be able to efficiently accom-

modate for and adapt to a huge dynamic range of services, applications, and types of

devices expected in the near future, e.g., see smart cities technologies, internet of things

(IoT). Appealing architectural solutions have been leveraged on ultra-densification of

antennas. Ultra-dense wireless systems envision ultra-dense distributed antenna sys-

tems (UD-DAS) based on remote distributed antennas empowered by the e-cloud for a

centralized processing. However, neither DAS nor massive MIMO technology will meet

the increasing data rate demands of the next generation wireless communications due

to the inter-cell interference and large quality of service (QoS) variations. To overcome

these issues, cell-free (CF) massive MIMO which combines the best aspects of DASs

with the massive MIMO technology, has been introduced as a key solution. The new

terminology is used for networks consisting of a massive number of geographically dis-

tributed access points (AP), which jointly serve a smaller number of users distributed

over a wide area, in the absence of cell boundaries. All the APs are connected through

a back-haul network to a central processing unit (CPU). The massive number of an-

tennas improves spectral efficiency whereas energy efficiency and macro-diversity gain

result from the distributed topology and ultra-densification. Additionally, since each

user is surrounded by a large number of serving APs, with high probability all the users

enjoy good channel conditions. Therefore, CF massive MIMO systems are expected to

provide significant improvements in terms of spectral/energy efficiency and coverage

probability.

One of the major issues in large-scale networks such as CF massive MIMO systems

is complexity at the receivers. Interestingly, in centralized MIMO systems, the high

complexity of centralized joint detectors has been successfully addressed by massive

MIMO systems. In massive MIMO systems, as the number of receive antennas tends

to infinity while the number of transmit antennas remains finite, the users’ channels

become almost orthogonal determining a phenomenon known as favorable propagation

which makes low complexity linear processing almost optimal. In this regard, the first

part of this thesis is devoted to analyzing the favorable propagation properties of CF

massive MIMO systems in asymptotic conditions when the network dimensions go

to infinity with given intensities of the transmit and receive antenna point processes
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(PP). We study the analytical conditions of favorable propagation with two kinds of

channels, namely, channels with path loss and transmit and receive antennas in line of

sight (LoS) or in multipath Rayleigh fading. We show when the analytical conditions

of favorable propagation are not satisfied, the use of low complexity linear multi-user

detection becomes very appealing in practical systems.

Channel state information (CSI) in massive MIMO systems, both cellular and CF,

plays a major role in improving the system performance. Ideally, training sequences or

pilots should be selected to be mutually orthogonal in the channel estimation. However,

in most practical scenarios the number of users is greater than the number of orthogonal

training sequences and a given training sequence can be assigned to more than one user,

therefore leading to the so-called pilot contamination which prevents the possibility of

obtaining an adequate estimate of CSI. Recently, a wide research has been dedicated

to the pilot assignment methods which address the pilot contamination problem via a

careful assignment of pilots and do not exploit the inherent structure of channels and

data in CF massive MIMO systems in contrast to blind or semi-blind estimation and

detection techniques. Therefore, in the second part of this thesis, we address the pilot

contamination problem in CF massive MIMO by exploiting the channel sparsity due

to the strong attenuation with path loss. Specifically, we consider semi-blind methods

for joint channel estimation and data detection and analyze the semi-blind approach

with classical signal processing techniques such as Fisher information matrix (FIM),

Cramer-Rao bound (CRB), and identifiability.

An extensive attention has been dedicated to the design of detectors relying on

message passing (MP) algorithms in recent years. MIMO detection based on expec-

tation propagation (EP) which is also a kind of MP algorithm, obtains near-optimal

performance with acceptable complexity, under specific conditions. EP algorithms at-

tempt to find the closest approximation within the exponential family of factors of the

posterior distribution in an iterative refinement procedure. Finally, in the last part

of this thesis, we propose an MP algorithm based on the EP principle to iteratively

conduct Bayesian semi-blind methods for channel estimation and data detection in CF

massive MIMO systems.

iii



Abrégé

Les systèmes sans fil de la prochaine génération doivent répondre à la demande crois-

sante de débits de données de plus en plus élevés à des prix très compétitifs et être capa-

bles de s’adapter efficacement à une vaste gamme dynamique de services, d’applications

et de types de dispositifs attendus dans un avenir proche. Des solutions architecturales

attrayantes ont été mises à profit pour l’ultra-densification des antennes. Les systèmes

sans fil ultra-denses envisagent des systèmes d’antennes distribuées ultra-denses (UD-

DAS) basés sur des antennes distribuées et qui s’appuient sur le cloud pour un traite-

ment centralisé. Cependant, ni la technologie DAS ni la technologie MIMO massive

ne pourront répondre aux demandes de débit de données croissantes de la prochaine

génération de communications sans fil en raison des interférences intercellulaires et des

grandes variations de qualité de service (QoS). Pour surmonter ces problèmes, le MIMO

massif sans cellule (Cell-Free - CF), qui combine les meilleurs aspects des DAS avec la

technologie MIMO massive, a été présenté comme une solution clé. Cette nouvelle ter-

minologie est utilisée pour les réseaux constitués d’un nombre considérable de points

d’accès (AP) répartis géographiquement, qui desservent ensemble un nombre beaucoup

plus faible d’utilisateurs répartis sur une vaste zone, en l’absence de frontières entre les

cellules. Tous les points d’accès sont reliés à une unité centrale de traitement (CPU)

par un réseau de liaison. Le nombre massif d’antennes améliore l’efficacité spectrale

tandis que l’efficacité énergétique et le gain de macro-diversité résultent de la topologie

distribuée et de l’ultra-densification. En outre, comme chaque utilisateur est entouré

d’un grand nombre de points d’accès de desserte, tous les utilisateurs bénéficient très

probablement de bonnes conditions de canal. Par conséquent, les systèmes MIMO

massifs CF devraient apporter des améliorations significatives en termes d’efficacité

spectrale/énergétique et de probabilité de couverture.

L’un des problèmes majeurs dans les réseaux à grande échelle tels que les systèmes

MIMO massifs CF est la complexité au niveau des récepteurs. Il est intéressant de

noter que dans les systèmes MIMO centralisés, la complexité élevée des détecteurs con-

joints centralisés a été résolue avec succès par les systèmes MIMO massifs. Dans les

systèmes MIMO massifs, comme le nombre d’antennes de réception tend vers l’infini

alors que le nombre d’antennes d’émission reste fini, les canaux des utilisateurs devi-

ennent presque orthogonaux déterminant un phénomène connu sous le nom de propa-

gation favorable qui rend le traitement linéaire à faible complexité presque optimal. À

iv



Abrégé

cet égard, la première partie de cette thèse est consacrée à l’analyse des propriétés de

propagation favorable des systèmes MIMO massifs CF dans des conditions asympto-

tiques lorsque les dimensions du réseau vont à l’infini avec des intensités données des

processus ponctuels (PP) des antennes d’émission et de réception. Nous étudions les

conditions analytiques de propagation favorable avec deux types de canaux, à savoir

les canaux avec perte de chemin et les antennes d’émission et de réception en ligne

de vue (LoS) ou en évanouissement de Rayleigh par trajets multiples. Nous montrons

que lorsque les conditions analytiques de propagation favorable ne sont pas satisfaites,

l’utilisation de la détection linéaire multi-utilisateurs à faible complexité devient très

intéressante dans les systèmes pratiques.

L’information sur l’état du canal (CSI) dans les systèmes MIMO massifs, tant cel-

lulaires que CF, joue un rôle majeur dans l’amélioration des performances du système.

Idéalement, les séquences d’entrâınement ou les pilotes devraient être sélectionnés

pour être mutuellement orthogonaux dans l’estimation du canal. Cependant, dans la

plupart des scénarios pratiques, le nombre d’utilisateurs est supérieur au nombre de

séquences d’entrâınement orthogonales et une séquence d’entrâınement donnée peut

être attribuée à plus d’un utilisateur, ce qui conduit à ce que l’on appelle la ”contamina-

tion des pilotes”, qui empêche d’obtenir une estimation adéquate du CSI. Récemment,

de nombreuses recherches ont été consacrées aux méthodes d’affectation des pilotes

qui traitent le problème de la contamination des pilotes par une affectation pru-

dente des pilotes et n’exploitent pas la structure inhérente des canaux et des données

dans les systèmes MIMO massifs CF, contrairement aux techniques d’estimation et de

détection aveugles ou semi-aveugles. Par conséquent, dans la deuxième partie de cette

thèse, nous abordons le problème de la contamination des pilotes dans les systèmes

MIMO massifs CF en exploitant la sparsité du canal due à la forte atténuation avec

perte de chemin. Plus précisément, nous considérons des méthodes semi-aveugles pour

l’estimation conjointe du canal et la détection des données et nous analysons l’approche

semi-aveugle avec des techniques classiques de traitement du signal telles que la matrice

d’information de Fisher (FIM), la limite de Cramér-Rao (CRB) et l’identifiabilité.

Ces dernières années, une attention particulière a été accordée à la conception de

détecteurs reposant sur des algorithmes de passage de messages (MP). Les détecteurs

MIMO basés sur la propagation des moments (Expectation Propagation - EP), qui

est également un type d’algorithme MP, obtiennent des performances quasi-optimales

avec une complexité acceptable, dans des conditions spécifiques. Les algorithmes EP

tentent de trouver l’approximation la plus proche dans la famille exponentielle des

facteurs de la distribution postérieure dans une procédure de raffinement itérative.

Enfin, dans la dernière partie de cette thèse, nous proposons un algorithme MP basé

sur le principe EP pour conduire itérativement des méthodes bayésiennes semi-aveugles

pour l’estimation de canal et la détection de données dans les systèmes CF.
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√
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Chapter 1

Introduction

Massive MIMO technology plays a key role in 5G systems providing the demand

for higher data rates and traffic volumes far above previous technologies, and also

reduces the latency of the data connections [1]. One of the major bottlenecks of massive

MIMO systems as well as of any cellular network is the inter-cell interference, which

significantly affects the cell-edge users performance, whose inter-cell performance is

already degraded by the path attenuation. To address these limitations and provide

uniformly service to all the users, beyond-5G networks need to enter the cell-free (CF)

paradigm, where the absence of cell boundaries annihilates the inter-cell interference

and handover issues but also causes new challenges [2].

The CF terminology was coined by Yang and Marzetta in [3], while the name CF

Massive MIMO first appeared in [4]. CF massive MIMO systems have been drawing

extensive research interests as an effective and promising approach for next generation

wireless systems thanks to their potential to reap the benefit of both massive MIMO

and distributed antenna systems (DAS) [4, 5]. In principle, CF massive MIMO is

an embodiment of general ideas known as “virtual MIMO” [6], “network MIMO”

[7], “distributed MIMO” [8], “(coherent) cooperative multi-point joint processing”

(CoMP) [9] and “distributed antenna systems” [10]. The objective is to use advanced

back-haul to achieve coherent processing across geographically distributed base station

(BS) antennas, in order to provide uniformly good service for all users in the network

1
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[5]. In [11], a generalized DAS was proposed and called as distributed MIMO system.

Distributed MIMO system combines the advantages of point-to-point MIMO and DAS,

and thus has the ability of exploiting both spatial micro and macro-diversities [11,12].

The term “network MIMO” incorporates the principle that multiple cells cooperate

to act as a single network and serve all the users in its joint coverage area. Hence,

generally, network MIMO is a synonym of distributed MIMO, and includes all its

subsequent variants [13]. More precisely, the concept of network MIMO emerged in

the early 2000s mainly in the form of cooperative MIMO BSs serving all the users

in their range of influence using multi-user MIMO processing techniques [14, 15]. It

is worth noting that CoMP is a network MIMO with coordinated beamforming. In

contrast to the network MIMO, the cellular or cell boundary concepts disappear in

CF massive MIMO and the users are served simultaneously by all antennas, hence the

name.

A CF massive MIMO system is composed of a massive number of antennas dis-

tributed over a wide area, called access points (APs). All the APs are connected

through a back-haul network to a central processing unit (CPU) and jointly and co-

herently serve a relatively small number of single-antenna users over the same time-

frequency resources. In CF massive MIMO, the massive number of antennas improves

spectral efficiency [5] whereas energy efficiency [16,17] and macro-diversity gain result

from the distributed topology and ultra-densification [2]. Additionally, since each user

is surrounded by a large number of serving APs, with high probability all the users en-

joy good channel conditions [18]. Therefore, CF massive MIMO systems are expected

to provide significant improvements in terms of spectral/energy efficiency and coverage

probability. In [19], the energy efficiency of massive MIMO systems was analyzed for

both cellular and CF scenarios. It was shown that the energy efficiency in CF massive

MIMO can be improved by nearly ten times compared to traditional cellular massive

MIMO. The achievable spectral efficiencies of CF massive MIMO have been analyzed

in the early works [5], [20], considering single-antenna APs, single-antenna users, and

Rayleigh fading channels. In successive works, more realistic scenarios such as single-

2
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antenna APs with Rician fading channels [21], multi-antenna APs with correlated [22]

or uncorrelated [23, 24] fading channels, and multi-antenna users [25] have been con-

sidered. Four different ways to divide the signal processing between the APs and CPU

are considered in [22]. It has been shown that CF massive MIMO systems outperform

conventional cellular massive MIMO and small-cell systems where each AP serves its

own exclusive set of users, through various practical scenarios [5][20][22][26, 27]. In

[5][20], the comparison was conducted under the assumption of employing maximum

ratio (MR) processing, i.e., conjugate beamforming on the downlink and matched fil-

tering on the uplink. In [22], [28–30], the authors advocated the use of more effective

processing than MR processing in CF massive MIMO to guarantee superior perfor-

mance of CF massive MIMO systems compared to traditional cellular massive MIMO

and small-cell counterparts.

The capacity per unit area of DASs in uplink has been analyzed in [31,32] leveraging

on a mathematical framework based on Euclidean random matrices (ERM) [33] and

assuming that the network dimensions tend to infinity. To reap the benefits promised

by this analysis completely, the use of a centralized optimal joint processing is crucial.

However, an optimal maximum likelihood (ML) detector is essentially an exhaustive

search method and has an unaffordable complexity for large systems.

1.1 Favorable Propagation

In centralized MIMO systems, the high complexity of centralized joint detectors has

been successfully addressed by massive MIMO systems [34]. One of the key properties

exploited in massive MIMO is that as the number of BS antennas grows the channel

vectors associated with different users, i.e, channel vectors between the BS and the

users, tend to become jointly orthogonal determining a phenomenon known as favor-

able propagation [35–37]. The favorable propagation makes linear signal processing

schemes effective and nearly optimal, hence considerably simplifying the complexity.

Under orthogonality conditions, low complexity matched filters (MF) are optimum

3
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and asymptotically attain the same performance of ML detectors. More explicitly,

on the uplink, with a simple linear detector such as MF, interference and noise can

be canceled out. On the downlink, with linear beamforming techniques, the BS can

simultaneously beamform multiple data streams to multiple user terminals without

causing mutual interference [35, 36] [38]. The validity of the favorable conditions has

been investigated for several massive MIMO settings [39].

With a massive number of APs, CF massive MIMO can exploit favorable propaga-

tion resulting from mutual orthogonality of the channels of different users [35]. In [5],

favorable propagation was leveraged to derive closed-form expressions for the down-

link and uplink achievable rates in CF massive MIMO systems. The spatial correlation

resulting from the distributed deployment of APs may however have a detrimental im-

pact on the favorable propagation. More specifically, users that are relatively closed

to each other will incur high spatial correlation which will endanger the mutual or-

thogonality of the users’ channel. In massive MIMO systems with centralized BSs, the

assumption of Rayleigh fading provides realistic guidelines for system design. However,

in CF massive MIMO systems where the APs are massively distributed and several of

them could be very close to users and in direct line of sight (LoS), it becomes relevant

to investigate the effects of LoS and path loss on the property of favorable propagation.

An initial numerical analysis for CF massive MIMO in Rayleigh fading was pre-

sented in [23]. In [23], a thorough investigation of the favorable propagation phe-

nomenon in CF massive MIMO systems from a stochastic geometry perspective was

provided. It was shown that one may not completely rely on favorable propagation

when assessing the system performance since the derived bounds may not be tight due

to the impact of spatial correlation between some users. In [40], the impact of the

network configuration on the level of favorable propagation for a CF Massive MIMO

network was investigated. They analyzed how spatial correlation between users’ chan-

nels vector influences favorable propagation and explored how to improve orthogonal-

ity between users’ channel by taking into account solely the large-scale fading and the

number of available APs.
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1.2 Pilot Contamination

Channel state information (CSI) in multiple antenna systems, both cellular and CF, is

crucial for accomplishing successful transmission under various channel conditions [41].

Ideally, training sequences or pilots should be selected to be mutually orthogonal in the

channel estimation. However, in most practical scenarios the number of users is greater

than the number of orthogonal training sequences and a given training sequence can be

assigned to more than one user, therefore leading to the so-called pilot contamination

which prevents the possibility of obtaining an adequate estimate of CSI.

Pilot contamination is a major problem in massive MIMO, which is caused by

non-orthogonality of pilot sequences used in adjacent cells. Usually, reusing pilots in

multiple cells is the main cause of the problem. In this case, the estimated channel

vector in any cell is the summation of all the channel vectors of users from the neigh-

boring cells in addition to the original cell. As the number of interfering cells increases,

the problem exponentially grows and eventually causes system malfunction [42]. The

pilot contamination phenomenon in the context of centralized massive MIMO systems

has been widely studied, see, e.g., [37] [43, 44]. Specific features of centralized mas-

sive MIMO channels such as channel hardening and favorable propagation or limited

angular spread could be exploited to “separate” user channels in power domain [45],

angular domain [46,47], or jointly in power and angular domain [48] and thus, mitigate

or annihilate pilot contamination. However, these appealing properties of channels in

centralized massive MIMO systems are destroyed in a distributed setting and pilot

contamination is still an open and challenging problem in CF massive MIMO systems.

Pilot contamination has received a lot of research interests in the literature, since it

can substantially compromise the system performance of CF massive MIMO. Several

pilot assignment (PA) techniques for suppressing pilot contamination in a CF massive

MIMO have been proposed recently. The problem of PA in CF massive MIMO was

firstly investigated in [5], where, starting from a random PA, a greedy pilot assignment

(GPA) based on the knowledge of the large-scale fading (LSF) channel coefficients was
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proposed that iteratively updates the pilot of the user with the lowest achievable rate,

i.e., the worst performing user, in order to enhance the system fairness. In [49], a

location-based greedy (LBG) pilot assignment scheme was proposed to use the loca-

tion information of the users to assign the pilot sequences instead of randomly assigning

before using the GPA algorithm. Similarly, patent [50] proposed an iterative algorithm

based on consecutive updates of the pilots for the worst and best performing users,

again aiming at the maximization of the system fairness. In [51], a structured PA algo-

rithm based on the knowledge of the users’ positions was proposed that maximizes the

minimum geographical distance between users sharing the same pilot sequences and

in [52] a similar procedure was considered taking into account the large-scale fading

channel coefficients between users and APs. Graph coloring based pilot assignment

schemes proposed in [53] and [54]. In [53], using the AP selection method an inter-

ference graph was constructed to describe the interference relationship among users

and an efficient pilot assignment scheme based on the graph coloring was proposed to

significantly reduce the impact of pilot contamination on the system throughput. To

avoid being trapped in a local optimum, tabu search is used in [55], where the tabu list

records previous assignments to ensure the efficient search of the assignment solution

space. The authors of [56] proposed an iterative approach based on the Hungarian

algorithm. In each iteration, each users and its neighboring users are assigned mutual

orthogonal pilots by exploiting the Hungarian algorithm, given the pilot assignment of

the rest of the users is fixed. The final assignment is achieved when the performance

measures reach convergence or the iterations reach the allowed maximum number.

All aforementioned techniques address the pilot contamination problem via a care-

ful assignment of pilots and do not exploit the inherent structure of channels and data

in CF massive MIMO systems in contrast to blind or semi-blind estimation and de-

tection techniques. The blind estimation is fully based on the statistical properties

of the transmitted data, whereas the semi-blind estimation depends on the joint use

of pilots and data. A blind pilot decontamination approach was firstly proposed in

[45] for centralized massive MIMO systems and utilized asymptotic orthogonality of
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user channels to remove undesired interference including pilot contamination from the

received signal. The same property was also exploited for semi-blind channel esti-

mation, e.g., [48], in centralized massive MIMO but it does not hold in CF massive

MIMO systems [29, 30]. Semi-blind channel estimation has been investigated in sev-

eral papers, e.g., [57–60] and references therein. In [57], a semi-blind scheme based

on a whitening-rotation decomposition of the channel matrix was proposed for MIMO

flat-fading channel estimation. The MIMO channel matrix is decomposed into the

product of a whitening matrix estimated blindly and a rotational unitary matrix esti-

mated using training symbols. In [58], a semi-blind channel estimation technique for

MIMO systems was introduced, which uses an iterative two-level optimization loop to

jointly estimate channel coefficients and data symbols. In [59], a performance com-

parison between blind, semi-blind and training-sequence based channel estimation was

proposed in terms of Cramer-Rao bound (CRB) for a deterministic and also a Gaus-

sian symbol model. In [60], the authors studied two semi-blind channel estimators for

SIMO systems based on ML estimation with deterministic and Gaussian models. The

asymptotic performances of the estimators in [59,60] were studied when the length of

the training sequences and data sequences grow infinitely large. A semi-blind channel

estimation method based on the expectation maximization (EM) algorithm was pro-

posed and analyzed in [61]. A Gaussian distribution was considered for the unknown

data symbols in the EM algorithm, which enables deriving a closed form solution for

the expectation evaluation of the EM algorithm. They further derived deterministic

and stochastic CRB for semi-blind channel estimation and studied their behavior in

massive MIMO systems with unlimited number of antennas at the BS.

In this context, the concept of identifiability is very relevant since it guarantees the

non-singularity of the Fisher information matrix (FIM) and thus, the existence of the

CRB. The corresponding conditions provide fundamental insights into the feasibility of

reliable communications in the analyzed system. Conditions under which channel and

data signals are blindly and semi-blindly identifiable have been thoroughly studied in

various settings for centralized systems, see, e.g., [62, 63]. In [63], the authors studied
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the conditions under which the channel and the data signals are blindly and semi-

blindly identifiable for an under-determined MIMO system. They obtained blind and

semi-blind channel estimates based on the EM algorithm in the frequency domain and

utilized a discrete random variable model for the unknown data.

1.3 Expectation Propagation

Recently, a wide research has been dedicated to the design of detectors relying on

message passing (MP) algorithms. Expectation propagation (EP) which is a kind

of MP algorithm is a generalization of sum-product belief propagation (BP). BP al-

gorithm [64] which is a graph-based statistical inference technique approximates the

posterior distributions of transmitted symbols by iterative updating and obtains good

performance but still has high computational complexity. Compared to BP utilizing

the sample values of a distribution, EP algorithm [65,66] focusing on sufficient statis-

tics, iteratively finds the best approximation for a computationally intractable target

probability distribution from a tractable family of distributions [67]. Therefore, EP

algorithm has a low computational complexity and high performance compared to BP

algorithm [68]. The EP tries to find the closest approximation for the conditional

marginal distribution of a desired variable in an iterative refinement procedure. The

EP algorithm was first proposed in [69] and summarized in, e.g., [70] for approximate

inference in probabilistic graphical models. The method of EP was firstly applied to

MIMO detection in [68], where an EP-based MIMO detector shows near-optimal per-

formance for all kinds of antenna configurations. With the EP-based MIMO detector,

a Gaussian approximation is constructed for the posterior distribution of the trans-

mitted symbols by an iterative procedure based on moment matching. The original

EP detection algorithm for massive MIMO shows a near-optimal performance but still

suffers from the high computational complexity caused by the matrix inversion in each

iteration. In [71], an iterative successive updating scheme was proposed to reduce

this computational complexity and improve the efficiency and accuracy of messages
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updating to accelerate the convergence of the EP algorithm.

EP has been proposed as a low complexity algorithm for symbol detection in mas-

sive MIMO systems [72] [73]. In [72], the EP principle was exploited for designing

efficient detector of extra-large-scale massive MIMO systems with the subarray-based

processing architecture. They represented the a posteriori distribution as a factor

graph and developed the iterative algorithm by computing and transferring messages

among different nodes on the factor graph. A non-coherent detection scheme for SIMO

systems based on the EP algorithm was proposed in [73]. The proposed EP detector

iteratively searches for the best approximation of the joint probability density func-

tion of the channel coefficients and the transmitted symbols. The output probability

density function is used for direct estimation of the channel coefficients, as well as the

transmitted symbols.

An efficient data detection algorithm with affordable complexity to reach the op-

timum performance is of highly interest in large-scale networks, such as CF massive

MIMO. In this aspect, some early works were focused on centralized algorithms where

the detection is totally implemented at the CPU with the received pilots and data

signals sent by all APs [5][74]. However, the computational overhead of such a cen-

tralized detection scheme is prohibitively high as the size of network becomes large.

To address this challenge, distributed detectors have been recently investigated in CF

massive MIMO systems. In [22], a centralized and three distributed receivers with

different levels of cooperation among APs were compared in terms of spectral effi-

ciency. However, the distributed receivers investigated in [22] are linear receivers and

therefore highly sub-optimal in terms of the bit error rate (BER) performance. In [75],

a non-linear detector for CF massive MIMO networks was proposed which is derived

based on the EP principle [69] with a distributed approach [72][76]. It was shown

that such detector can achieve better performance than other linear receivers for both

original and scalable CF massive MIMO networks and compared to other distributed

detectors, it can achieve a better BER performance.
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1.4 Thesis Outline and Main Contributions

In this section, an outline of this dissertation is provided by highlighting the key

concepts and contributions detailed in each chapter.

Chapter 2

In this chapter, we analyze favorable propagation conditions in CF massive MIMO

systems through the characteristics of the channel eigenvalue moments for the two

extreme cases with all transmit and receive antennas in LoS or in non-LoS and Rayleigh

fading. We model APs and users as two independent uniform point processes (PPs) over

a regular grid. We show analytically that the favorable propagation conditions are not

satisfied in CF massive MIMO systems with APs and users in LoS. On the contrary,

they hold in the case of path loss plus multipath Rayleigh fading. We analyze the

performance of polynomial expansion detectors and multi-stage Wiener filters (MSWF)

and show that when matched filtering is not almost optimum, the use of low complexity

linear multi-user detection becomes very appealing in practical systems.

The work in this chapter has resulted in the following publications

1. R. Gholami, L. Cottatellucci, and D. Slock, “Channel Models, Favorable Prop-

agation and Multi-Stage Linear Detection in Cell-Free Massive MIMO,” in 2020

IEEE International Symposium on Information Theory (ISIT). IEEE, 2020, pp.

2942–2947.

2. R. Gholami, L. Cottatellucci, and D. Slock, “Favorable Propagation and Linear

Multi-User Detection for Distributed Antenna Systems,” in ICASSP 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2020, pp. 5190–5194.

3. R. Gholami, S. F. Islam, S. Mahama, D. Slock, L. Cottatellucci, A. Burr,

and D. Grace, “Cell-Free MIMO Systems for UDNs,” in Enabling 6G Mobile

Networks. Springer, 2022, pp. 39–69.
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Chapter 3

In this chapter, we address the problem of pilot contamination in CF massive MIMO

systems leveraging only the channel sparsity. We develop semi-blind techniques for

joint channel estimation and data detection to mitigate pilot contamination. We ana-

lyze the potential of semi-blind approaches with classical signal processing techniques

such as FIM, CRB, and identifiability. Additionally, we determine sufficient and nec-

essary conditions for semi-blind identifiability under the assumption of deterministic

parameters. We construct a bipartite graph that has APs and users as factor and vari-

able nodes and propose an MP algorithm over this graph to verify identifiability and

compute the channel coefficients.

The work in this chapter has resulted in the following publication

1. R. Gholami, L. Cottatellucci, and D. Slock, “Tackling Pilot Contamination

in Cell-Free Massive MIMO by Joint Channel Estimation and Linear Multi-

User Detection,” in 2021 IEEE International Symposium on Information Theory

(ISIT). IEEE, 2021, pp. 2828-2833.

Chapter 4

In this chapter, we consider semi-blind methods for channel estimation in the pres-

ence of Gaussian i.i.d. data to resolve the pilot contamination. This task is further

aided by exploiting prior channel information in a Bayesian formulation. We propose

a new variable level expectation propagation (VL-EP) algorithm for MP style semi-

blind channel estimation which provides an approximate minimum mean square error

(MMSE) channel estimator which itself can not be found analytically.

The work in this chapter has resulted in the following publication

1. R. Gholami, L. Cottatellucci, and D. Slock, “Message Passing for a Bayesian

Semi-Blind Approach to Cell-Free Massive MIMO,” Proc. of 55th Annual Asilo-

mar Conference on Signals, Systems, and Computers (ACSSC). IEEE, 2021.
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Chapter 5

This chapter concludes the dissertation discussing the contributions and drawing guide-

lines for future developments in this field.
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Chapter 2

Favorable Propagation Analysis

and Multi-Stage Linear Detection

2.1 Introduction

In centralized MIMO systems, the high complexity of centralized joint detectors has

been successfully addressed by massive MIMO systems [34]. One of the key properties

exploited in massive MIMO systems is that as the number of antennas at the BS grows,

the channel vectors associated with different users, i.e., channel vectors between the BS

and the users, tend to become jointly orthogonal determining a phenomenon known

as favorable propagation [35, 36]. The favorable propagation makes linear processing

achieve optimality and maximize the information rate. Under orthogonality conditions,

low complexity MFs are optimum and asymptotically attain the same performance of

ML detectors.

In massive MIMO systems with centralized BSs, the assumption of Rayleigh fading

provides realistic guidelines for system design. However, in CF massive MIMO systems

where the APs are massively distributed and several of them could be very close to

users and in direct LoS, it becomes relevant to investigate the effects of LoS and path

loss on the property of favorable propagation.
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In this chapter, we analyze favorable propagation conditions in CF massive MIMO

systems expressed in terms of channel eigenvalue moments for the two extreme cases

with all transmit and receive antennas in LoS or in non-LoS and Rayleigh fading.

We model APs and users as two independent uniform point processes (PPs) over a

regular grid. Under this assumption, the inclusion of path loss and LoS or Rayleigh

fading leads to classes of random matrices similar to the ERMs proposed in [31, 32].

We show analytically that the favorable propagation conditions are not satisfied in

CF massive MIMO systems with APs and users in LoS. Conversely, they hold in the

case of path loss plus multipath Rayleigh fading. When matched filtering is not almost

optimum, the use of low complexity linear multi-user detection becomes very appealing

in practical systems. Then, by extending the unified analytical framework proposed

in [77], we analyze the performance of polynomial expansion detectors in [78] and

multi-stage Wiener filters (MSWF) in [79].

2.2 System Model

Throughout this chapter, we will consider both networks over 1-dimensional (1D) and

2-dimensional (2D) spaces. The corresponding models and notation are discussed in

parallel. We consider a distributed antenna system in uplink with users and APs

equipped with a single antenna and independently and uniformly distributed over a

squared box of side L and area A = L2 in R2, denoted by AL =
[
−L

2
,+L

2

)
×
[
−L

2
,+L

2

)
and a segment of length L in R, denoted by ÃL =

[
−L

2
,+L

2

)
.

For the sake of analytical tractability, we assume that users and APs are located

on a grid in AL (ÃL). Let τ > 0 be an arbitrary small real such that L = θ τ with θ

positive, even integer. Let w =
(
(−θ+2wx)τ/2, (−θ+2wy)τ/2

)
or w = (−θ+2wx)τ/2,

with wx, wy ∈ Z, be points of a regular grid in R2 or R, respectively. We denote by

A#
L (Ã#

L ) the set of points regularly spaced in AL (ÃL) by τ, i.e., A#
L ≡

{
w|w ∈

AL, wx, wy = 0, 1, . . . θ − 1}
(
Ã#
L ≡

{
w|w ∈ ÃL, wx = 0, 1, . . . θ − 1}

)
. The set A#

L

is illustrated in Fig. 2.1. We model the distributed users and APs as homogeneous
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𝜏

𝐿

Figure 2.1: Representation of A#
L . The large squared box represents the network

surface.

PPs ΦT and ΦR in A#
L characterized by parameters βT = ρT τ

2 and βR = ρRτ
2,

where ρT and ρR are the intensities, i.e., the number per unit area, of users and APs,

respectively. Then, NT = ρTL
2 = βT θ

2 and NR = ρRL
2 = βR θ

2 are the number of

users and APs, respectively. Similarly, in R, the two homogeneous PPs Φ̃T and Φ̃R

in Ã#
L are characterized by parameters β̃T = ρ̃T τ and β̃R = ρ̃Rτ , and the number of

users and APs are ÑT = ρ̃TL = β̃T θ and ÑR = ρ̃RL = β̃R θ, respectively.

All the APs are connected to a CPU via a back-haul network such that detection

is performed jointly. Users transmit at the same power p. At the central processing

unit, the discrete time NR-dimensional received signal vector is given by

y =
√
pGx + n, (2.1)

where x = [x1 x2 . . . xNT ]T is the NT -dimensional column vector of independent and

identically distributed (i.i.d.) transmitted symbols, xj is the unitary energy symbol

transmitted by user j, i.e., E{|xj|2} = 1; G is theNR×NT matrix of channel coefficients

whose (i, j)-element gij = g(ri, tj) denotes the channel coefficient between transmitter

j and receiver i with Euclidean coordinates tj = (tx,j, ty,j) and ri = (rx,i, ry,i), respec-
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tively. The NR-dimensional vector n denotes the complex additive white Gaussian

noise (AWGN) vector with i.i.d. components having zero mean and variance σ2.

In order to define the channel coefficients, we introduce the path loss matrix Ĝ

with (i, j) element given by

ĝij = ĝ(ri, tj) =


dα0

‖ri − tj‖α2
if ‖ri − tj‖2 >d0

1 otherwise,

(2.2)

where d0 is a reference distance, α is the path loss exponent and ‖ri − tj‖2 denotes

the Euclidean distance between transmit antenna j and receive antenna i. We ignore

the shadowing effect and model the large-scale fading as pure path loss. At short dis-

tances between APs and users, i.e., for ‖ri − tj‖2≤d0, the transmit signal is amplified

beyond the transmit signal level and the amplification presents a vertical asymptote

for ‖ri − tj‖2 → 0. In order to remove this artifact while keeping the model simple 1,

we assume negligible the signal attenuation in a close neighborhood of a transmitter

and we fix the attenuation equal to ĝij = 1.

In the case of antennas in LoS, the channel coefficients impaired by path loss are

given by gij = g(ri, tj) = ĝ(ri, tj) exp(−i2πλ−1‖ri − tj‖2), where the phase rotation

depending on the distance ‖ri−tj‖2 is given by exp(−i2πλ−1‖ri−tj‖2) and λ denotes

the radio signal wavelength. In the case of non-LoS channels with Rayleigh fading,

the channel coefficients are given by gij = ĝ(ri, tj) hij, where hij ∼ CN (0, 1) are i.i.d.

complex Gaussian variables modeling the small-scale fading.

Similarly, in R, the channel coefficient matrix denoted by G1D is of size ÑR × ÑT

whose (i, j)-element g1D(ri, tj) denoting the channel coefficient between transmitter

j and receiver i with Euclidean distance |ri − tj|, in the case of LoS and non-LoS

channels with Rayleigh fading is g1D(ri, tj) = ĝ1D(ri, tj) exp(−i2πλ−1|ri − tj|) and

g1D(ri, tj) = ĝ1D(ri, tj) hij, respectively. ĝ1D(ri, tj) denotes the (i, j)-th element of the

path loss matrix Ĝ1D in R, given by

1It is worth noticing that in contrast to the approach in [31, 32], the analysis proposed in this
chapter can be applied to any path loss model which admits a Fourier transform and it is not restricted
to (2.2).
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ĝij, 1D = ĝ1D(ri, tj) =


dα0

|ri − tj|α
if |ri − tj| >d0

1 otherwise,

(2.3)

2.3 Preliminary Mathematical Tools

In this section, we introduce mathematical tools for analyzing the favorable propa-

gation conditions in CF massive MIMO systems. Communication systems modeled

by random channel matrices can be efficiently studied via their covariance eigenvalue

spectrum [80, 81]. In the subsequent section, we derive a tight approximation of the

eigenvalue moments of the channel covariance matrix that can be efficiently applied

to the analysis of favorable propagation properties in CF massive MIMO systems and

the design and analysis of multi-stage linear detectors.

In the following subsection, we recall some theoretical concepts necessary to derive

the results in this chapter.

2.3.1 Free Probability Theory

Free probability is a mathematical theory that studies non-commutative random vari-

ables while classical probability theory is concerned with commutative random vari-

ables. Free probability theory was initiated by Dan Voiculescu in the 1980’s in order

to attack the free group factors isomorphism problem, an important unsolved problem

in the theory of operator algebras [82–84]. A few years later, in 1991, Voiculescu dis-

covered the relation between random matrices and free probability [85]. An interesting

aspect and active research direction of free probability lies in its applications to ran-

dom matrix theory (RMT) [86] [87]. Free probability theory provides a very efficient

framework to study limiting distributions of some models of large dimensional random

matrices. This theory introduces freeness between non-commutative random variables,

which is analogous to the independence between classical commutative random vari-

ables. Free probability has developed many powerful tools from classical probability

to provide new ideas to study random matrices.
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In the following, we briefly describe some basic concepts which play important roles

in free probability theory.

Definition 2.1 (Freeness Definition [88]) Non-commutative random variables x1,

x2, . . . xn are called free or freely independent, if for any m polynomials pk(x), 1 ≤ k ≤

m, with m ≥ 2,

E
{
p1(xi1) p2(xi2) . . . pm(xim)

}
= 0, (2.4)

when E{pk(xik)} = 0 for all k, 1 ≤ k ≤ m, and any two neighboring indices il and il+1

are not equal, i.e., 1 ≤ i1 6= i2 6= . . . 6= im ≤ n.

Then, as random variables x1, x2, . . . xn are freely independent, it implies a factoriza-

tion rule for calculating any mixed moments in x1, x2, . . . xn in terms of the moments

of individual xik’s.

One should note that free independence is a different rule from classical indepen-

dence; free independence occurs typically for non-commuting random variables, like

operators on random matrices. According to free probability theory, the random ma-

trices of independent Gaussian random variables approximately become free when the

matrix size goes to infinity.

Definition 2.2 (Non-Crossing Partitions [89]) For a positive integer n, consider

the ordered set Nn = {1, 2, . . . , n}. A partition π of set Nn means π = {V1, V2, . . . Vs}

such that V1, V2, . . . Vs ⊂ Nn with

Vi 6= ∅, Vi ∩ Vj = ∅ (1 ≤ i 6= j ≤ n), V1 ∪ . . . ∪ Vs = Nn. (2.5)

Subsets V1, V2, . . . Vs are called the blocks of π. P(n) denotes the set of all the partitions

of Nn.

Let π ∈ P(n). If there exist i < j < k < l such that i and k are in one block V

of π, and j and l in another block W of π, V and W are called cross. If one cannot

find any pair of blocks in π that cross, partition π is called non-crossing. The set of

all non-crossing partitions of Nn is denoted by NC(n).

A look at Fig. 2.2 should explain the terminology ”non-crossing”: one puts the
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Figure 2.2: Non-crossing (left, π =
{
{1, 4}, {2, 3}, {5, 6}

}
) and crossing (right,

π =
{
{1, 5}, {2, 3}, {4, 6}

}
) partitions of the set N6.

points 1, 2, . . . n on the circle, and connects each point with the next member of its

block (in cyclic order) by an internal path. Then, the partition is non-crossing if this

can be achieved without arcs crossing each other [90].

Definition 2.3 (Bipartite Graph) In the mathematical field of graph theory, a bi-

partite graph is a graph whose vertices can be divided into two disjoint and independent

sets U and V such that every edge connects a vertex in U to one in V . Vertex sets

U and V are usually called the parts of the graph. Equivalently, a bipartite graph is a

graph that does not contain any odd-length cycles.

Definition 2.4 (Even Graph) A sequence or graph is said to be even, whenever an

edge from j to l appears in the graph (possibly a certain number of times), then it

should also appear the same number of times in the opposite direction from l to j.

In the following, we define Toeplitz and circulant matrices playing a fundamental role

in developing the results of this chapter.

Definition 2.5 (Toeplitz Matrix [91]) A Toeplitz matrix is an n×n matrix Tn =

[tk,j; k, j = 0, 1, . . . n− 1] where tk,j = tk−j, i.e., a matrix of the form

Tn =



t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1 · · · t−(n−2)

...
. . . . . . . . .

...

tn−1 · · · t0


(2.6)
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A common special case of Toeplitz matrices which results in significant simplification

and play a fundamental role in developing more general results is circulant matrix when

every row of the matrix is a right cyclic shift of the row above it so that tk = t−(n−k) =

tk−n, k = 1, 2, . . . n−1. More specifically, a circulant matrix Cn is having the following

form

Cn =



c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · ...

cn−1 c0 c1
. . .

...
. . . . . . . . .

...

c1 c2 · · · c0


(2.7)

Block Toeplitz/circulant matrices are defined similarly, except that the structure refers

to block, rather than elements.

Definition 2.6 (Block Toeplitz Matrix [92]) An m×n block Toeplitz matrix with

M ×N blocks is an mM × nN matrix of the form



A0 A−1 A−2 · · · A−(n−1)

A1 A0 A−1 · · · A−(n−2)

...
. . . . . . . . .

...

Am−1 Am−2 Am−3 · · · A0


(2.8)

where Ak ∈ CM×N with 1− n ≤ k ≤ m− 1.

When M = N = 1, the matrix in (2.8) is simply an m× n Toeplitz matrix.

2.4 Channel Eigenvalue Moments

The eigenvalue moments or, shortly, the moments of the channel covariance matrix

C = GHG are defined as follows

m
(n)
C =

∫
µndFC(µ) =

1

NT

E
{

tr(Cn)
}

n ∈ N (2.9)

where µ and FC(µ) denote the eigenvalue and empirical eigenvalue distribution of

matrix C, respectively. The expectation E{.} is with respect to (w.r.t.) the two ho-
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mogeneous point processes ΦT and ΦR (Φ̃T and Φ̃R in R).

Following the approach in [31, 32][93], we decompose the path loss matrix, Ĝ, as

follows

Ĝ = ΨRT̂ΨH
T (2.10)

where T̂ is a θ2 × θ2 matrix depending only on the function ĝ(ri, tj), ΨR and ΨT are

NR × θ2 and NT × θ2 random matrices depending only on random APs’ and users’

locations, respectively.

In order to define the matrices ΨT , ΨR, and T̂, we consider the θ2 × θ2 path loss

matrix Ĝ of a system with θ2 transmit and receive antennas regularly spaced in A#
L .

It can be shown [94] that Ĝ is a symmetric block Toeplitz matrix of θ × θ Toeplitz

blocks and, asymptotically, for θ2 →∞, it admits an eigenvalue decomposition based

on a θ2 × θ2 2D discrete Fourier transform (DFT) 2 matrix F. Then, the spectral

decomposition of Ĝ is given as [94] [91]

Ĝ = FT̂FH (2.11)

where the matrix T̂ is a deterministic, asymptotically diagonal matrix whose diagonal

elements are the DFT of the first row of Ĝ. The random matrices ΨR and ΨT are

obtained by extracting independently and uniformly at random NR and NT rows of

matrix F.

The decomposition in (2.10) can also be regarded as a decomposition into two

independent random Vandermonde matrices and one deterministic matrix. The com-

putation of mixed moments of random Vandermonde matrices has been studied ex-

tensively in [95, 96] and methods have been provided to compute mixed moments for

several classes of such matrices by exploiting combinatorial techniques. The analyzed

classes share the common property that the mixed moments can be expressed in terms

of the moments of the individual independent matrices as for free random matrices.

However, in [95] this interesting property has been questioned for the class of matrices

that includes the matrix Ĝ and the decomposition in (2.10) and the approach in [95]

2The 1D DFT matrix over N points is the N × N matrix with element in row i and column
j given by (F1)ij = 1√

N
e−2πi(i−1)(j−1)/N . The definition can be extended to 2D and the 2D DFT

matrix is given by F = F1 ⊗ F1.
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is not applicable here. Therefore, to keep the problem tractable, we approximate the

random Vandermonde matrices with Gaussian matrices with i.i.d. entries. With this

approximation, our random matrices fall into the class of free matrices and the mixed

moments can be expressed in terms of the moments of the individual independent

matrices.

Similarly, for 1D systems, the path loss matrix Ĝ1D admits the same decomposition

as in (2.10), i.e., Ĝ1D = ΨR,1D T̂1D ΨH
T,1D. Accordingly, the matrix T̂1D is a θ × θ

matrix depending only on the function ĝ1D(ri, tj), ΨR,1D and ΨT,1D are ÑR × θ and

ÑT × θ random matrices, respectively. In order to define the matrices ΨR,1D, ΨT,1D,

and T̂1D, we consider the θ× θ path loss matrix Ĝ1D of a system with θ transmit and

receive antennas regularly spaced in Ã#
L . The matrix Ĝ1D is a Toeplitz matrix and,

asymptotically, for θ →∞, it admits an eigenvalue decomposition based on a θ×θ 1D

DFT matrix F1. The random matrices ΨR,1D and ΨT,1D are obtained by extracting

independently and uniformly at random ÑR and ÑT rows of matrix F1.

In the following subsections, we obtain the eigenvalue moments of the channel

covariance matrices for the two channel models considered in this work.

2.4.1 Eigenvalue Moments for Antennas in LoS

In this subsection, we derive the eigenvalue moments for DASs with transmitters and

receivers in LoS and channel attenuation given by path loss. The matrix G (G1D)

for transmitters and receivers in LoS admits a decomposition similar to Ĝ (Ĝ1D), i.e.,

G = ΨRTΨH
T (G1D = ΨR,1D T1D ΨH

T,1D). As in [32][93], the eigenvalue moments of

the channel covariance matrix are obtained by approximating the random matrices ΨR

(ΨR,1D) and ΨT (ΨT,1D) by the independent matrices ΦR (ΦR,1D) and ΦT (ΦT,1D),

respectively, consisting of i.i.d. zero mean complex Gaussian elements with variance

θ−2 (θ−1 for 1D systems) to obtain matrix G̃ = ΦRTΦH
T (G̃1D = ΦR,1D T1D ΦH

T,1D).

This approximation enables the application of classical techniques from RMT and free

probability [86][97]. The derivation of the eigenvalue moments follows the techniques

proposed in [77][98]. The results are summarized in the following proposition.
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Proposition 2.1 Let g(ri, tj) be the function of channel coefficients in LoS, T (f1, f2)

with (f1, f2) ∈ [−1/2,+1/2]2 be the 2D Fourier series of the sequence obtained by

sampling g(ri, tj) over the regular grid A#
∞, and m

(2`)
T =

∫ +1/2

−1/2

∫ +1/2

−1/2
|T (f1, f2)|2`df1df2.

Consider the matrix C̃ = G̃HG̃ with G̃ = ΦRTΦH
T . For θ2, NR, NT → +∞ with

NT/θ
2 → βT and NR/θ

2 → βR, C̃
(`)
kk , the k-th diagonal element of matrix C̃` and m

(`)

C̃
,

the eigenvalue moment of order ` of the matrix C̃ converge to a deterministic value

given by

C̃
(`)
kk = m

(`)

C̃
=

`−1∑
n=0

σ(`−n)m
(n)

C̃
for any k and ` ≥ 2

with

σ(`) =

∫ ∫
P(`)(|T (f1, f2)|2)df1df2

and P(`)(|T (f1, f2)|2) polynomial in |T (f1, f2)|2 recursively given by

P(`)(|T (f1, f2)|2) = βTm
(`−1)

C̃
|T (f1, f2)|2+βRβT |T (f1, f2)|2

`−2∑
s=0

m
(s)

C̃
P(`−s−1)(|T (f1, f2)|2)

+ β2
T |T (f1, f2)|2

`−2∑
s=0

`−2−s∑
r=1

m
(s)

C̃
m

(r)

C̃
P( −̀s−r−1)(|T (f1, f2)|2).

The initial values of the recursion are

C̃
(0)
kk = m

(0)

C̃
= 1,

P(1)(|T (f1, f2)|2) = βR|T (f1, f2)|2,

C̃
(1)
kk = m

(1)

C̃
= σ(1) = βRm

(2)
T . (2.12)

Proposition 2.1 suggests a simple algorithm to determine m
(`)

C̃
and C̃

(`)
kk illustrated in

Algorithm 1. For a detailed proof of the Algorithm 1, see Appendix A.1.

By applying the recursive Algorithm 1, we obtain the first three eigenvalue moments

for antennas in LoS as follows

m
(1)

C̃
= βRm

(2)
T ,

m
(2)

C̃
= β2

RβTm
(4)
T + βR(βR + βT )(m

(2)
T )2, (2.13)

m
(3)

C̃
= β3

Rβ
2
Tm

(6)
T + 3β2

RβT (βR + βT )m
(2)
T m

(4)
T +

[
βRβT (3βR + βT ) + β3

R

]
(m

(2)
T )3.
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Algorithm 1 Eigenvalue Moments for Antennas in LoS

Initialization
Let µ0 = ρ0(x) = 1, σ(1) = µ1 = βR m

(2)
T , ρ1(x) = βRx, and ` = 2.

Step `

• Define polynomial ρ`(x) in x

ρ`(x) = βTµ`−1x+ βRβTx
`−2∑
s=0

µsρ`−s−1(x) + β2
Tx

`−2∑
s=0

`−2−s∑
r=1

µsµrρ`−s−r−1(x)

and write it as a polynomial in x.

• In ρ`(x), replace the monomial x, x2, . . . x` by the moments m
(2)
T ,m

(4)
T , . . .m

(2`)
T ,

respectively and assign the result to σ(`).

• Compute µ` =
∑`−1

n=0 σ
(`−n)µn.

• Assign µ` to m
(`)

C̃
and C̃

(`)
kk .

• Increase ` by a unit.

The Algorithm 1 also holds for 1D systems, as θ, ÑR, ÑT → ∞ with ÑT/θ → β̃T and

ÑR/θ → β̃R.

2.4.2 Eigenvalue Moments for Rayleigh Fading Channels

In this subsection, we consider the channel matrix for Rayleigh fading given by G =

(ĝijhij)
j=1,...NT
i=1,...NR

( G1D = (ĝij, 1D hij)
j=1,...NT
i=1,...NR

) and we determine an asymptotic approx-

imation of its eigenvalue moments by approximating Ĝ (Ĝ1D), the path loss matrix,

by Ğ = (ğij)
j=1,...NT
i=1,...NR

= ΦRT̂ΦH
T

(
Ğ1D = (ğij, 1D)j=1,...NT

i=1,...NR
= ΦR,1D T̂1DΦH

T,1D

)
. Then,

the following result holds.

Proposition 2.2 Let ĝ(ri, tj) be the path loss function, T̂ (f1, f2), with (f1, f2) ∈

[−1/2, 1/2]2, be the 2D discrete Fourier series of the sequence obtained by sampling

ĝ(ri, tj) over a regularly spaced grid A#
∞, and m

(2`)

T̂
=
∫ +1/2

−1/2

∫ +1/2

−1/2
|T̂ (f1, f2)|2` df1 df2.

Consider the matrix G̃ = (ğijhij)
j=1,...NT
i=1,...NR

. As L → +∞, the eigenvalue moment of

order ` of the matrix C̃ = G̃HG̃ converges to the deterministic value given by

m
(`)

C̃
= (m

(2)

T̂
)`

`−1∑
k=0

1

k + 1

(
`− 1

k

)(
`

k

)
βkT β

`−k
R (2.14)
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Sketch of the proof. The `-th eigenvalue moment of matrix C̃ is given by

m
(`)

C̃
= E

{ 1

NT

tr(C̃`)
}

=
1

NT

NT∑
j1,...j`=1

NR∑
i1,...i`=1

E
{
ğ∗i1j1h

∗
i1j1

. . . ğ∗i`j`h
∗
i`j`
ği`j1hi`j1

}
=

1

NT

NT∑
j1,...j`=1

NR∑
i1,...i`=1

E
{
h∗i1j1 hi1j2 . . . h

∗
i`j`

hi`j1
}
× E

{
ğ∗i1j1 ği1j2 . . . ğ

∗
i`j`

ği`j1
}

(2.15)

where the last equality stems from the statistical independence of ğij and hij. It is

possible to show that for L → +∞, non-vanishing contributions to the eigenvalue

moments in (2.15) are given by terms with indices (j1, i1, j2, i2, . . . , j`, i`) satisfying

specific conditions defined in the following. Then, a closed-form expression of the

eigenvalue moments is found by resorting to combinatorial techniques widely utilized

in RMT to derive eigenvalue moments.

Given the sequence of (j1, i1, j2, i2, . . . , j`, i`), we consider the two sets of indices

eventually repeated J = {j1, j2, . . . j`} and I = {i1, i2, . . . i`} and denote by p1 and p2

the number of distinct indices in J and I. Additionally, we associate to the sequence a

bipartite graph with directed edges from one to the other set given by each consecutive

pair of indices in the sequence. The sequences of indices that contribute to non-

vanishing terms of the eigenvalue moments satisfy the following conditions

(P1) p1 + p2 = `+ 1;

(P2) Whenever an edge from J to I appears in the bipartite graph, then it should

also appear in the opposite direction from I and J ,

(P3) The bipartite graph is a tree.

Consider the sets obtained from J and I by removing repetitions of indices. It is

possible to show that the number of distinct bipartite graphs satisfying the conditions

above is given by [99]

1

p1

(
`− 1

p1−1

)(
`

p1−1

)
=

1

`−p2+1

(
`− 1

`−p2

)(
`

p1−1

)
(2.16)
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Additionally, choosing the indices of J and I from the sets {1, . . . NR} and {1, . . . NT}

respectively, there are

NT (NT − 1) . . . (NT − p1 − 1)NR(NR − 1) . . . (NR − p2 − 1) = O(Np1
T N

p2
R ) (2.17)

possible choices of indices yielding similar bipartite graphs. Then, in total, there are

Np1
T N

p2
R

1

p1

(
`− 1

p1 − 1

)(
`

p1 − 1

)
(2.18)

sequences of indices satisfying the conditions P1, P2, and P3 with p1 vertices in {1, . . . NT}

and `+ 1− p1 vertices in {1, . . . NR}.

Let us observe that the expectation of each term satisfying the conditions P1, P2,

and P3 with p1 vertices in {1, . . . NT} and ` + 1− p2 vertices in {1, . . . NR}, gives the

same contribution. In particular,

E
{
h∗i1j1 hi1j2 . . . h

∗
i`j`

hi`j1
}

= 1 (2.19)

since in the expectation appear ` independent factors |hi,j|2 with hi,j ∼ CN (0, 1).

Additionally,

E
{
ğ∗i1j1 ği1j2 . . . ğ

∗
i`j`

ği`j1
}

=
(m

(2)

T̂
)`

θ2`
(2.20)

since in the expectations appear ` independent factors |ğij|2 and E{|ğij|2} =
1

θ2
m

(2)

T̂

where m
(2)

T̂
denotes the eigenvalue moment of the diagonal matrix T̂T̂H . Note that as

θ2 → +∞, m(2)

T̂
coincides with the moment defined in the statement of Proposition

2.2. From (2.16), (2.17), (2.19), and (2.20) we obtain

m
(`)

C̃
=

1

NT

∑̀
p1=1

1

p1

(
`− 1

p1−1

)(
`

p1−1

)
N `+1−p1
R Np1

T

(
m

(2)

T̂

θ2

)`

that leads to (2.14). This concludes our proof. See Appendix A.2 for more details. �

The first three eigenvalue moments of the covariance matrix for the Rayleigh fading

channel converge to the following values

m
(1)

C̃
= βRm

(2)

T̂
= ρRτ

2m
(2)

T̂
,

m
(2)

C̃
= βR(βR + βT )(m

(2)

T̂
)2 = ρRτ

4(ρR + ρT )(m
(2)

T̂
)2, (2.21)

m
(3)

C̃
=
[
βRβT (3βR + βT ) + β3

R

]
(m

(2)

T̂
)3 = τ 6

[
ρRρT (3ρR + ρT ) + ρ3

R

]
(m

(2)

T̂
)3.
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Similarly, the analysis is carried out for the 1D system as follows.

Proposition 2.3 Let ĝ1D(ri, tj) be the path loss function, T̂1D(f), with f ∈ [−1/2, 1/2],

be the 1D discrete Fourier series of the sequence obtained by sampling ĝ1D(ri, tj) over

a regularly spaced grid Ã#
∞, and m

(2`)

T̂1D
=
∫ +1/2

−1/2
|T̂1D(f)|2` df. Consider the matrix

G̃1D = (ğij, 1D hij)
j=1,...NT
i=1,...NR

. As L → +∞, the eigenvalue moment of order ` of the

matrix C̃1D = G̃H
1DG̃1D converges to the deterministic value given by

m
(`)

C̃1D
= (m

(2)

T̂1D
)`

`−1∑
k=0

1

k + 1

(
`− 1

k

)(
`

k

)
β̃kT β̃

`−k
R (2.22)

The derivation of (2.22) follows the same lines as the derivation done for 2D systems.

The first three eigenvalue moments of the covariance matrix C̃1D converge to

m
(1)

C̃1D
= β̃Rm

(2)

T̂1D
= ρ̃Rτm

(2)

T̂1D
,

m
(2)

C̃1D
= β̃R(β̃R + β̃T )(m

(2)

T̂1D
)2 = ρ̃Rτ

2(ρ̃R + ρ̃T )(m
(2)

T̂1D
)2, (2.23)

m
(3)

C̃1D
=
[
β̃Rβ̃T (3β̃R + β̃T ) + β̃3

R

]
(m

(2)

T̂1D
)3 = τ 3

[
ρ̃Rρ̃T (3ρ̃R + ρ̃T ) + ρ̃3

R

]
(m

(2)

T̂1D
)3.

2.5 Favorable Propagation

To have favorable propagation, the channel vectors between the BS and the users

should be orthogonal. It is said that the channel offers favorable propagation if the

following condition holds [35]

gHk gj =


0, k 6= j

‖gk‖2 6= 0, k = j.

(2.24)

where gk = [g1k g2k . . . gNk]
T denotes the channel vector from the N antennas to the

user k. The favorable propagation condition (2.24) offers the optimal performance with

linear processing. However in practice, this condition is not fully satisfied, but can be

approximately attained when the number of antennas grows large, in which case the

channels are said to provide asymptotically favorable propagation. More precisely, the

asymptotically favorable propagation condition can be defined as follows [35]

1

N
gHk gj → 0, N →∞, k 6= j. (2.25)
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In the following, we analyze the favorable propagation conditions for LoS and

Rayleigh fading channel in CF massive MIMO systems through the characteristics of

their channel eigenvalue moments. In a favorable propagation environment, when the

users have almost orthogonal channels, the channel covariance matrix R of size K×K

is almost diagonal and satisfies the following properties

MR(`) =
m

(`)
R

1

K
tr
[(

diag(R)
)`] ≈ 1 ∀` ∈ N+ (2.26)

where m
(`)
R denotes the `-order eigenvalue moment of matrix R, and MR stands for

moment ratio. These properties are asymptotically satisfied for centralized massive

MIMO systems, in rich scattering environments, when the number of users stays finite

while the number of antennas at the central base station tends to infinity.

By making use of the observation that in large DAS, as L→∞, C̃kk = βRm
(2)
T , we

obtain that
1

NT

tr
[(

diag(C̃)
)`]

= β`R (m
(2)
T )` such that (2.26) specializes for DAS with

LoS channel and ` = 2, 3 as follows

m
(2)

C̃

β2
R(m

(2)
T )2

= 1 +
βT
βR

+ βT
m

(4)
T

(m
(2)
T )2

(2.27)

m
(3)

C̃

β3
R(m

(2)
T )3

= 1 + 3
βT
βR

+
β2
T

β2
R

+ 3βT

(
1 +

βT
βR

)
m

(4)
T

(m
(2)
T )2

+ β2
T

m
(6)
T

(m
(2)
T )3

(2.28)

As βR → ∞ while βT is kept constant, i.e., for βT/βR → 0 and βT > 0, the ratios

(2.27) and (2.28) converge to the following limiting values

m
(2)

C̃

β2
R(m

(2)
T )2

→ 1 + βT
m

(4)
T

(m
(2)
T )2

(2.29)

m
(3)

C̃

β3
R(m

(2)
T )3

→ 1 + 3βT
m

(4)
T

(m
(2)
T )2

+ β2
T

m
(6)
T

(m
(2)
T )3

(2.30)

and conditions (2.26) are not satisfied.

For DASs with path loss and Rayleigh fading channel, the moment ratios in (2.26)

converge to one for all ` ≥ 1, as βT/βR → 0 and βR →∞ as shown in the following
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m
(`)

C̃

1

NT

tr

[(
diag(C̃)

)`] =
β`R(m

(2)

T̂
)`
∑`−1

k=0
1

k+1

(
`−1
k

)(
`
k

) (
βT
βR

)k
β`R(m

(2)

T̂
)`

=1 +
`−1∑
k=1

1

k + 1

(
`−1

k

)(
`

k

)(
βT
βR

)k
→1 (2.31)

Then, conditions (2.26) are satisfied and Rayleigh fading channel offers favorable prop-

agation.

Similarly, in the 1D system, it is straightforward to show that the favorable con-

ditions are not satisfied in the case of antennas in LoS while Rayleigh fading channel

offers favorable propagation.

2.6 Linear Multi-Stage Detectors

Systems with favorable propagation can efficiently utilize low complexity matched

filters at the central processing unit since this filter achieves almost optimal perfor-

mance in such environments. However, when conditions (2.26) are not satisfied, even

linear multi-user detectors are expected to provide substantial gains compared to the

matched filter. In the following, we consider low complexity multi-stage detectors in-

cluding both polynomial expansion detectors, e.g., [78], and multi-stage Wiener filters

[79] and we analyze their performance in terms of their signal to interference and noise

ratio (SINR) by applying the unified framework proposed in [77][100]. In [77], it is

shown that both design and analysis of multi-stage detectors with M stages can be

described by a matrix S(X) defined as

S(X) =



X(2) + σ2X(1) · · · X(M+1) + σ2X(M)

X(3) + σ2X(2) · · · X(M+2) + σ2X(M+1)

...
. . .

...

X(M+1) + σ2X(M) · · · X(2M) + σ2X(2M−1)
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Figure 2.3: Favorable propagation conditions MR= m
(`)

C̃
/tr[
(
diag(C̃)

)`
] versus βT/βR.

and a vector s(X) = [X(1), X(2), . . . X(M)]T where X = mC̃ for polynomial expansion

detectors and X = C̃kk for multi-stage Wiener filters. From the asymptotic property

that C̃
(`)
kk = m

(`)

C̃
for any k and `, we can conclude that multi-stage Wiener filters and

polynomial expansion detectors are equivalent in DAS. Additionally, the performance

of a centralized processor implementing an M -stage detector is given by [77]

SINRM =
sT (m

C̃
)S−1(m

C̃
)s(m

C̃
)

1− sT (m
C̃

)S−1(m
C̃

)s(m
C̃

)
(2.32)

For M = 1, a multi-stage detector reduces to a matched filter and (2.32) can be

applied to determine its performance and SINR1 yields the SINR at the output of a

matched filter.

2.7 Simulation Results

In this section, we validate the analytical asymptotic results by simulations and ana-

lyze the performance of multi-stage detectors in large-scale systems. Throughout this

section, we consider the following scenario. The channel is characterized by α = 2 and

reference distance d0 = 1. The transmit antennas are distributed according to a homo-

geneous PP with intensity ρT = 0.01 over a finite network of area A = L2 = 400 while
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Figure 2.4: Asymptotic (solid lines) and empirical (markers) gains G versus ρR for
multi-stage detectors (M = 2, 3, 5), with path loss plus LoS or plus Rayleigh fading.

the intensity of receivers varies in the range ρR = [0.1, 15] in Fig. 2.3 and ρR = [1, 10]

in Fig. 2.4 and Fig. 2.5. In Fig. 2.6, ρT = 0.5 and ρ = [1, 5].

Fig. 2.3 shows the moment ratio m
(`)

C̃
/(tr[

(
diag(C̃)

)`
]/NT ) versus βT/βR = ρT/ρR

for ` = 3. The x-axis is plotted in logarithmic scale. The analytical moment ratios

match almost perfectly the ratios for the simulated finite systems. As predicted ana-

lytically, the favorable propagation conditions are not satisfied for LoS channel while

they hold in the case of the Rayleigh fading. For small ratios βT/βR, the curves of LoS

and Rayleigh fading converge to the asymptotic moment ratios in (2.30) and (2.31),

respectively. In Fig. 2.4 and Fig. 2.5, we consider a system with average signal to noise

ratio (SNR) at the transmitters equal to 20dB and analyze the gain of a multi-stage

Wiener filter or equivalently a polynomial expansion detector over a matched filter in

terms of the its normalized increase in SINR defined as follows

G =
SINRM − SINR1

SINR1

.

Fig. 2.4 compares the performance of the two channel models and presents gain G

versus ρR, the intensity of receivers for M -stage Wiener filters with M = 2, 3, 5. The

analytical results in solid lines are obtained under the asymptotic assumption L→∞.
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Figure 2.5: Gain G versus ρR of multi-stage detectors (M = 2, 3, 5) for path loss plus
LoS channels and ρT ∈ {0.01, 0.05}.

The empirical results shown by markers are obtained for L = 20 and averaging over

100 network realizations. Simulations show an excellent match between the asymp-

totic performance and empirical results. In the case of Rayleigh fading, as favorable

propagation conditions are satisfied, the performance gap between matched filter and

multi-stage detectors tends to vanish and gain G becomes negligible as ρR increases

while ρT is kept constant. Then, for ρR sufficiently large, the matched filter achieves

almost optimal performance. On the contrary, in the LoS case, the performance gap

between the matched filter and multi-stage detectors is dramatic with an increase in

SINR of about 140% even for systems with 1000 receive antennas per transmitter per

unit area. It is interesting to note that for the considered channel models, this dramatic

performance enhancement can be attained already with a very simple 2-stage detector

and higher complexity multi-stage detectors offer only incremental improvements at

least at very low system loads.

In Fig. 2.5, we analyze the effect of ρT/ρR, the system load per unit area, in the

case of transmit and receive antennas in LoS. Fig. 2.5 shows gain G for ρT = 0.05 and

ρT = 0.01 as the intensity of receivers varies. Increasing the system load, the SINR

increase offered by a 2-stage detector increases enormously and for higher load, also
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the increments offered by higher order multi-stage detectors over a 2-stage detector

become significant. More specifically, Fig. 2.6 illustrates the SINR [dB] of matched

filters (M = 1) and multi-stage detectors with two and three stages versus the intensity

of receive antennas ρR, for LoS channel. For increasing values of ρR the performance

gap between the matched filter and the multi-stage detector is substantial and does

not tend to vanish.

1 1.5 2 2.5 3 3.5 4 4.5 5

R

0

1

2

3

4

5

6

7

8

S
IN

R
 [

d
B

]

SNR=20dB, L=20, =0.1, =2, 
T
=0.5

MF, M=1

MSWF, M=2

MSWF, M=3

Figure 2.6: SINR [dB] versus ρR for matched filter (M = 1) and multi-stage
detectors (M = 2, 3) with path loss plus LoS.

2.8 Conclusion

In this chapter, we considered a CF massive MIMO system in uplink, comprising a

massive number of transmit and receive antennas distributed according to homoge-

neous PP. We analyzed the properties of the system in asymptotic conditions when

the network dimensions go to infinity with given intensities of the transmit and re-

ceive antenna PPs. We studied the analytical conditions of favorable propagation in

CF massive MIMO systems with two kinds of channels, namely, channels with path

loss and transmit and receive antennas in LoS or in multipath Rayleigh fading. We

showed that the analytical conditions of favorable propagation are satisfied for channels

impaired by path loss and Rayleigh fading while they do not hold in the case of LoS
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channels, motivating the use and analysis of low complexity linear multi-user detec-

tion. We analyzed the performance of polynomial expansion detectors and MSWFs and

showed their equivalence in CF massive MIMO systems. Their performance analysis

confirmed the expectations of the favorable propagation analysis and the substantial

benefits of these detectors compared to MFs when the favorable propagation condi-

tions are not satisfied. Simulation results of the favorable propagation conditions and

the performance of multi-stage detectors for finite systems validated the asymptotic

analytical results.
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Chapter 3

Semi-Blind Pilot Decontamination

3.1 Introduction

The performance of CF massive MIMO systems is critically affected by the so-called

pilot contamination. This impairment degrading the channel estimation performance,

originates from the reuse of training sequences or pilots utilized in channel estimation.

Pilot contamination prevents obtaining an adequate estimate of CSI.

CF massive MIMO channels are inherently sparse due to the distribution of APs

over a large area and the natural path loss of wireless channels. In this chapter, we

address the problem of pilot contamination in CF massive MIMO systems. we develop

semi-blind techniques for joint channel estimation and data detection exploiting the

sparsity of the channel support due to the strong attenuation with path loss to combat

pilot contamination. We analyze the potential of semi-blind approaches with classical

signal processing techniques such as FIM, CRB, and identifiability. We provide sets of

sufficient and necessary conditions under which channels and data are identifiable. We

define a graph that has APs and users as factor and variable nodes and propose an MP

algorithm over this graph which computes the channel coefficients if the identifiability

conditions are satisfied.
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Figure 3.1: A cell-free massive MIMO system consisting of K users and M APs.

3.2 System Model

We consider the uplink of a CF massive MIMO system consisting of K users and M

APs equipped with a single antenna and randomly distributed over a D × D square

area. We assume that M ≥ K. The M APs are connected to a central processing

unit (CPU) via a back-haul network, as illustrated in Fig. 3.1. The channel matrix

between the APs and users is given by G ∈ CM×K , whose (m, k)-element gmk is the

channel coefficient between AP m and user k and is modeled as follows

gmk =
√
βmk hmk, (3.1)

where βmk represents the large-scale fading coefficient which accounts for path loss

and shadowing effects and hmk represents the small-scale fading. We assume that

hmk, m = 1, · · ·M, k = 1, · · ·K, are i.i.d. complex normal random variables, i.e.,

hmk ∼ CN (0, 1). Additionally, we assume perfect knowledge of the large-scale fading

coefficients βmk, m = 1, · · ·M, k = 1, · · ·K at the CPU.

Due to the path loss, the channel coefficients are assumed to be negligible at dis-

tances higher than a given threshold γ. Then, for each AP m, the CPU is required to

estimate only the channels of the users in a disc centered around AP m with radius
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γ while the signals transmitted from users external to the disc are treated as additive

noise. We denote by KI(m) and K0(m) the sets of users inside the disc centered around

AP m and remaining users, respectively. At a global level, this determines a partition

of the channel coefficients into two groups, the channel coefficients that have to be

detected KI and the complement set K0 given as follows

KI ≡ {gmk|m = 1, . . .M, k ∈ KI(m)}

K0 ≡ {gmk|m = 1, . . .M, k ∈ K0(m)}

Consistently with this partition, we decompose the channel matrix G into two matrices

GI and G0 such that G = GI + G0. Then, GI and G0 of size M × K denote the

matrices of the relevant and negligible channel coefficients, respectively. Throughout

this chapter, we assume that γ � D and the APs are distributed over the whole region

such that matrix GI has a large number of zero elements.

In the uplink transmission, each user sends one of P pilot sequences known by the

CPU followed by L − P unknown data symbols. The pilot sequences are assumed to

be ortho-normal, i.e., orthogonal with unit norm. The L received symbols at the M

APs are given by

Y =
√
ρGI X +

√
ρG0 X + W, (3.2)

where ρ denotes the transmit power at each user terminal normalized by the noise

variance. Y ∈ CM×L is a matrix of the L received symbols at the M APs and

X ∈ CK×L is a matrix of the transmitted symbols. Note that the k-th row corresponds

to the signals transmitted by user k. The matrix W ∈ CM×L is the AWGN with i.i.d.

components having zero mean and unit variance.

Let Xp ∈ CK×P and Xd ∈ CK×(L−P ) denote the pilot sequences and data symbols,

respectively. Then, X = [Xp Xd]. Similarly, Y = [Yp Yd] where Yp ∈ CM×P

and Yd ∈ CM×(L−P ) represent the matrices of received training and data signals,

respectively.
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3.3 Cramer-Rao Bound Analysis

The performance of different semi-blind channel estimation algorithms has been eval-

uated and compared to a certain lower bound. One of these famous lower bounds

extensively used as a benchmark for assessing the parameters estimation performance

in the literature is CRB. Depending on how the symbols and the channel are treated,

different versions of CRB have been derived. There are two possible cases on how

to treat the symbols and/or the channel namely, deterministic unknowns or random

[101]. Basically, the CRB is obtained as the inverse of the FIM [102].

In this section, we derive the CRB as a performance benchmark to analyze the perfor-

mance of the semi-blind channel estimation. We obtain the CRB under the assumption

of deterministic a priori knowledge on the unknown data symbols. In the determin-

istic approach both the data signal Xd and the channel GI are modeled as unknown

deterministic quantities.

If we denote by θ the (complex) unknown parameter vector to be estimated, then

it is given by

θ = [gHI vecH(Xd)]
H (3.3)

where gI is a vector deduced from the non-zero elements of the matrix GI , whose

support is known. In the deterministic CRB, under the deterministic assumption for

the data signal Xd and channel coefficients, we have

y ∼ CN
(
my(θ),Cyy

)
(3.4)

where y = vec(Y). The mean my(θ) =
√
ρ vec(GIX) and the covariance matrix

Cyy = IL ⊗CYY with CYY = IM + ρC0 where the covariance matrix C0 is given by

C0 = E
{

G0G
H
0

}
= diag

( ∑
k∈K0

β1k, . . . ,
∑
k∈K0

βMk

)
(3.5)

The probability density function (pdf) of the observations Y in the parameter θ is

given by
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f(Y|θ) =
1

πML(det(CYY))L
exp
(
− tr

{
(Y −√ρGIX)HC−1

YY(Y −√ρGIX)
} )

=
1

πML(det(CYY))L
exp
(
− ‖C−1/2

yy (y −my)‖2
)
, (3.6)

Computing the Jacobian of my(θ) w.r.t. θ, the deterministic complex FIM denoted

as J d
θ,θ on the basis of the data Y is given by

J d
θ,θ =

(∂mH
y

∂θ∗

)
C−1

yy

(∂mH
y

∂θ∗

)H
= ρ

[
Q
′
R
′

]H [
Q
′
R
′

]
(3.7)

where Q
′

= C
−1/2
yy Q, Q =

1
√
ρ

∂my

∂gTI
and R

′
= C

−1/2
yy R, R =

1
√
ρ

∂my

∂vecT (Xd)
. Note

that
1
√
ρ
my = vec(GIX)

= QgI = vec
(
GI [Xp 0K×(L−P )]

)
+ R vec(Xd)

(3.8)

where 0m×n is an m× n matrix in which every entry is zero and the matrix R of size

ML×K(L− P ) is given by

R =

0PM×K(L−P )

IL−P ⊗GI

 (3.9)

and the matrix Q of size ML×ngI , where ngI denotes the dimension of column vector

gI or equivalently the number of non-zero elements of the matrix GI , is given by

Q = [XT
1,: ⊗Q1 . . . XT

K,: ⊗QK ] (3.10)

where Xk,: denotes the k-th row of the matrix X and Qk is a selection matrix that

contains a subset of columns of identity matrix IM corresponding to the consecutive

positions of non-zero coefficients in the k-th column of the matrix GI .

The FIM J d
θ,θ is a 2× 2 block matrix. The deterministic CRBd is obtained as the

inverse of the Fisher information matrix

CRBd =
(
J d
θ,θ

)−1
. (3.11)
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The blocks (1, 1) and (2, 2) of the CRBd in (3.11) relative to the estimation of the

channel coefficients gI and data symbols vec(Xd), respectively are given as follows

CRBd
gI

=
1

ρ

(
Q
′H P⊥

R′
Q
′)−1

(3.12)

CRBd
vec(Xd) =

1

ρ

(
R
′H P⊥

Q′
R
′)−1

(3.13)

where PA = A
(
AHA

)−1
AH and P⊥A = I− PA denote the projection matrices on the

column space of matrix A and its orthogonal complement, respectively. The CRBd
gI

and

CRBd
vec(Xd) are derived in Appendix B.1. In the deterministic identifiability analysis

that follows, we shall ignore C0 (C0 = 0) and hence CYY = IM and Cyy = IML.

3.4 Identifiability

In this section, we derive sets of both sufficient and necessary conditions for the identi-

fiability of vector parameter θ under the assumption that θ is a deterministic unknown

parameter. Then, we propose an MP algorithm over a graph that determines the exact

channel coefficients if the sufficient identifiability conditions are satisfied. Finally, we

show that the system is identifiable via semi-blind algorithms if the Karp-Sipser algo-

rithm applied to the same graph yields an empty core paving the way to an analysis

of asymptotically large networks based on core percolation properties.

Definition 3.1 (Identifiability [62][103]) Let ϑ be the parameter to be estimated

and Y the observations. In the regular cases (i.e. in the non-blind cases), ϑ is called

identifiable if

∀Y, f(Y|ϑ) = f(Y|ϑ′) ⇒ ϑ = ϑ
′

(3.14)

For both deterministic and Gaussian models, f(Y|ϑ) is a Gaussian distribution, iden-

tifiability in this case means identifiability from the mean and the covariance of Y.

In the framework of deterministic identifiability, we assume that vector parameter

θ is deterministic and consider channel G0 negligible. Then, the observation y is

Gaussian distributed, i.e., y ∼ CN (my(θ), IML) with covariance matrix independent

of θ. The identifiability of θ relies only on the known mean my(θ) and, for semi-blind
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methods, Xd and gI are said to be identifiable if [62]

GIX = G
′

IX
′ ⇒ gI = g

′

I and Xd = X
′

d (3.15)

Let mY∼0 be the expectation of Y in (3.2) obtained assuming G0 negligible. The

identifiability problem reduces to analyze the following bi-linear system of equations

in the unknowns gI and Xd

mY∼0 =
√
ρGIX

and determine under which conditions this system admits a unique solution, which

is assumed to exist. These identifiability conditions are summarized in the following

propositions.

Proposition 3.1 Sufficient Identifiability Conditions – Let Sk denote the sup-

port of the channel of user k, i.e., the set of all the indices m such that GI,m,k 6= 0, and

let |Sk| be its cardinality. In a semi-blind joint data detection and channel estimation

method, the unknown parameters gI and Xd are identifiable if

i) the K × L matrix X, with L ≥ K has full row rank K,

ii) the channel of each user is sparse and |Sk| ≤M −K + 1, and

iii) for each group of users Gp utilizing the same ortho-normal pilot sequence x
(p)
p ,

it is possible to identify a sequence {Gp,1,Gp,2, . . .Gp,s} satisfying the following

properties:

1)
⋃s
j=1 Gp,j ≡ Gp, i.e., the sequence of subsets is a partition of Gp.

2) In the support of the channel of each user k ∈ Gp,i, there exists at least

an index j ∈ Sk that is not contained in any of the channel supports of

other users in the same group Gp,i or in the following groups of the sequence

Gp,i+1, . . .Gp,s.

Remark 3.1 Condition iii-2 implies that the signal transmitted by each user k in

Gp,i impinges an AP in the disc Mk centered around user k with radius γ and no

other signal transmitted by other users in Gp,i or subsequent subsets Gp,i+1,Gp,i+2, . . .Gp,s

impinges the same AP.

Remark 3.2 The assumption that X has full row rank K implies that Xd has at least
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rank K − P.

Proof. Observe that since in CF massive MIMO systems M � K, and the channel

matrix GI consists of independent channels, we can assume that it has full row rank

equal to K with probability 1. Thanks to the assumptions of Proposition 3.1, also

matrix X has full row rank equal to K as well as matrix mY∼0 . Then, the singular

value decomposition (SVD) of the noise-free system is given by

1
√
ρ
mY∼0 = GIX = UΣVH (3.16)

where U ∈ CM×K and V ∈ CL×K are the matrices of the left and right singular-vectors

and Σ is the K×K diagonal matrix of singular values. Additionally, the left and right

singular value matrices U and V span the channel subspace GI and the signal space

X, respectively. Then, the problem of identifiability reduces to determine a K × K

non-singular matrix T such that GI = UT and then, also matrix X is unequivocally

given by X = T−1ΣVH . In order to determine matrix T, we utilize the following

properties and information:

• The support of each user channel is known and sparse and at least K−1 channel

coefficients are zero.

• The contaminated channel. More specifically, let us consider the linear sys-

tem of equations corresponding to the transmission of the pilot sequences, i.e.,

1
√
ρ
mY∼0

p
= GIXp, where mY∼0

p
denotes the expectation of Yp =

√
ρGIXp. By

post-multiplying both sides of the system by the pilot sequence x
(p)
p and exploit-

ing the ortho-normality of the training sequences, Xp x
(p)
p = 1Gp where 1Gp is the

K-dimensional vector with elements with indices in Gp, i.e., indices correspond-

ing to users transmitting pilot x
(p)
p , equal to one and and zero elsewhere. Then,

it is apparent that this system of equations enables to determine exactly at each

AP the sum of all the non-zero channel coefficients of the users in each group

Gp, p = 1, . . . P , i.e.,
1
√
ρ
mY∼0

p
x

(p)
p = GI 1Gp .

Then, let us focus on a user k in Gp,1. Thanks to the assumptions on the partition of Gp,
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there exists at least an AP m such that GI,m,: 1Gp = gm,k =
1
√
ρ
mY∼0

p
x

(p)
p 6= 0, where

GI,m,: denotes the m-th row of the matrix GI . Furthermore, thanks to the assumption

on the sparsity of the channels, we can obtain K − 1 equations from the system of

equations GI,:,k = UT:,k where the channel of user k is zero. Then, we can construct a

non-homogeneous system of equations in the unknown T:,k and the vector of constant

terms consisting of zeros and at least the non-zero element hmk. This system can be

unequivocally solved to determine T:,k.

Thanks to the properties of the sequence Gp,1,Gp,2, . . .Gp,s, it is possible to determine

sequentially, the columns of matrix T corresponding to a certain group, compute

exactly the corresponding channels of the users in the group and cancel them from the

contaminated channel for group Gp until the complete computation of all the columns

of matrix T corresponding to all the users in Gp and the corresponding channels. This

approach can be repeated for all the groups up to the complete computation of matrix

T and channel GI . Then, we observe that T has full rank K since GI has full row

rank. The inverse of T exists and enables the computation of Xd. This concludes the

proof. �

In the following, let (G)Gp denote a reduced version of the matrix G containing

only the columns corresponding to the users in Gp.

Proposition 3.2 Necessary Identifiability Conditions – Identification of gI

and Xd from the product GI X leads to the global necessary identifiability condition

1

K

K∑
k=1

|Sk| ≤ M −K + P (3.17)

or the per pilot necessary identifiability condition

1

|Gp|
∑
k∈Gp

|Sk| ≤ M −K +
K

|Gp|
p = 1, . . . P . (3.18)

Proof. Consider again the SVD in (3.16), GIX = UΣVH , with VH partitioned

into P plus L − P columns similar to X, VH = [VH
p VH

d ]. Introducing again the

unknown K ×K mixture T, this leads to the following equations
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GI = U T, T Xp = Σ VH
p (3.19)

which together represent K(M + P ) equations in the
∑K

k=1 |Sk| unknowns gI and the

K2 unknowns T. The proper conditions for solvability of the equations (3.19), that

the number of equations needs to be at least equal to the number of unknowns, then

leads to (3.17). If now we consider the equations for group of users Gp, multiplying

T Xp = Σ VH
p by x

(p)
p and exploiting Xp x

(p)
p = 1Gp , then we get

(GI)Gp = U (T)Gp (3.20)

T 1Gp = (T)Gp 1 = Σ VH
p x(p)

p (3.21)

which represents M |Gp|+K equations in the
∑

k∈Gp |Sk|+K |Gp| unknowns in (GI)Gp

and (T)Gp , hence leading to (3.18). �

It is worth noting that the proof of Proposition 3.1 along with the sufficient con-

ditions for identifiability of the deterministic parameters, provides also a constructive

method to determine the unknown parameters GI and Xd if for each p = 1, . . . P,

the sequence {Gp,1,Gp,2, . . .Gp,s} partitioning set Gp were known. In the following, we

address this problem and provide an MP algorithm that enables to identify at iteration

i the set Gp,i and determine the channel coefficients of all users in the set.

3.4.1 Message Passing Algorithm

Let us focus on the set Gp and associate to each user k and AP m variable node k and

factor node m, respectively. We construct a bipartite graph by connecting a variable

node with a factor node if the distance between the corresponding user and AP is

lower than γ. We further assume that the factor nodes are initialized with the values

of the vector gcI,p = GI1Gp , i.e., the sum of all the channel coefficients of users in the

corresponding γ-neighborhood. Each variable node knows the matrix U that spans

the channel subspace.

The initial step of the MP algorithm starts at the factor nodes. Each factor node

m that is a leaf transmits its initialization value gcI,p,m to its neighbor. It transmits an

erasure ∆ if it is not a leaf. At iteration i, each variable node k that has received at

least a message that is not an erasure solves the system of equations UT:,k = GI,:,k
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utilizing that value. The construction of a system of K equations to determine T:,k is

detailed in the proof of Proposition 3.1 and exploits the channel sparsity. Once T:,k

is known, it is possible to determine all the non-zero channel coefficients GI,:,k. Then,

variable node k transmits to all its neighbors the corresponding channel coefficients.

Variable node k transmits the same messages in all the following iterations. If variable

node k receives all erasures it transmits erasures to all its neighbors. The second step

of iteration i determines the messages at the factor nodes. A factor node m computes

a message for the output edge < m, k > as the difference between its initialization

value gcI,p,m and all the incoming messages. The resulting message is not an erasure

if all the incoming messages are not erasures otherwise the factor node transmits an

erasure.

The MP algorithm ends when all the channel coefficients have been determined and

in this case the identifiability conditions are satisfied or when no additional erasure

can be determined and thus the system is not identifiable. Set Gp,i includes all the

users/variable nodes that compute their channel coefficients at iteration i.

Interestingly, this algorithm is closely related to the MP algorithm for decoding of

low density parity check (LDPC) codes in transmissions through binary erasure chan-

nels in [104]. It is worth noting that also for random generated CF massive MIMO

systems with nodes independently generated, the corresponding graphs have edges

intrinsically correlated due to the underlying geometric constraints and the corre-

sponding sparse graphs do not have tree-like neighborhoods in asymptotic conditions.

Then, the performance analysis of LDPC codes based on density evolution, see [104],

is not directly applicable although the graph is sparse and the message passing yields

exact results thanks to the noiseless nature of the considered system and thus the ab-

sence of error propagation. Additionally, let us consider the Karp-Sipser or greedy leaf

removal procedure [105–107] which consists in removing from a graph sequentially all

the leaves and observe that sequential or simultaneous removal of leaves is equivalent

in asymptotic conditions. Then, the sufficient identifiability conditions in Proposition

3.1 are satisfied if the greedy leaf removal procedure yields an empty core.
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3.5 Bayesian Semi-Blind Iterative Algorithm

Whereas deterministic parameter identifiability allows for consistency in SNR in the

approximated model which ignores C0, in practice performance can be improved by

furthermore exploiting prior information. Hence, exploiting the Rayleigh fading chan-

nel prior and capturing the uncorrelatedness and constant variance of the data symbols

with an i.i.d. Gaussian prior, we propose a Bayesian semi-blind iterative algorithm

alternating between channel estimation and linear multi-user detection in this section.

Applying conditional probability, the joint probability density function of Y and

θ is

f(Y,θ) = f(Y|θ)f(θ) (3.22)

where f(θ) stands for the pdf of θ and f(Y|θ) stands for the pdf of Y conditioned

to θ. The data symbols and the channel coefficients are a priori independent of each

other, therefore, by substituting θ defined in (3.3), we get

f(Y,gI ,Xd) = f(Y|gI ,Xd) f(gI) f(Xd) (3.23)

where f(gI) and f(Xd) are respectively given by

f(gI) = (π)−ngI (det CgIgI )
−1 exp

(
− gHI C−1

gIgI
gI
)

f(Xd) = (π)−K(L−P ) exp
(
− tr{XH

d Xd}
) (3.24)

applying the log function on both sides of (3.23), we get the overall log-likelihood

function as follows

ln f(Y,gI ,Xd) = ln f(Y|gI ,Xd) + ln f(gI) + ln f(Xd)

= −tr{(Y −√ρGIX)HC−1
YY(Y −√ρGIX)} − gHI C−1

gIgI
gI

−tr{XH
d Xd}+ ct . (3.25)

where ct in (3.25) is a scalar constant. Alternating optimization w.r.t. gI and Xd

leads to the Bayesian semi-blind iterative algorithm illustrated in Algorithm 2. For a

detailed proof of the Algorithm 2, see Appendix B.2. Note that the estimate of the

matrix GI is denoted by ĜI and the relation between ĝI and ĜI is the same as the

relation described for gI and GI .
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Algorithm 2 Bayesian Semi-Blind Iterative Algorithm

1. Initialization X̂
(0)
d = 0

2. Iteration (i+ 1)

• Minimization w.r.t. gI ; Xd = X̂
(i)
d :

⇒ ĝ
(i+1)
I =

√
ρ
(
ρQH(X̂

(i)
d ) C−1

yy Q(X̂
(i)
d ) + C−1

gIgI

)−1

QH(X̂
(i)
d ) C−1

yy y

• Minimization w.r.t. Xd; gI = ĝ
(i+1)
I :

⇒ X̂
(i+1)
d =

√
ρ
(
ρ Ĝ

(i+1)H

I C−1
YY Ĝ

(i+1)
I + IK

)−1

Ĝ
(i+1)H

I C−1
YY Yd

3. Repeat step 2 until (X̂
(i+1)
d , ĝ

(i+1)
I ) ≈ (X̂

(i)
d , ĝ

(i)
I ).

3.6 Semi-Blind Approach with Gaussian Inputs

In this section, we consider approaches in which the unknown Xd are (still) modeled

as i.i.d. Gaussian and hence can be eliminated, leading to the Gaussian distribution

f(Y|g), where g = vec(G). So, eliminating the i.i.d. Gaussian Xd, the log-likelihood

is given by

− ln f(Y|g) = − ln f(Yp|g)− ln f(Yd|g)

= tr
{(

Yp −
√
ρGXp

)H (
Yp −

√
ρGXp

)}
+ (L−P ) ln det

(
ρ GGH + IM

)
+ tr

{(
ρ GGH + IM

)−1
YdY

H
d

}
+ ct

(3.26)

So, the per channel use covariance matrix in the blind data part is CYY = ρ GGH+IM .

The non-quadratic appearance of G in the last two terms in (3.26) complicates the

obtention of the posterior f(g|Y). The maximum a posteriori (MAP) estimator does

not require the posterior, and can be obtained by maximizing f(Y|g) f(g). For this

maximization, maybe the last two terms in (3.26) can be replaced by a quadratic

minorizer (linear in CYY, obtained by linearization).

The channel MAP estimator in the following subsection differs from the channel

estimate obtained by the joint channel and data MAP estimator detailed in Algorithm

2 and can be expected to be closer to the MMSE estimate.
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3.6.1 Joint Channel MAP for All Users

In the (3.26), the pilot part is convex. For the blind part − ln f(Yd|g), we construct a

convex majorizer as in [108, Section V.A 4)], [109] which can actually also been derived

with an expectation maximization (EM) approach. The construction of the majorizer

is simply based on first-order Taylor series expansion of concave functions, either w.r.t.

G directly or w.r.t. a covariance type expression (which is then quadratic in G). Let

G′ be a current estimate of G, then the term ln det(ρG GH + IM) is upperbounded

as
ln det(ρG GH + IM) = ln det(ρGH G + IK)

≤ tr{ρ (ρG
′H G′ + IK)−1GHG }.

(3.27)

On the other hand, using the matrix inversion lemma and Taylor series expansion,

second term of the blind part can be upperbounded as

tr{(ρG GH + IM)−1 YdY
H
d } = tr

{
[IM −G(GH G + ρ−1 IK)−1GH ] YdY

H
d

}
≤ tr{GA′ GH − B′ GH −GB′H}+ ct

(3.28)

where A′ and B′ are given by

A′ = (G
′H G′ +

1

ρ
IK)−1G

′HYdY
H
d G′(G

′H G′ +
1

ρ
IK)−1

B′ = YdY
H
d G′(G

′H G′ +
1

ρ
IK)−1 .

(3.29)

Combining (3.27), (3.28) lead to the following quadratic majorizer in (3.26)

− ln f(Yd|g) = (L−P ) ln det
(
ρ GGH + IM

)
+ tr

{(
ρ GGH + IM

)−1
YdY

H
d

}
≤ tr{

(
ρ(L− P )(ρG

′H G′ + IK)−1 +A′
)
GHG− B′ GH −GB′H}

+ct .

(3.30)

Note that the quantities in (3.27), (3.29) have the following interpretation

X̂d =
1
√
ρ

(G
′H G′ +

1

ρ
IK)−1G

′HYd

CX̃dX̃d
= (L− P ) (ρG

′H G′ + IK)−1

(3.31)

which are the LMMSE estimate and associated error covariance matrix of Xd (which

is i.i.d. across channel uses). This means that the majorizer in (3.30) has the following
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expectation maximization interpretation (which was not observed in [109], in spite of

EM being discussed there also):

− ln f(Yd|G) = − lnEXd
{f(Yd|Xd,G)}

= − lnEXd|Yd,G′ {f(Yd|Xd,G) f(Xd)/f(Xd|Yd,G
′)}

= − lnEXd|Yd,G′ {f(Yd|Xd,G)}+ ct

≤ EXd|Yd,G′{− ln f(Yd|Xd,G)}+ ct

= EXd|Yd,G′‖Yd −
√
ρG Xd‖2 + ct

= ‖Yd −
√
ρG X̂d‖2 + ρG CX̃dX̃d

GH + ct

(3.32)

where the inequality follows from Jensen’s inequality and the convexity of − ln(.),

and ct denotes (various) terms that are constant w.r.t. G. The MMSE estimate X̂d

and error covariance matrix CX̃dX̃d
are defined in (3.31) and correspond to LMMSE

estimation due to the joint Gaussianity of f(Yd,Xd|G′). Then, the quadratic majorizer

is obtained as follows

− ln f(Y|g) ≤ f ′(g|g′)

= tr
{(

Yp −
√
ρGXp

)H (
Yp −

√
ρGXp

)}
+ ‖Yd −

√
ρG X̂d‖2

+ ρG CX̃dX̃d
GH + ct

= ρ tr{GHG(XpX
H
p + X̂dX̂

H
d + CX̃dX̃d

)}

−2
√
ρ< tr{G(XpY

H
p + X̂dY

H
d )}+ ct

(3.33)

where <{.} denotes real part operator. The quadratic majorizer in (3.33) is separable

between the channel use dimension and the receiver antenna dimension. When we add

the channel prior, which contains different channel covariance matrices for different

users, we need to switch from G to g and we get with − ln f(g) = gH C−1
gg g + ct ,

where Cgg =diag(β11, . . . , βM1 . . . β1k, . . . , βMk . . . β1K , . . . , βMK),

− ln f(Y|g)− ln f(g) ≤ f(g|g′)

= ρgH
(
C−1

gg + ρ ((XpX
H
p + X̂dX̂

H
d + CX̃dX̃d

)T ⊗ IM)
)
g

−2
√
ρ<{gH vec(YpX

H
p + YdX̂

H
d )}+ ct

(3.34)
which leads to the following estimate
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ĝ =
√
ρ
(
C−1

gg + ρ ((XpX
H
p + X̂dX̂

H
d + CX̃dX̃d

)T ⊗ IM)
)−1

vec(YpX
H
p + YdX̂

H
d ) .

(3.35)

The estimate in (3.35) needs to be solved iteratively, with X̂d and CX̃dX̃d
in (3.31)

computed with the previous channel estimate. The iterative process can be initialized

with ĝ(−1) = 0, which leads to a first iterate ĝ(0) being based only on pilots and

prior information. The proposed joint channel MAP for all users is summarized in

Algorithm 3.

Note that the Bayesian semi-blind MAP (Algorithm 2) can be obtained from the

joint channel MAP by putting CX̃dX̃d
= 0 in (3.35). Note also that the performance

of the joint channel MAP is bounded by the Gaussian inputs CRB, which should be

attained asymptotically in L.

Algorithm 3 Joint Channel MAP for All Users

1: Initialize ĝ = 0, X̂d = 0, CX̃dX̃d
= (L− P )IK

2: repeat
3: t← t+ 1
4: compute ĝ according to (3.35)

5: compute X̂d and CX̃dX̃d
according to (3.31)

6: until convergence or t = tmax

Return ĝ

3.7 Pilot Based Bayesian Performance Bounds

As the prior channel information is exploited, we consider estimating the whole channel

G (limiting to GI will not affect estimation performance much since G0 is small).

We consider that pilots and data have the same power. Observe that vec(G Xp) =

(XT
p ⊗ IM) g. As a result the pilot portion leads to the following FIM

FIMp = ρ (X∗pX
T
p )⊗ IM (3.36)

for g, which is singular, due to the pilot reuse. We can get a first idealized pilot only

based CRB, by assuming that the pilots would somehow be orthogonal

CRBp,o = FIM−1
p,o ,

FIMp,o = ρ diag(X∗pX
T
p )⊗ IM = ρP IMK .

(3.37)
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The pilot contamination can be alleviated by prior channel information, leading to the

Bayesian pilot based CRB

CRBp,B = (FIMp + C−1
gg )−1 . (3.38)

For the semi-blind approaches considered here, another ideal MSE lower bound can be

considered, considering to the ideal scenario in which the data Xd would be detected

exactly, hence becoming also pilots for the channel estimation, leading to the genie-

aided Bayesian semi-blind CRB

CRBp+d,B =
(
ρ (X∗XT )⊗ IM + C−1

gg

)−1
(3.39)

where X = [Xp Xd].

For any of the CRBs considered, we get a corresponding normalized mean square

error (NMSE) bound in the form of NMSE = tr{CRB}/tr{Cgg}, where asymptotically

‖g‖2 = E ‖g‖2 = tr{Cgg}. Note that we get for all Bayesian approaches NMSE < 1.

3.8 Gaussian Inputs Bayesian Semi-Blind CRB

Eliminating the i.i.d. Gaussian Xd, we get the log-likelihood as follows

ln f(Y|g) = −tr
{(

Yp −
√
ρGXp

)H (
Yp −

√
ρGXp

)}
− (L−P ) ln det

(
ρ GGH + IM

)
− tr

{(
ρ GGH + IM

)−1
YdY

H
d

}
+ ct

(3.40)

The blind FIM can be shown to be

FIMb = ρ2 (GHC−1G)∗ ⊗C−1 , C = ρGGH + IM (3.41)

which results in the deterministic semi-blind CRB

CRBSB,d = (FIMp + (L− P )FIMb)
−1 . (3.42)

which depends on the true channel. CRBSB,d could be compared to its genie-aided

version CRBp+d,d =
1

ρ
(X∗XT )−1 ⊗ IM . The corresponding Bayesian semi-blind CRB

CRBSB,B = (FIMp + (L− P ) Eg{FIMb}+ C−1
gg )−1

= (CRB−1
p,B + (L− P ) Eg{FIMb})−1

(3.43)

is difficult to compute analytically (except at low/high SNR) but more importantly,

can be expected to be quite loose. In any case, assuming that G is tall (M > K), at
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high SNR we get the dominating term

FIMhSNR
b = ρ IK ⊗P⊥G (3.44)

where P⊥G denotes the projection on the orthogonal complement of the column space

of G. Then we get approximately

Eg{FIMhSNR
b } ≈ ρ (1− K

M
) IMK (3.45)

which would be exact if the elements of G were i.i.d. On the other hand, at low SNR

we get C ≈ IM and hence FIMlSNR
b = ρ2 (GHG)∗ ⊗ IM from which

Eg{FIMlSNR
b } ≈ ρ2 trM{Cgg} ⊗ IM (3.46)

where trM{A} is a diagonal matrix obtained by taking the trace of A over consecutive

diagonal element portions of sizeM . In other words (trM{Cgg})k,k = E‖gk‖2. Remains

to find an interpolation between low and high SNR. In this regard, consider the SVD

of G = U [Σ 0]T VH (where U, V and the diagonal Σ are square) and note that

C−1 = I−G(GHG +
1

ρ
I)−1GH , then we get

FIMb = ρ
(
GHG(GHG +

1

ρ
I)−1

)∗ ⊗C−1

= ρ
(
VΣ2(Σ2+

1

ρ
I)−1VH

)∗ ⊗ (U
(ρΣ2+I)−1 0

0 IM−K

UH
)
.

(3.47)

If G would have had i.i.d. elements then U, V and Σ would be independent. This in-

cites us to take the expectation of the two factors in the Kronecker product separately.

With some further approximation, we then get

Eg{FIMb} ≈ ρ (1− K

M
+

1

M
tr{(ρ trM{Cgg}+ IK)−1})

trM{Cgg}(trM{Cgg}+
1

ρ
IK)−1 ⊗ IM

(3.48)

which is consistent with the high and low SNR limits in (3.45), (3.46), and which needs

to be plugged into (3.43).
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3.9 Gaussian-Gaussian Extrinsic Information Lower

Bound

Another performance bound can be obtained by considering GkXd,k as Gaussian.

Since for the estimation of the signal of user k, considering the interfering signals to

be Gaussian corresponds to a worst case interference for given interference covariance,

the resulting mutual information lower bound should lead to an information matrix

lower bound and hence to an error covariance (MSE) upper bound. For the signal k

in the resulting model, the Gaussian input xd,k, i.e., the data symbols sent by user k,

can then be eliminated, and the CRB for gk can be computed. In the absence of a

prior on gk, this would correspond to extrinsic information on gk.

Let gk∼CN (0,Ck) with Ck=diag(β1k, . . . , βMk), y=[yTp yTd ]T , and xk=[xp,k xd,k].

Eliminating the Gaussian Gk, xk and GkXd,k, we get

ln f(y|gk) = −(yp −
√
ρxTp,k ⊗ gk)

H(IMP + ρ
∑

i 6=k xHp,ixp,i ⊗Ci)
−1(yp −

√
ρxTp,k ⊗ gk)

−(L− P ) ln det
(
IM(L−P ) + ρ IL−P ⊗ (gkg

H
k +

∑
i 6=k Ci)

)
−yHd

(
IM(L−P ) + ρ IL−P ⊗ (gkg

H
k +

∑
i 6=k Ci)

)−1
yd + ct.

(3.49)
The data portion of (3.49) can be simplified as follows

ln p(yd|gk) = −(L− P ) ln det(Σ)− tr{YH
d Σ−1Yd}+ ct, (3.50)

where

Σ = IM + ρ (gkg
H
k +

∑
i 6=k

Ci)

and we used det(A⊗B) = det(A)m det(B)n, where A is an n× n matrix and B is an

m×m matrix, and vecT (A) (D⊗B) vec(C) = tr{AT B C DT}. Using the FIM for a

circularly complex Gaussian pdf, we get

FIMGGei
gk

= ρ2 (L− P ) gHk Σ−1gk Σ−∗

+ ρ(xp,k ⊗ IM)(IMP + ρ
∑

i 6=k xHp,ixp,i ⊗Ci)
−1(xp,k ⊗ IM)H

(3.51)

where Σ−∗ = (Σ∗)−1. Then, the extrinsic information CRB upper bound is obtained
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a the inverse of the FIM

CRBGGei
gk

= (FIMGGei
gk

)−1

where GGei stands for Gaussian-Gaussian extrinsic information.

3.10 Simulation Results

In this section, we provide some numerical results verifying the analytical derivations

in this chapter. The M APs and K users are uniformly distributed at random over a

square area of size D ×D. The large-scale fading coefficient βmk in (3.1) models the

path loss and shadow fading as follows

βmk = 10
PLmk

10 10
σshzmk

10 (3.52)

where PLmk represents the path loss (expressed in dB), and 10
σshzmk

10 represents the

shadow fading with standard deviation σsh, and zmk ∼ N (0, 1), i.e., we assume

uncorrelated shadow fading.

The three-slope model in [110] is adopted for the path loss. Three values of loss

exponent can be distinguished according to the distance between the k-th user and

the m-th AP, denoted by dmk. More particularly, the path-loss exponent equals 3.5 if

dmk > d1, equals 2 if d0 < dmk ≤ d1, and equals 0 if dmk ≤ d0. More precisely, the

path loss PLmk (in dB) is given by

PLmk =


−L0 − 10 log10(d3.5

mk) if dmk > d1

−L0 − 10 log10(d1.5
1 d2

mk) if d0 < dmk ≤ d1

−L0 − 10 log10(d1.5
1 d2

0) if dmk ≤ d0

(3.53)

where

L0
4
= 46.3+33.9 log10(f)−13.82 log10(hAP )−[1.11 log10(f)−0.7]hUE+1.56 log10(f)−0.8,

where f is the carrier frequency (in MHz), hAP and hUE denotes the AP and user

antenna heights (in meter), respectively. The path loss PLmk is a continuous function

of dmk. In our simulation setup, we consider a communication bandwidth of W = 20
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MHz centered over the carrier frequency f = 1.9 GHz. The antenna height at the AP

is hAP = 15 m and at the user is hUE = 1.65 m. The standard deviation of the shadow

fading is σsh = 8 dB, the parameters for the three slope path loss model in (3.53) are

d1 = 50 m and d0 = 10 m.

We take pilot sequences to be rows of the identity matrix IP . First, we fit the

big square with the repetition of the pattern of small squares. In a first instance, we

consider a pattern of 4 small squares, 2× 2. Then, we partition the pilots in 4 groups

of P/4 and assign each portion of P/4 pilots to each of the 4 small squares and keep

this assignment as the pattern of 4 small squares gets repeated to fill the big square.

In this way, no two neighboring small squares have common pilots.

150 200 250 300 350 400

disc radius ( )

-25

-24

-23

-22

-21

-20

N
M

S
E

 [
d

B
]

D=1000, K=24, M=100, L=48, P=8, SNR=40dB

Figure 3.2: NMSE [dB] versus disc radius (γ) for Bayesian semi-blind estimation.

Throughout this section, we consider the following scenario. The M = 100 APs

and K = 24 users are uniformly distributed at random over a square area of side

D = 1000 and we consider P = 8 and L = 48. The performance of the Bayesian

estimation is assessed by the normalized mean square error (NMSE) defined as

NMSE =
avg‖gI − ĝI‖2

avg‖gI‖2
(3.54)

where avg stands for average. Fig. 3.2 illustrates NMSE [dB] versus the disc radius
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varying in the range γ ∈ [150, 400], for Bayesian semi-blind estimation in Algorithm

2. The performance of Bayesian semi-blind approach becomes better as the disc ra-

dius increases. Fig. 3.3 compares the performance of Bayesian semi-blind estimation

and deterministic CRB and presents NMSE [dB] versus SNR [dB] for different values

of disc radius γ. The NMSE for the deterministic CRB is defined as
avg tr{CRBdgI

}
avg‖gI‖2

.

Fig. 3.3 corroborates the analytical derivations and the non-singularity of the FIM

and thus, the existence of the CRB. The Bayesian estimation outperforms the de-

terministic CRB and increasing the SNR and disc radius γ, the Bayesian estimation

performance improves. On the contrary, the deterministic CRB behaves differently,

the performance becomes worse as the disc radius γ increases. In the deterministic

CRB, increasing the radius γ more parameters have to get estimated and they are

difficult to estimate whereas in the Bayesian estimation we exploit priors so the esti-

mation error has posterior variances which is at most as large as the prior variances

and increasing the radius there are more coefficients for which the prior variance gets

reduced to posterior variance.
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Figure 3.3: NMSE [dB] versus SNR [dB] for Bayesian semi-blind estimation and
deterministic CRB.

Fig. 3.4 compares the performance of Bayesian semi-blind channel estimation in Al-

gorithm 2 and channel MAP estimation introduced in subsection (3.6.1), and presents
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Figure 3.4: NMSE [dB] versus SNR [dB] for Bayesian semi-blind estimation and
channel MAP estimation.

the NMSE [dB], NMSE =
avg‖g − ĝ‖2

avg‖g‖2
, versus SNR [dB]. In this figure, the perfor-

mance of different CRBs, i.e., the genie-aided Bayesian semi-blind CRB (CRBp+d,B),

orthogonal pilot based CRB (CRBp,o), Bayesian pilot based CRB (CRBp,B), and Gaus-

sian inputs Bayesian semi-blind CRB (CRBSB,B), is evaluated as well. As expected,

the channel MAP estimation outperforms Bayesian semi-blind channel estimation.

The Bayesian semi-blind algorithm alternatingly estimates the channel or data as if

the estimate for the other quantity is perfect, whereas the channel MAP estimation

takes into account the data error covariance matrix. The curve corresponding to the

channel MAP estimation is quite close to the genie-aided Bayesian semi-blind CRB,

which shows that the channel MAP estimation works well.

3.11 Conclusion

In this chapter, we addressed the problem of pilot contamination in CF massive MIMO

systems leveraging only the channel sparsity. Exploiting the sparsity of channels due

to the strong attenuation with the path loss, we developed semi-blind joint channel

estimation and data detection methods to combat pilot contamination. We analyzed
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the potential of semi-blind approaches with classical signal processing techniques such

as FIM, CRB, and identifiability. Additionally, we determined sufficient and necessary

conditions for semi-blind identifiability under the assumption of deterministic param-

eters. We constructed a bipartite graph that has APs and users as factor and variable

nodes and proposed an MP algorithm over this graph which computes the channel

coefficients if the identifiability conditions are satisfied. We assumed that both the

channel and the unknown symbols are random with Gaussian distribution supposed

to be estimated jointly and proposed a Bayesian semi-blind approach resulting in an al-

gorithm which alternates between channel estimation and linear multi-user detection.

We also considered semi-blind approaches for channel estimation based on treating

the unknown symbols as random with known prior distribution to be eliminated and

proposed a semi-blind channel MAP estimation in the presence of Gaussian i.i.d. data.

We derived FIM and CRBs under different assumptions to evaluate the performance

of semi-blind approaches introduced in this chapter. We verified the analytical deriva-

tions via numerical simulations.
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Expectation Propagation Based

Bayesian Semi-Blind Approach

4.1 Introduction

An extensive attention has been dedicated to the design of detectors relying on MP

algorithms in recent years. The EP which is a kind of MP algorithm attempts to find

the closest approximation for a computationally intractable target probability distri-

bution from a tractable family of distributions in an iterative refinement procedure by

minimizing a Kullback-Leiber (KL) distance [65–68]. The method of EP was firstly

applied to MIMO detection in [68], where an EP-based MIMO detector shows near-

optimal performance with acceptable complexity under specific conditions. With the

EP-based MIMO detector, a Gaussian approximation is constructed for the posterior

distribution of the transmitted symbols by an iterative procedure based on moment

matching.

In this chapter, we consider semi-blind methods for channel estimation in the pres-

ence of Gaussian i.i.d. data to tackle the pilot contamination problem in CF massive

MIMO systems. This task is further aided by exploiting prior channel information in

a Bayesian formulation. We propose a variable level expectation propagation (VL-EP)
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algorithm for MP style semi-blind channel estimation which provides an approximate

MMSE channel estimator which itself can not be found analytically.

4.2 System Model

We consider a CF massive MIMO system in uplink in which M APs serve K users in

the same time-frequency resource. All APs and users equipped with a single antenna

are uniformly distributed in a given area. Furthermore, all APs are connected to a

CPU via a back-haul network. The channel is assumed to remain constant over L

consecutive symbol intervals, i.e., a block. The first P symbols of the block of L

symbols serve as the pilot sequences known at the CPU and the remaining L − P

symbols are used for the data transmissions. The received signal Y ∈ CM×L at the M

APs over the block interval is given by

Y =
√
ρ G ST + V (4.1)

where S = [s1 . . . sK ] ∈ CL×K denotes the transmitted symbols in the block where

sk ∈ CL×1 is the signal vector sent by the user k. The channel vector between user

k and M APs is denoted by gk = [g1k . . . gMk]
T ∈ CM×1, then the channel matrix

between the APs and users is given by G = [g1 . . .gK ] ∈ CM×K , whose (m, k)-element

gmk is the channel coefficient between AP m and user k and is modeled same as the

one in (3.1). The matrix V ∈ CM×L represents the AWGN with i.i.d. components

having zero mean and unit variance.

Let the matrices Sp ∈ CP×K and Sd ∈ C(L−P )×K denote the pilot sequences and

data symbols, respectively. Then, S = [STp STd ]T and sk = [sTp,k sTd,k]
T . Similarly,

Y = [Yp Yd] where Yp ∈ CM×P and Yd ∈ CM×(L−P ) represent the matrices of

received training and data signals, respectively.
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4.3 Expectation Propagation Algorithm

EP is an iterative algorithm for finding the best approximation to a desired distribution

from a tractable family of distributions. In this section, first we briefly review EP

principle [111].

Following the proposed algorithm in [65] and [69], suppose the parameter ϑ must

be estimated from some independent measurements x1, x2, . . . xn. As is common in

Bayesian estimation, the prior distribution of ϑ is assumed to be known. Therefore

the posterior distribution is given by

p(ϑ|x1, . . . , xn) ∝ p(ϑ)
n∏
i=1

p(xi|ϑ) ,
n∏
i=0

pi(ϑ) (4.2)

where ∝ denotes equality up to a scale factor, p0 , p(ϑ), and pi(ϑ) , p(xi|ϑ) for i =

1, 2, . . . n. EP exploits this factorized structure to construct a tractable approximation

to the above conditional distribution by a distribution from the exponential family,

q(ϑ), of the form

q(ϑ) ∝
n∏
i=0

qi(ϑ) (4.3)

where qi(ϑ), i = 0, 1, . . . n is from an exponential family. Several properties of the

exponential family are helpful in simplifying the computations. Two of these proper-

ties are extensively used in the computations involved in EP. First is that as in (4.3),

multiplication (or division) of two exponential distributions results in an exponential

distribution. Moreover, the parameters of the resulting distribution are easily com-

puted from the parameters of the constituent distributions. Next, the EP algorithm

tries to iteratively find the closest q(ϑ) to the distribution p(ϑ|x1, . . . , xn) where close-

ness is in terms of the KL divergence. Therefore, q(ϑ) is the solution of the following

optimization problem

q∗(ϑ) = arg min
q∈F

KL
(
p(ϑ|x1, . . . , xn)||q(ϑ)

)
(4.4)

where F denotes a family of exponential distributions. It turns out that when F is the

exponential family with sufficient statistics φ1(ϑ), φ2(ϑ), . . . , φS(ϑ), then the solution

of (4.4) is obtained from the moment matching condition, namely
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Eq[φi(ϑ)] = Ep[φi(ϑ)], i = 1, 2, . . . S (4.5)

where Eq[.] denotes expectation w.r.t. the distribution q(ϑ). In other words, in

each step of the optimization we need to match the moments between q(ϑ) and

p(ϑ|x1, . . . , xn). For example if we choose q(ϑ) from the family of normal distribu-

tions, this is equivalent to equating the mean and variance of q(ϑ) and p(ϑ|x1, . . . , xn).

However, EP implements this process in a subtle way, in which instead of finding the

best q(ϑ) at once, it finds the best factors of q(ϑ) one by one and refines them through

successive iterations. At first, the algorithm starts by initializing all the factors qi(ϑ)

and consequently q(ϑ) itself [111].

4.4 Variable Level Expectation Propagation(VL-EP)

Consider more generally a data model with parameters θ. In our system model,

θ = [gT sTd ]T , where g = vec(G) and sd = vec(Sd), and y = vec(Y). We partition

θ into groups such that θ = {θi} and we assume the prior factors at the level of

these groups, which we call the variables in factor graph terminology. Then, the true

posterior is given by

p(θ|y) =
1

Z
p(y|θ)

∏
i

p(θi) (4.6)

where the factors on the RHS are called the factors in a factor graph and Z is a

normalization factor given by

Z = p(y) =

∫
θ

p(y|θ)
∏
i

p(θi) dθ (4.7)

The problem is the computation of the normalization factor Z involving a high-

dimensional integral, therefore the mean and covariance of the posterior is not com-

putationally tractable.

In many applications, p(y|θ) corresponds to a noisy measurement of a signal z.

Very often, this signal is decomposed as a superposition of signals, z =
∑

k zk. Each

of the zk is then parameterized by a subset θk of θ. If one introduces these interme-

diate variables zk, as is typically done in the space-alternating generalized expectation-

maximization (SAGE) algorithm, then we can decompose p(y|θ)→ p(y|z)
∏

k p(zk|θk).
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However, here we propose to not introduce these variables zk.

In EP, as in several other MP and Variational Bayes variations, it is proposed

to approximate the posterior distribution. In EP, the posterior distribution p(θ|y)

is approximated by a distribution from the exponential family F . Here we consider

Gaussian pdfs. To this end, we propose the following approximation

1

Z
p(y|θ) ≈

∏
i

m(θi) ⇒ p(θ|y) ≈ q(θ) =
∏
i

q(θi) (4.8)

where q(θ) ∈ F is the approximate posterior in factored form at the variable level,

and q(θi) = m(θi) p(θi) where the m(θi) are the extrinsic pdfs. Additionally, we

assume the prior pdfs p(θi) to be simple (typically Gaussian or other members of

the exponential family) so that they do not need approximation. Therefore, only the

data pdf p(y|θ) requires approximation. The EP approach adjusts the approximate

posterior by minimizing a KL distance.

In the original EP algorithm [112], the approximate posterior factors get approx-

imated alternatively at the factor level, with each factor being optimized completely.

In the original EP, the approximate factors are in the exponential family, but not con-

strained any further. Hence the factors can involve possibly all variables. However, it

is possible to introduce constraints in approximate pdfs (e.g. Gaussians with a block

diagonal covariance). In the EP variation considered in [113], the approximate factors

are also factorizable at variable level. However, here we propose to optimize the factors

not at factor level but at variable level. Hence the name variable level EP (VL-EP), as

opposed to the classical factor level EP (FL-EP), however the updating follows exactly

the EP principle. We optimize a factor m(θi) by minimizing the KL distance

KL
(

1
Z
p(y|θ)q(θī) || m(θi) q(θī)

)
=

1

Z

∫
p(y|θ) q(θī) ln

1
Z
p(y|θ) q(θī)

m(θi) q(θī)
dθ (4.9)

w.r.t. a Gaussian m(θi). Note that q(θ) = q(θi) q(θī). The minimization of the KL

distance leads to (see section 2 in [112] which exposes the original EP):
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p̂(θi) =
∫
q(θī) p(y|θ)dθī

Zi =
∫
p̂(θi) dθi

µi =
1

Zi

∫
θi p̂(θi) dθi

Σi =
1

Zi

∫
θi θ

H
i p̂(θi) dθi − µiµHi

(4.10)

where Zi is a normalization constant, µi and Σi are the mean and covariance of the

Gaussian m(θi). Note that p̂(θi) integrates out all other variables and produces the

(un-normalized) target pdf for θi that we approximate by the Gaussian m(θi). It is

this integration which produces the cleaned y, cleaned from the interference of other

variables θī. Actually, the proof of (4.10) is fairly straightforward. Since the KL

distance in (4.9) needs to be minimized w.r.t. (the parameters of) m(θi), we can write

KL = ct − 1

Zi

∫
ln(m(θi)) p̂(θi) dθi

= ct + nθi ln(π) + ln det(Σi) +
1

Zi
tr{Σ−1

i

∫
(θi − µi)(θi − µi)H p̂(θi) dθi}

≥ ct + nθi ln(π) + ln det(Σi) +
nθi
Zi

(4.11)

where nθi denotes the dimension of θi. The minimization over µi and Σi leads to the

solution in (4.10) and the minimal value in the last line in (4.11). As this minimal

value is decreasing in Zi, which itself is linear in p̂(θi), we can majorize the KL distance

by replacing p̂(θi) by a minorizer and still retain a valid KL distance minimization

strategy. We follow this strategy below when the moments of p̂(θi) cannot be computed

analytically.

4.5 VL-EP for Gaussian-Gaussian Semi-Blind

4.5.1 Channel VL-EP for GG-SB with Eliminated Inputs

For the application to the Gaussian inputs Gaussian channel semi-blind (GG-SB) chan-

nel estimation problem, we shall consider the problem formulation which eliminates

the Gaussian sd. Then, we have the correspondence θ = g, θi = gi. The FL-EP of

[113] introduces the auxiliary hidden variables zk = sd,k ⊗ gk, which we avoid here.
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We have Y = [Yp Yd]. We shall consider here the development of Yp and Yd

separately. The alternating updating of the posterior factors loops over the K users,

i.e., the update for user k updates the posterior factor for gk. Let us consider first of

all the pilot part, and let user k use the nth pilot, k ∈ Gn so that sp,k = s
(n)
p . The pilot

signal model for user k can be written as

Yp =
√
ρgk sTp,k +

√
ρ
∑

i 6=k gi s
T
p,i + Vp

Yp s
(n)∗
p =

√
ρP gk +

√
ρP

∑
i∈Gn\{k}

(ĝi + g̃i) + Vp s(n)∗
p

(4.12)

where V = [Vp Vd] and gi has (approximate) posterior pdf q(gi) ∼ CN (ĝi,Ci) and

Ci=E{g̃i g̃Hi }. All variables whose pdf appears in different factors in the approximate

posterior are treated as independent. Hence,
√
ρP gk has a Gaussian pdf with mean

Yp s
(n)∗
p −√ρP

∑
i∈Gn\{k}

ĝi and covariance

CỸp,k
= P IM + ρP 2

∑
i∈Gn\{k}

Ci . (4.13)

The likelihood from the pilot part needs to be combined with the data likelihood,

where sd,i has prior pdf psd,i ∼ CN (0, IL−P ). The signal for user k can be written as

Yd =
√
ρgk sTd,k + Ỹd,k (4.14)

Ỹd,k =
√
ρ
∑

i 6=k gi s
T
d,i + Vd

=
√
ρ
∑

i 6=k(ĝi + g̃i) sTd,i + Vd

which has zero mean and covariance matrix CYd
= ρgkg

H
k +CỸd,k

, where

CỸd,k
= IM+ρ

∑
i 6=k

(ĝi ĝ
H
i +Ci) . (4.15)

We shall model here g̃i s
T
d,i also as Gaussian, just as an EP with variables zi would

do, since we need to go towards Gaussian approximations q(θk) in any case. So we

associate a Gaussian pdf to (4.14) by moment matching (whereas there are actually

products of Gaussian variables). This leads to (apart from a constant)

−ln p(Yd|gk,CỸd,k
) = ‖Yd‖2

(ρgkg
H
k +C

Ỹd,k
)−1 +ct (4.16)

with the squared weighted Frobenius norm ‖Y‖2
A = tr{AYYH}, and where the knowl-
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edge of CỸd,k
comprises the knowledge of ĝk and Ck. According to the majorization

step in (3.32), we can majorize the negative log-likelihood of (4.15) or (4.16) by

− ln p(Yd|gk,CỸd,k
) = − lnEspd,k,G

q

k
Sp
d,k
|C

Ỹd,k

{p(Yd|gk,gk, sd)}

= − lnEspd,k|Yd,ĝk,CỸd,k

EGq

k
Sp
d,k
|C

Ỹd,k

p(Yd|gk,gk, sd) p(sd,k)
p(sd,k|Yd, ĝk,CỸd,k

)

= − lnEspd,k|Yd,ĝk,CỸd,k

EGq

k
Sp
d,k
|C

Ỹd,k

p(Yd|gk,gk, sd) + ct

≤ Espd,k|Yd,ĝk,CỸd,k

{−lnEGq

k
Sp
d,k
|C

Ỹd,k

p(Yd|gk,gk, sd)}+ct

= Espd,k|Yd,ĝk,CỸd,k

‖Yd −
√
ρgk sTd,k‖2

C−1

Ỹd,k

+ct

= ‖Yd −
√
ρgk ŝTd,k‖2

C−1

Ỹd,k

+ ρ tr{Rk}gHk C−1

Ỹd,k
gk+ct

= − ln p̂(gk)

(4.17)

where

ŝTd,k =
√
ρ (1 + ρ ĝHk C−1

Ỹd,k
ĝk)
−1ĝHk C−1

Ỹd,k
Yd

Rk = Cs̃d,k s̃d,k = σ2
s̃d,k

IL−P , σ2
s̃d,k

= (1 + ρ ĝHk C−1

Ỹd,k
ĝk)
−1

(4.18)

are the LMMSE estimate and associated error covariance matrix, based on the current

estimate ĝk. Note that EGq

k
Sp
d,k
|C

Ỹd,k

in (4.17) uses a Gaussian distribution for GkSd,k

which is based on moment matching from p(Sd,k) and q(Gk) (as VL-EP requires). Note

also that because of the Gaussian approximation of GkSd,k and the EM majorization

step, the target pdf p̂(gk) is Gaussian. This Gaussian blind information pdf needs to

be combined with the Gaussian pilot part and the Gaussian prior to yield

− ln q(gk) = ‖Yps
(n)∗
p −√ρP

∑
i∈Gn\{k} ĝi −

√
ρP gk‖2

C−1

Ỹp,k

+ ‖Yd −
√
ρgk ŝTd,k‖2

C−1

Ỹd,k

+ρ (‖ŝd,k‖2 + (L−P )σ2
s̃d,k

) gHk C−1

Ỹd,k
gk + gHk C−1

gkgk
gk + ct

= −2<{ĝHk C−1
k gk}+ gHk C−1

k gk + ct

(4.19)
which is Gaussian with mean and covariance

ĝk =
√
ρCk [P C−1

Ỹp,k
(Yps

(n)∗
p −√ρP

∑
i∈Gn\{k} ĝi) + C−1

Ỹd,k
Yd ŝ∗d,k]

Ck =
(
ρ [P 2 C−1

Ỹp,k
+(‖ŝd,k‖2+(L−P )σ2

s̃d,k
) C−1

Ỹd,k
] + C−1

gkgk

)−1
(4.20)

where now gk is the new estimate, and CỸp,k
, CỸd,k

are defined in (4.13), (4.15).
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This is an iterative procedure that cycles through the gk, k = 1, . . . K, and can be

initialized with ĝ
(−1)
k = 0 or with the channel MAP estimate for ĝk with associated

Ck =
(
ρ [P IM+(L−P )

(
IM+ρ

∑
i 6=k

ĝi ĝ
H
i )−1]+C−1

gkgk

)−1
(4.21)

where we used ‖sp,k‖2 = P and ‖ŝd,k‖2 + (L−P )σ2
s̃d,k

) ≈ (L−P )σ2
s̃d,k

= L−P . Note

that if parallel updating of the users is performed, one can reduce complexity in the

computation of sums of the form
∑

i 6=k Ai =
∑K

i=1Ai − Ak, so by computing a sum

only once and then performing single term corrections.

The proposed channel estimation VL-EP for GG-SB is summarized in Algorithm

4. This channel VL-EP for GG-SB algorithm can be considered as an iterative version

for the channel MAP algorithm (Algorithm 3) if one puts Ci = 0 in CỸp,k
and CỸd,k

(alternatingly optimizing the gk instead of trying to optimize w.r.t. all of G at once).

Algorithm 4 Iterative Channel Estimation VL-EP for GG-SB

1: Initialize ĝk = 0M×1 , Ck = diag(β1k, . . . , βMk), ŝd,k = 0(L−P )×1,

CỸp,k
= P IM + ρP 2

∑
i∈Gn\{k}

Ci, CỸd,k
= IM+ρ

∑
i 6=k

Ci , for k = 1, . . . K.

2: repeat
3: t← t+ 1
4: for k ← 1 to K do
5: compute σ2

s̃d,k
according to (4.18) and then compute Ck according to (4.20)

6: compute ĝk according to (4.20)
7: compute ŝd,k according to (4.18)
8: compute CỸp,k

and CỸd,k
according to (4.13) and (4.15)

9: end for
10: until convergence or t = tmax

Return ĝk for k = 1, . . . K

4.6 Simulation Results

In this section, we assess numerically the performance of the analytical derivations in

this chapter. The M APs and K users are uniformly distributed at random over a

square area of size D ×D. We adopt the same large-scale fading coefficients modeled

in (3.52) and (3.53). Throughout this section, we consider the following scenario. The

M = 100 APs and K = 24 users are uniformly distributed at random over a square
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Figure 4.1: NMSE [dB] versus SNR [dB].

area of side D = 1000 and we consider P = 8 and L = 48.

The performance of the different channel estimators is assessed by NMSE versus

SNR. The NMSE is defined as NMSE =
avg‖g − ĝ‖2

avg‖g‖2
where avg stands for average.

Fig. 4.1 compares the performance of the proposed channel estimation VL-EP for

GG-SB and channel MAP estimation and presents NMSE [dB] versus SNR [dB]. The

proposed algorithm outperforms the channel MAP estimation and the joint channel

and data MAP algorithm, termed Bayesian semi-blind approach in the chapter 3. The

joint channel and data MAP alternatingly estimates the channel or data as if the

estimate for the other quantity is perfect, whereas the channel MAP estimation takes

into account the data error covariance matrix. Therefore the channel MAP estimation

outperforms the Bayesian semi-blind iterative algorithm.

The performance of these three different semi-blind channel estimation algorithms

is compared to the different CRBs. For the semi-blind approaches one can consider the

genie-aided scenario in which the data would be detected exactly, hence becoming also

pilots for the channel estimation, leading to the genie-aided Bayesian semi-blind (B-SB)

CRB. For our VL-EP or channel MAP scenario, we consider Gaussian channels with

the Gaussian input symbols eliminated, leading to the Gaussian inputs B-SB CRB. The
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deterministic CRB curve in the figure corresponds to a deterministic framework intro-

duced in the chapter 3 in which both data signal and channel coefficients are modeled

as unknown deterministic quantities. The performance of the different CRBs is evalu-

ated by NMSE = tr{CRB}/tr{Cgg}, where Cgg =diag(β11, . . . , βM1 . . . β1K , . . . , βMK).

The simulations show that exploiting prior information gives significant performance

gains. Compared to a fictitious scenario of just orthogonal pilot based channel esti-

mation (pilots still of length P ), deterministic semi-blind does not do as well whereas

Bayesian semi-blind still does much better. On the other hand, the Bayesian pilot

based CRB shows that just adding channel prior information to the contaminating pi-

lots allows already to significantly improve MSE at low to moderate SNR, but floors at

higher SNR. Adding the blind channel information from the data second-order statis-

tics breaks this flooring, and both channel MAP and especially VL-EP allow to get

performance close to the corresponding CRB, which behaves with just an SNR offset

compared to the genie aided CRB.

4.7 Conclusion

In this chapter, we considered semi-blind methods for channel estimation in the pres-

ence of Gaussian i.i.d. data, exploiting prior channel information to mitigate the pilot

contamination which originates from reusing pilot sequences, in CF massive MIMO

systems. We proposed a VL-EP algorithm for semi-blind channel estimation which pro-

vides an approximate MMSE channel estimator. Numerical simulations corroborated

the analytical derivations and the proposed VL-EP algorithm.
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Chapter 5

Conclusions and Future work

In this dissertation, we have mainly focused on providing insights and fundamental

understanding of critical, unknown aspects of DASs, exploring the fundamental limits

and potential of this architecture, studying fundamental metrics playing a key role in

the system behavior, namely system parameters, such as the system load, i.e, the ratio

between number of users and antennas, their geographical distributions, concentration

of antennas at each wireless access port, and physical parameters, such as exponent

loss, analyzing the performance of DASs through the channel eigenvalue spectrum and

moments. Special attention has been paid to study and analyze the performance of

a special class of DASs, the CF Massive MIMO system, has been attracting a wide

interest recently.

More precisely, in chapter 2, we considered a distributed antenna system in uplink,

comprising a massive number of distributed transmit and receive antennas. In our

DAS, transmit and receive antennas are distributed according to homogeneous PP

and the received signals are processed jointly at a CPU. In centralized massive MIMO

systems, the phenomenon of favorable propagation has been observed: when the num-

ber of receive antennas tends to infinity while the number of transmit antennas remains

finite, the users’ channels become almost orthogonal and low complexity detection via

matched filtering is almost optimal. We analyzed the properties of DASs in asymp-

totic conditions when the network dimensions go to infinity with given intensities of
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the transmit and receive antenna PPs. We studied the analytical conditions of favor-

able propagation in CF massive MIMO systems with two kinds of channels, namely,

channels with path loss and transmit and receive antennas in LoS or in multipath

Rayleigh fading. We showed that the analytical conditions of favorable propagation

are satisfied for channels impaired by path loss and Rayleigh fading while they do

not hold in the case of LoS channels, motivating the use and analysis of multi-stage

receivers. We validated the asymptotic analytical results by simulation results of the

favorable propagation conditions and the performance of multi-stage detectors for fi-

nite systems. In future works, we will study how to extend the analytical results of

favorable propagation to multiple-antenna APs scenarios.

In chapter 3, we addressed the problem of pilot contamination in CF massive

MIMO systems. We exploited the channel sparsity to tackle pilot contamination,

which originates from the reuse of pilot sequences. Specifically, we considered semi-

blind methods for joint channel estimation and data detection. Under the challenging

assumption of deterministic parameters, we determined sufficient and necessary condi-

tions for semi-blind identifiability, which guarantee the non-singularity of the FIM and

the existence of the CRB. We proposed an MP algorithm which determines the exact

channel coefficients in the case of semi-blind identifiability. We proposed a semi-blind

joint channel and data MAP estimator alternating between channel estimation and

linear multi-user detection. Additionally, we proposed a semi-blind MAP estimation

of channel in presence of Gaussian i.i.d. data. We also derived FIM and CRBs under

different assumptions to evaluate the performance of semi-blind approaches introduced

in this chapter. In this chapter, as already mentioned, we determined the identifiabil-

ity conditions under the assumption of deterministic parameters, hence developing the

identifiability conditions in a Bayesian framework could be carried out in the future.

In chapter 4, we considered semi-blind methods for channel estimation based on

treating the unknown symbols as random with known prior distribution to be elimi-

nated, to resolve the pilot contamination originating from the reuse of pilot sequences,

in CF massive MIMO systems. This task is further aided by exploiting prior channel
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information in a Bayesian formulation. We proposed a VL-EP algorithm for MP style

semi-blind channel estimation which provides an approximate MMSE channel estima-

tor which itself can not be found analytically. In future works, we will study how to

construct approximate posteriors for both channels and data symbols for semi-blind

joint channel estimation and data detection approaches based on the EP algorithm.

Moreover, the distributed version of the techniques introduced in this dissertation

could be explored in order to further reduce the computational complexity of receivers

in CF massive MIMO systems.
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Appendices of Chapter 2

A.1 Proof of Algorithm 1

Let us adopt the following notation

• ξTk and ΦTk denote the k-th row and column of the matrix ΦT , respectively.

• ξRk and ΦRk denotes the k-th row and column of the matrix ΦR, respectively.

• ΞT∼k is the (NT − 1)× θ2 matrix obtained from the matrix ΦT by removing the

k-th row.

• ΞR∼k is the (NR− 1)× θ2 matrix obtained from the matrix ΦR by removing the

k-th row.

• ΦT∼k is the NT × (θ2− 1) matrix obtained from the matrix ΦT by removing the

k-th column.

• ΦR∼k is the NR× (θ2− 1) matrix obtained from the matrix ΦR by removing the

k-th column.

• T∼k is the (θ2 − 1) × (θ2 − 1) matrix obtained from the matrix T by removing

the k-th row and k-th column.

• Bkk denotes k-th diagonal element of the square matrix B.

For any k and ` ≥ 2, k-th diagonal element of the channel covariance matrix
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C̃` = (G̃HG̃)` = ΦTTΦH
R

(
ΦRTΦH

T ΦTTΦH
R

)`−1

ΦRTΦH
T of size NT ×NT is given by

C̃
(`)
kk = ξTkTΦH

R D`−1 ΦRTξHTk (A.1)

where D denotes an NR ×NR matrix defined as follows,

D = G̃G̃H = ΦRTΦH
T ΦTTΦH

R (A.2)

The matrix ΦH
T ΦT can be written as follows

ΦH
T ΦT = ξHTkξTk + ΞH

T∼kΞT∼k (A.3)

Making use of (A.3), the k-th diagonal element of matrix C̃` in (A.1) can be written

as

C̃
(`)
kk = ξTkTΦH

R

(
ΦRT(ξHTkξTk + ΞH

T∼kΞT∼k)TΦH
R

)
D`−2 ΦRTξHTk

= ξTkTΦH
R ΦRTξHTkξTkTΦH

RD`−2 ΦRTξHTk+

ξTkTΦH
R ΦRTΞH

T∼kΞT∼kTΦH
RD`−2 ΦRTξHTk (A.4)

Expanding the product, we can rewrite the first term of (A.4) as follows

ξTkTΦH
R ΦRTξHTkξTkTΦH

RD`−2 ΦRTξHTk = ξTkΓ
(1)ξHTkC̃

(`−1)
kk (A.5)

where Γ(`) = TΦH
R D`−1 ΦRT is a matrix of size θ2 × θ2. The second term in (A.4)

can be further decomposed as

ξTkTΦH
R ΦRTΞH

T∼kΞT∼kTΦH
RD`−2 ΦRTξHTk = ξTk Γ

(2)
∼k ξ

H
TkC̃

(`−2)
kk +

ξTkTΦH
RD2

∼kD`−3ΦRTξHTk (A.6)

where the matrices D∼k and Γ
(`)
∼k are defined as follows

D∼k= ΦRT ΞH
T∼kΞT∼k TΦH

R

Γ
(`)
∼k = T ΦH

RD`−1
∼k ΦR T

Iterating the expansion (A.6), we get
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C̃
(`)
kk =

`−1∑
n=0

ξTk Γ
(`−n)
∼k ξHTkC̃

(n)
kk (A.7)

The almost sure convergence as θ2 →∞

ξTk Γ
(`−n)
∼k ξHTk

a.s.−−→ m
(`−n)
Γ (A.8)

follows along the same lines as the proof of Lemma 4.1 in [114]. The eigenvalue moment

of order `, of the channel covariance matrix C̃ converges to a deterministic value given

by

m
(`)

C̃
= E

{ 1

NT

tr(C̃`)
}

= E
{ 1

NT

NT∑
k=1

C̃
(`)
kk

}
=

`−1∑
n=0

m
(`−n)
Γ m

(n)

C̃
(A.9)

Now, we need to compute the eigenvalue moments of the matrix Γ in (A.9). To this

end, let us write the matrix D as follows

D =
(
ΦRkTkkΦ

H
Tk + A

)(
ΦTkTkkΦ

H
Rk + AH

)
(A.10)

where A = ΦR∼k T∼k ΦH
T∼k is an NR ×NT matrix and Tkk denotes the k-th diagonal

element of matrix T. Making use of (A.10), the k-th diagonal element of the matrix

Γ(`) is given by

Γ
(`)
kk = T2

kk ΦH
Rk D`−1 ΦRk

= T2
kk ΦH

Rk

(
ΦRkTkkΦ

H
Tk + A

)(
ΦTkTkkΦ

H
Rk + AH

)
D`−2ΦRk (A.11)

Expanding the product, we can rewrite the first term as

T4
kk ΦH

RkΦRk ΦH
TkΦTkΦ

H
Rk D`−2 ΦRk = T2

kk ΦH
RkΦRk ΦH

TkΦTkΓ
(`−1)
kk

The third term in (A.11), i.e., ΦH
Rk A ΦTk, goes to zero because the random matrix A

is independent of both random vectors ΦRk and ΦTk. The rest two terms in (A.11)

can be further decomposed as follows
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T3
kk ΦH

RkΦRkΦ
H
Tk AH D`−2ΦRk + T2

kk ΦH
Rk (AAH) D`−2ΦRk

= T2
kk ΦH

RkΦRk ΦH
Tk(A

HA)ΦTkΓ
(`−2)
kk + T2

kk ΦH
Rk(AAH)ΦRk ΦH

TkΦTkΓ
(`−2)
kk +

T3
kk ΦH

RkΦRk ΦH
Tk(A

HA)AHD`−3ΦRk + T3
kk ΦH

Rk(AAH)ΦRk ΦH
TkA

HD`−3ΦRk+

T2
kkΦ

H
Rk(AAH)2 D`−3ΦRk (A.12)

The last three terms in (A.12) can be further decomposed. Iterating the expansion,

we get the following expression

Γ
(`)
kk =

`−2∑
s=0

`−2−s∑
r=0

T2
kk ΦH

Rk(AAH)rΦRk ΦH
Tk(A

HA)sΦTkΓ
(`−(s+r)−1)
kk

+ T2
kk ΦH

Rk (AAH)`−1ΦRk

The almost sure convergence as θ2 −→∞

ΦH
Rk(AAH)rΦRk −→ βR m

(r)

AAH

a.s.−−→ βR m
(r)
D (A.13)

ΦH
Tk(A

HA)sΦTk −→ βT m
(s)

AHA

a.s.−−→ βT m
(s)

C̃
(A.14)

where the moments m
(r)

AAH and m
(s)

AHA
are approximated by m

(r)
D and m

(s)

C̃
respectively,

therefore k-th diagonal element of matrix Γ(`) for any ` ≥ 2 is given by

Γ
(`)
kk = βRβTT2

kk

`−2∑
s=0

`−2−s∑
r=0

m
(s)

C̃
m

(r)
D Γ

(`−(s+r)−1)
kk + βRm

(`−1)
D T2

kk (A.15)

and the eigenvalue moment of order ` of the matrix Γ is given by

m
(`)
Γ = E

{ 1

θ2
tr(Γ(`))

}
= βRβT

`−2∑
s=0

`−2−s∑
r=0

m
(s)

C̃
m

(r)
D E(

T2
kk

θ2
Γ

(`−(s+r)−1)
kk ) + βRm

(`−1)
D m

(2)
T (A.16)

In order to compute the eigenvalue moments of the matrix D, we define a θ2 × θ2

matrix ∆(`) = TΦH
T C̃`−1 ΦTT. For any ` ≥ 2, k-th diagonal element of the matrix

D` of size NR ×NR is given by

D
(`)
kk = ξRkTΦH

T C̃`−1 ΦTTξHRk (A.17)
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following the similar approach, we get

D
(`)
kk =

`−1∑
n=0

ξRk∆
(`−n)
∼k ξHRk Dn

kk (A.18)

where the matrix ∆
(`)
∼k is defined as follows

∆
(`)
∼k = T ΦH

T C̃`−1
∼k ΦT T (A.19)

C̃∼k = ΦTTΞH
R∼kΞR∼kTΦH

T (A.20)

The almost sure convergence as θ2 →∞

ξRk ∆
(`−n)
∼k ξHRk

a.s.−−→ m
(`−n)
∆ (A.21)

The eigenvalue moment of order ` of the matrix D is given by

m
(`)
D = E

{ 1

NR

tr(D`)
}

= E
{ 1

NR

NR∑
k=1

D
(`)
kk

}
=

`−1∑
n=0

m
(`−n)
∆ m

(n)
D (A.22)

In order to compute the eigenvalue moments of matrix ∆, Similar to (A.10) the matrix

C̃ can be written as follows

C̃ =
(
ΦTkTkkΦ

H
Rk + AH

)(
ΦRkTkkΦ

H
Tk + A

)
(A.23)

following the similar approach, the k-th diagonal element of matrix ∆(`) for any ` ≥ 2

is given by

∆
(`)
kk = βRβTT2

kk

`−2∑
s=0

`−2−s∑
r=0

m
(s)

C̃
m

(r)
D ∆

(`−(s+r)−1)
kk + βTm

(`−1)

C̃
T2
kk (A.24)

and `-th eigenvalue moment of matrix ∆ is given by

m
(`)
∆ = E

{ 1

θ2
tr(∆(`))

}
= βRβT

`−2∑
s=0

`−2−s∑
r=0

m
(s)

C̃
m

(r)
D E(

T2
kk

θ2
∆

(`−(s+r)−1)
kk ) + βTm

(`−1)

C̃
m

(2)
T (A.25)

Making use of the relation m
(`)
D =

βT
βR

m
(`)

C̃
, the expressions (A.16), and (A.25), the
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recursion yields m
(`)

C̃
and the Algorithm 1.

In order to compute m
(`)

C̃
, it is necessary to determine m

(`)
Γ and m

(`−1)
∆ . It is easy

to verify that the diagonal elements C̃
(`)
kk and D

(`)
kk are independent of the index k and

all equal.
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A.2 Proof of Rayleigh Fading Eigenvalue Moments

The eigenvalue moment of order ` of the matrix C̃ in Rayleigh fading channel is given

by

m
(`)

C̃
=

1

NT

NT∑
j1,...j`=1

NR∑
i1,...i`=1

E
{
ğ∗i1j1h

∗
i1j1

. . . ğ∗i`j`h
∗
i`j`
ği`j1hi`j1

}
(A.26)

=
1

NT

NT∑
j1,...j`=1

NR∑
i1,...i`=1

E
{
h∗i1j1hi1j2 . . . h

∗
i`j`
hi`j1

}
× E

{
ğ∗i1j1 ği1j2 . . . ğ

∗
i`j`
ği`j1

}

Observe that the contribution of the terms with indices (j1, i1, j2, i2, . . . , j`, i`) which

do not correspond to even graphs is zero. In fact, assume that there is an edge between

the pair of indices (i, j) from I to J with multiplicity t and an edge between the same

pair of indices in the opposite direction with multiplicity t
′ 6= t. Then, these terms

contain the factor E{htij h∗t
′

ij }= 0 and do not contribute to the eigenvalue moment 1.

Thus, we can restrict the sum in (A.26) to even sequences of indices. We consider

now the contributions of even sequences with p1 and p2 distinct indices in I and J ,

respectively, with p1 + p2 = r. Since the graph is connected it is straightforward to

recognize that r ≤ ` + 1. The contribution of the terms with r = ` + 1 has been

derived in subsection 2.4.2, equations (2.16)-(2.20). Thus, in the following we focus on

the cases as r ≤ `. A sequence with p1 and p2 distinct indices in I and J corresponds

to

NT (NT −1) . . . (NT −p1−1)NR(NR−1) . . . (NR−p2−1) = O(Np1
T N

p2
R ) = O(θ2(p1+p2))

identical terms. It is straightforward to verify that the term E
{
h∗i1j1hi1j2 . . . h

∗
i`j`
hi`j1

}
is bounded 2 since the moments of a Gaussian distribution are bounded. Additionally,

E
{
ğ∗i1j1 ği1j2 . . . ğ

∗
i`j`
ği`j1

}
= O

(
(m

(2)

T̂
)`

θ2`

)
(A.27)

1Note that this is true for complex Gaussian random hij . The proof can be readily extended
to real Gaussian random variables considering terms where a pair (i, j) appears only once in the
sequence (j1, i1, j2, i2, . . . , j`, i`).

2A rough upper bound is given by E
{
h∗i1j1hi1j2 . . . h

∗
i`j`

hi`j1
}
≤
(
(
`

2
− 1)!!

)`/2
, where !! denotes

the double factorial.
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Then, the contributions of terms corresponding to a given even graph (j1, i1, j2, i2, . . . , j`, i`)

with p1 + p2 = r ≤ ` is proportional to

1

NT

θ2(p1+p2)
(m

(2)

T̂
)`

θ2`
=

1

NT

θ−2(`−r) (m
(2)

T̂
)` (A.28)

In the worst case, as r = `, this term vanishes as
1

NT

. Since the number of distinct

graphs (j1, i1, j2, i2, . . . , j`, i`) is finite and independent of NT , the contributions of

terms corresponding to even graphs with r < `+ 1 vanishes as L→∞.
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B.1 Derivation of Deterministic CRB

A non-singular square matrix R and its inverse R−1 can be partitioned into 2 × 2

blocks as

R =

A B

C D


and

R−1 =

E F

G H


when the diagonal partitions of R and R−1 are square, i.e., the matrices A, D, E, H

are square, A and E have the same size, and so do D and H.

Assume A and D are non-singular; then the matrix R is invertible if and only if

the Schur complement D−CA−1B of A and the Schur complement A−BD−1C of

D are invertible, then the diagonal partitions of matrix R−1 are given by [115]

E = (A−BD−1C)−1 (B.1)

H = (D−CA−1B)−1 (B.2)

So, according to J d
θ,θ in (3.7)
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J d
θ,θ = ρ

Q
′HQ

′
Q
′HR

′

R
′HQ

′
R
′HR

′


and making use of (B.1), the block (1, 1) of

(
J d
θ,θ

)−1
relative to the estimation of the

channel coefficients gI is given by

CRBd
gI

=
1

ρ

(
Q
′HQ

′ −Q
′HR

′
(R
′HR

′
)−1R

′HQ
′
)−1

=
1

ρ

(
Q
′H
[
I−R

′
(R
′HR

′
)−1R

′H
]
Q
′
)−1

=
1

ρ

(
Q
′H P⊥

R′
Q
′)−1

(B.3)

where P⊥
R′

= I−R
′
(R
′HR

′
)−1R

′H . Similarly, making use of (B.2), the block (2, 2) of(
J d
θ,θ

)−1
relative to data symbols vec(Xd) can be obtained as follows

CRBd
vec(Xd) =

1

ρ

(
R
′HR

′ −R
′HQ

′
(Q

′HQ
′
)−1Q

′HR
′
)−1

=
1

ρ

(
R
′H
[
I−Q

′
(Q

′HQ
′
)−1Q

′H
]
R
′
)−1

=
1

ρ

(
R
′H P⊥

Q′
R
′)−1

(B.4)

where P⊥
Q′

= I−Q
′
(Q

′HQ
′
)−1Q

′H .
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B.2 Derivation of Algorithm 2

The channel vector gI estimation and data matrix Xd detection can be carried out

jointly by maximizing the posterior probability density function f(gI ,Xd|Y) leading

to the joint MAP estimation of channel and data symbols as follows:

(ĝI , X̂d) = arg max
gI ,Xd

ln f(gI ,Xd|Y)

= arg max
gI ,Xd

ln f(Y|gI ,Xd) + ln f(gI) + ln f(Xd)

= arg max
gI ,Xd

(
− tr{(Y −√ρGIX)HC−1

YY(Y −√ρGIX)} − gHI C−1
gIgI

gI − tr{XH
d Xd}

)
= arg min

gI ,Xd

(
tr{(Y −√ρGIX)HC−1

YY(Y −√ρGIX)}+ gHI C−1
gIgI

gI + tr{XH
d Xd}︸ ︷︷ ︸

φ

)

= arg min
gI ,Xd

(
(y −√ρQgI)

HC−1
yy(y −√ρQgI) + gHI C−1

gIgI
gI + tr{XH

d Xd}︸ ︷︷ ︸
ψ

)
(B.5)

The optimization in (B.5) can be solved by alternating between minimization w.r.t.

gI and Xd which yields to

• Minimization w.r.t. gI : Setting the derivative of ψ w.r.t. gI equal to zero, we

get

∂ψ

∂gI
= 0 (B.6)

−√ρQHC−1
yy

(
y −√ρQgI

)
+ C−1

gIgI
gI = 0 (B.7)

ĝI =
√
ρ
(
ρQH C−1

yy Q + C−1
gIgI

)−1

QH C−1
yy y (B.8)

• Minimization w.r.t. Xd : Setting the derivative of φ w.r.t. Xd equal to zero, we

get

∂φ

∂Xd

= 0 (B.9)

−√ρGIC
−1
YY

(
Yd −

√
ρGIXd

)
+ Xd = 0 (B.10)

X̂d =
√
ρ
(
ρGIC

−1
YY GI + IK

)−1

GI C−1
YY Yd (B.11)
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[21] Ö. Özdogan, E. Björnson, and J. Zhang, “Performance of cell-free massive mimo

with rician fading and phase shifts,” IEEE Transactions on Wireless Communi-

cations, vol. 18, no. 11, pp. 5299–5315, 2019.

[22] E. Björnson and L. Sanguinetti, “Making cell-free massive mimo competitive

with mmse processing and centralized implementation,” IEEE Transactions on

Wireless Communications, vol. 19, no. 1, pp. 77–90, 2019.

[23] Z. Chen and E. Björnson, “Channel hardening and favorable propagation in

cell-free massive MIMO with stochastic geometry,” IEEE Transactions on Com-

munications, vol. 66, no. 11, pp. 5205–5219, 2018.

[24] M. Bashar, H. Q. Ngo, A. G. Burr, D. Maryopi, K. Cumanan, and E. G. Lars-

son, “On the performance of backhaul constrained cell-free massive mimo with

linear receivers,” in 2018 52nd Asilomar Conference on Signals, Systems, and

Computers. IEEE, 2018, pp. 624–628.

[25] T. C. Mai, H. Q. Ngo, and T. Q. Duong, “Cell-free massive mimo systems with

multi-antenna users,” in 2018 IEEE Global Conference on Signal and Informa-

tion Processing (GlobalSIP). IEEE, 2018, pp. 828–832.

[26] P. Liu, K. Luo, D. Chen, and T. Jiang, “Spectral efficiency analysis of cell-

free massive mimo systems with zero-forcing detector,” IEEE Transactions on

Wireless Communications, vol. 19, no. 2, pp. 795–807, 2019.

[27] A. Papazafeiropoulos, P. Kourtessis, M. Di Renzo, S. Chatzinotas, and J. M.

Senior, “Performance analysis of cell-free massive mimo systems: A stochastic

geometry approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4,

pp. 3523–3537, 2020.

[28] Z. Chen and E. Bjoernson, “Can we rely on channel hardening in cell-free massive

MIMO?” in 2017 IEEE Globecom Workshops (GC Wkshps). IEEE, 2017, pp.

1–6.

[29] R. Gholami, L. Cottatellucci, and D. Slock, “Favorable propagation and lin-

ear multiuser detection for distributed antenna systems,” in ICASSP 2020-

2020 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2020, pp. 5190–5194.

[30] ——, “Channel models, favorable propagation and multistage linear detection in

cell-free massive mimo,” in 2020 IEEE International Symposium on Information

Theory (ISIT). IEEE, 2020, pp. 2942–2947.

[31] L. Cottatellucci, “Spectral efficiency of extended networks with randomly dis-

tributed transmitters and receivers,” in 2014 IEEE China Summit & Interna-

tional Conference on Signal and Information Processing (ChinaSIP). IEEE,

2014, pp. 673–677.

87



BIBLIOGRAPHY

[32] ——, “Capacity per unit area of distributed antenna systems with centralized

processing,” in 2014 IEEE Global Communications Conference. IEEE, 2014,

pp. 1746–1752.
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