
Energy Efficient Sparse Bayesian Learning using
Learned Approximate Message Passing

Christo Kurisummoottil Thomas‡, Rakesh Mundlamuri∗, Chandra R Murthy† and Marios Kountouris∗
∗Communication Systems Department
EURECOM, Sophia-Antipolis, France

Email: {rakesh.mundlamuri,marios.kountouris}@eurecom.fr
† Indian Institute of Science, Bangalore, India

Email: cmurthy@iisc.ac.in

Abstract—Sparse Bayesian learning (SBL) is a well-studied
framework for sparse signal recovery, with numerous applica-
tions in wireless communications, including wideband (millimeter
wave) channel estimation and user activity detection. SBL is
known to be more sparsity-inducing than other priors (e.g.,
Laplacian prior), and is better able to handle ill-conditioned
measurement matrices, hence providing superior sparse recovery
performance. However, the complexity of SBL does not scale well
with the dimensionality of the problem due to the computational
complexity associated with the matrix inversion step in the EM
iterations. A computationally efficient version of SBL can be
obtained by exploiting approximate message passing (AMP) for
the inversion, coined AMP-SBL. However, this algorithm still
requires a large number of iterations and careful hand-tuning
to guarantee convergence for arbitrary measurement matrices.
In this work, we revisit AMP-SBL from an energy-efficiency
perspective. We propose a fast version of AMP-SBL leveraging
deep neural networks (DNN). The main idea is to use deep
learning to unfold the iterations in the AMP-SBL algorithm using
very few, no more than 10, neural network layers. The sparse
vector estimation is performed using DNN, and hyperparameters
are learned using the EM algorithm, making it robust to different
measurement matrix models. Our results show a reduction in
energy consumption, primarily due to lower complexity and
faster convergence rate. Moreover, the training of the neural
network is simple since the number of parameters to be learned
is relatively small.

Index terms— Sparse Bayesian learning, approximate mes-
sage passing, deep unfolding, energy efficiency.

I. INTRODUCTION

Sparse signal reconstruction and compressed sensing have
received significant attention over the last years and have
been applied to various problems including massive multi-
input multi-output (MIMO) channel estimation, biomagnetic
imaging, image restoration, and echo cancellation. The com-
pressed sensing problem can be formulated as

y = Ax+w (1)

where y is the observations or data, A is called the mea-
surement or the sensing matrix, which is known and is of
dimension M × N with M < N , x is the N -dimensional

‡Christo was with Communication Systems Department of EURECOM,
during the course of this work. He is currently working at Qualcomm Inc.,
Espoo, Finland, email: ckurisum@qti.qualcomm.com

sparse signal, and w is the additive noise. Signal x contains
only K non-zero entries, with K � N . w is assumed to be a
white Gaussian noise, w ∼ N (0, γ−1I), with γ representing
the inverse variance (or precision) parameter. To address
this problem, a variety of algorithms, such as orthogonal
matching pursuit [1], basis pursuit method [2], and iterative
re-weighted l1 and l2 algorithms [3] have been proposed in
the literature. Bayesian algorithms, such as sparse Bayesian
learning (SBL), impose a hierarchical prior on x and calculate
the so-called hyperparameters of the prior using the maximum
likelihood (ML) principle, and infer the posterior distribution
of the sparse signal given some observations (data). The SBL
algorithm was first introduced in [4], [5] for linear regression
and sparse signal recovery applications, respectively.

Compared to other state-of-the-art techniques, the critical
point about SBL is the hierarchical prior modeling, which
results in a sparsifying prior on x. In the empirical Bayesian
approach, the hyperparameters (γ, the inverse noise variance,
and α, the variance of the components of x) are estimated
first using an evidence maximization, referred to as the Type
II maximum likelihood (ML) method [5]. With the estimate of
α, γ in hand, the posterior of x is formulated as p(x|y, α̂, γ̂)
and the mean of this posterior distribution is used as a point
estimate of x. Recently, approximate message passing (AMP)
[6], generalized AMP, and vector AMP [7], [8] have been
introduced to compute the posterior distributions in a message
passing (MP) framework with lower computational complex-
ity. AMP uses the central limit theorem and Taylor series
approximations to represent all the messages in a factor graph
in belief propagation (BP) as Gaussian random variables.

However, a drawback of the algorithms mentioned above is
that, in large dimensional settings, they require a large number
of iterations to converge. In recent years, to circumvent the
above issue, deep learning has been used to reduce the compu-
tational complexity of sparse signal recovery, for example, [9]–
[11]. The basic principle in all these algorithms is to unfold the
iterations using a deep neural network (DNN). The weights of
the DNN are trained using a large set of training examples to
minimize the reconstruction mean-squared error (MSE). Once
the weights have been optimized, the DNN can be used to
estimate the sparse vector x for a new observation y.

A. Contributions

• We propose a learned AMP-SBL with Expectation-
Maximization (EM) for hyperparameter estimation (de-
noted as EM-LAMP-SBL) by combining EM-SBL, AMP,
and deep learning. This enables our algorithm to converge
in very few iterations compared to the original AMP-
SBL [12], thanks to the introduction of learned weights
in the AMP iterations. This results in fewer computations
overall and hence achieves energy savings compared to
iterative algorithms based on AMP, while achieving the
same or better sparse signal recovery performance.

• We also observe in our simulations that as the mea-
surement matrix deviates from the i.i.d. Gaussian model,
the assumption under which AMP is derived, the EM-
LAMP-SBL still converges to a possibly local optimum
and offers good sparse recovery performance. However,
the AMP-SBL algorithm diverges in such cases, thus
illustrating the applicability of EM-LAMP-SBL to more
general A matrices compared to previous approaches.

The key novelty in our work is in unfolding the AMP-
SBL as a DNN (see Algorithm 1), identifying the part of
the algorithm that can be made learnable (See Fig. 2), and
developing a scheme for learning the weights (See Algorithm
2). We support our DNN-based architecture with numerical
results which show that the EM-LAMP-SBL algorithm offers
a low complexity and therefore energy-efficient approach to
sparse signal recovery, while retaining or improving on the
performance of their parent algorithms (See Fig. 3).

II. SBL SYSTEM MODEL

We start with the signal model in (1). In sparse Bayesian
learning, a two-layer hierarchical prior is assumed for the
x as in [4]. The prior is chosen such that the resulting
marginalized prior obtained for x encourages sparsity in the
posterior estimate of x. Specifically, x is assumed to be Gaus-
sian distributed and parameterized by an unknown diagonal
covariance with elements α = [α1 α2 ... αN], where αi
represents the inverse variance or the precision parameter of
xi and is assumed to be Gamma distributed with parameters
a and b. Let Γ(x) denote the Gamma function. Thus,

p(x|α) =

N∏
i=1

p(xi|αi) =

N∏
i=1

N (0, α−1i), (2)

and

p(α) =

N∏
i=1

p(αi|a,b) =

N∏
i=1

baαa−1
i e−bαi

Γ(a)
. (3)

The inverse of noise variance γ is also assumed to be Gamma
distributed, i.e., p(γ) = (Γ(c))−1dcαc−1

i e−dγ , where c and d
are known parameters. This prior distribution on xi results
in a Student-t distribution with parameters a and b, which
promotes sparsity in the posterior estimates. Specifically, for
small values a and b, the Student-t distribution has sharp

peak at zero, which favors sparsity. Now, the likelihood of
the observations y can be written as

p(y|x, γ) = (2π)−M/2γM/2e
−γ‖y−Ax‖2

2 . (4)

A. AMP-SBL Algorithm

Our point of departure is the algorithm derived in [12, Table
I] for AMP-SBL. In this section, for any scalar variable a and
any vector a, â and â represent their estimates, respectively.

Given the hyperparameter estimates, the posterior density
of x is Gaussian [5]:

p(x|y, γ̂, α̂) = N (x̂,Σ), (5)

with x̂ = γ̂ΣATy and Σ = (γ̂ATA + Diag(α̂))−1. To find
γ̂ and α̂, we use the EM algorithm to maximize p(y|γ,α).
This is equivalent to maximizing

L(α, γ) = log p(y|γ,α)

= −1

2
[N log 2π] + log |C|+ yTC−1y,

(6)

with
C = γ−1I + ADiag(α)−1AT . (7)

The EM algorithm proceeds by maximizing a lower bound to
L(α, γ), obtained by treating x as hidden variables, namely,

Ex|y,α̂t,γ̂tp(y,x|γ,α). (8)

Performing alternating optimization between γ and α to
maximize L(α, γ) leads to the following iterations

E-Step: Q(α, γ|α̂t, γ̂t) = Ex|y,α̂t,γ̂t [log p(y,x|α, γ)] , (9)

M-Step: (γ̂t+1, α̂t+1) = arg maxQ(α, γ|α̂t, γ̂t). (10)

The above yields the hyperparameter updates in each iteration
of Algorithm 1.

To reduce the computational complexity (in inverting the
matrix Σ) in the E-step, we use belief propagation (BP) [13].
In BP, all the messages passed between the nodes in the factor
graph remain Gaussian (and hence can be parameterized by
the means and variances). However, for a dense matrix A, BP
involves the exchange of MN messages (with min(M,N)
computations per message) at every iteration [13]. The BP
can be efficiently implemented using AMP [14]. The AMP
iterations (with t denoting the iteration index) are as follows:

vt = y −Ax̂t +
vt−1
M

N∑
n=1

η′n(rn,t;αn,t), (11)

and
x̂t+1 = η(x̂t + ATvt,αt) (12)

where η is a Lipschitz-continuous function and η′ represents
the derivative of η with respect to the first argument. The

second term in vt,
vt−1

M

N∑
n=1

η′n(rn,t;αn,t) represents the so-

called Onsager correction term. When the entries of A are
i.i.d sub-Gaussian with variance proportional to 1/M , then the

Onsager correction term decouples the input to the shrinkage
function η, see [14] for details. That is,

rt = x̂t + ATvt (13)

can be accurately (in the large system limit where M,N →
∞) modeled as

rt = x+N (0, ctI) (14)

where ct, is given in step 3 of the Message Updates part of
Algorithm 1. Further, performing an minimum MSE (MMSE)
estimate leads to the expression for x̂ as

x̂ = Ftrt,

where Ft =
1

ct

(
1

ct
I + Diag(α̂t)

)−1
.

(15)

Note that no matrix inversion is required in the above step.
However, AMP-SBL has several limitations such as divergence
of the algorithm when A does not have i.i.d. entries. An
intuitive workaround for this is to make A,AT in (11), (12)
learnable parameters and optimize them using a DNN, which
is the basis of our proposed approach described below.

III. LEARNED AMP-SBL (EM-LAMP-SBL)

In this section, we present our proposed EM-LAMP-SBL
and highlight the differences between EM-LAMP-SBL and
the state-of-the-art AMP-SBL. We also explain the benefits
obtained from the DNN based solution. Finally, we describe
the training procedure in detail.

A. Proposed EM-LAMP-SBL

In our proposed EM-LAMP-SBL approach, we consider
unfolding the iterations of the AMP-SBL algorithm [12]. Our
proposed solution is inspired by the learned AMP (LAMP)
algorithm proposed in [15], where the iterations of an AMP
algorithm are unfolded into a T layer DNN. In the LAMP
version of the SBL, the MMSE estimate of the sparse vector
x in SBL is replaced with the LAMP estimate and the block
diagram is depicted in Fig 1. Unlike LAMP, which considers
an identity covariance matrix for x, in EM-LAMP-SBL, the
covariance matrix is diagonal with non-identical entries. Due
to this subtle but crucial difference, the LAMP iterations are
not the same as that of AMP-SBL. Note that the LAMP
algorithm involves replacing the matrices (A, AT) with learn-
able parameters (At, Bt) at iteration t. Another difference
between EM-LAMP-SBL and LAMP is that the shrinkage
function η(rt;αt), which is a component-wise vector oper-
ation becomes different for each xi. The nth component of
η(rt, αt) is represented as ηn(rn,t;αn,t). The only constraint
on η is that it should be a Lipschitz-continuous function [15].
The hyperparameters (α, γ) are estimated using the M-step
of the algorithm. The hyperparameter learning step can thus
be viewed as a non-linear activation function, which is also a
component-wise operation.

In Algorithm 1, we detail the iterations in our proposed
EM-LAMP-SBL. We also depict the block diagram of the
computations involved in one iteration of EM-LAMP-SBL in

Fig 2. In Algorithm 1, we denote the posterior covariance at
iteration t as Σt = Diag(σ2

t), σ2
t = [σ2

1,t, ..., σ
2
N,t], where σ2

i,t

is the posterior variance of xi.

Algorithm 1 EM-LAMP-SBL (AMP-SBL) Algorithm. The
steps in the brackets are the steps implemented in AMP-SBL
in lieu of the corresponding steps in EM-LAMP-SBL.
Given: y,A,M,N .
Initialization: a,b,c,d are taken to be on the order of 10−10.
α0
i = a/b,∀i, γ0 = c/d and σ2 ,0

i = 1
‖Ai‖2γ0+α0

i
,x0 = 0.

At iteration t,
Definitions:

1) ηn(rn,t;αn,t) = rn,t
1
ct

1
ct

+αn,t
, η′n(rn,t;αn,t) =

1
ct

(1
ct

+αn,t)

2) fn(xn,t, σ
2
n,t) = |xn,t|2 + σ2

n,t

Message Updates:
1) rt = Btvt + x̂t, (Bt = AT)
2) x̂t+1 = η(rt;αt), Σt+1 = (1

ct
I + Diag(αt))

−1

3) ct+1 = 1
γt

+ 1
M tr{Σt+1}

4) vt+1 = y −Atx̂t+1 + vt
M

N∑
n=1

η′n(rn,t;αn,t), (At = A)

Hyperparameter Updates:
1) αt+1 =

a+ 1
2

f(x̂t+1,Σt+1)

2 +b

2) 1
γt+1

=
‖y−Atx̂t+1‖2+tr(ATAΣt+1)

2 +d
c+M

2

.

To summarize our approach, we replace the AMP-SBL
using a T-layer EM-LAMP-SBL with learnable parameters
(At, Bt). As we will show, this leads to faster convergence
compared to the original AMP-SBL algorithm in [12]. Note
that the resulting faster convergence is obtained at the expense
of training the weights and a T−fold increase in memory
complexity.

B. EM-LAMP-SBL Training

The training method for EM-LAMP-SBL is shown in
Algorithm 2. Using the model in (1), we can artificially
generate a training dataset in advance. Moreover, since the
model is inspired by unfolding an existing high-performing
algorithm, the number of learnable parameters is far fewer
than a traditional neural network. Hence, a relatively small
training dataset is sufficient for training the network. We start
with the first layer and train each layer successively, freezing
the weights of the previous layers. We use the MSE between
the output of each layer and the true sparse vector as the loss
function:

L = 1
m

m∑
i=1

∥∥x(i) − η(rT ;αT)
∥∥2 (16)

where m denotes the minibatch size and x(i) denotes the
ith training sample. In Fig 2, we depict a single layer of
EM-LAMP-SBL. Each layer contains a learnable part which
outputs the MMSE estimate of x given the hyperparameters,

Affine Transformation Affine Transformation

Onsager Correction

+

Fig. 1. Block diagram representing one iteration of LAMP-SBL.

Fig. 2. A single layer of EM-LAMP-SBL. Thicker lines in the diagram represent multiple variables.

Algorithm 2 EM-LAMP-SBL
Given: y,A,M,N .
Initialization: a,b,c,d are taken to be very low, on the order of 10−10. α0

i =

a/b,∀i, γ0 = c/d and σ2 ,0
i = 1

‖Ai‖2γ0+α0
i

,x0 = 0,v0 = y.

Define Θ0 = {B,A}
At iteration t,

for t = 1 : T do
Initialize Bt = Bt−1, At = At−1. Specify the max iterations R and
number of iterations to wait for the min NMSE S
for R do

Sample minibatch of m measurement vectors from the training set
Learn Θt using Adam optimizer
if Θt does not perform better than the min NMSE in S iterations,
then stop

end for
end for

and an M-step which is used to estimate the hyperparameters.

IV. SIMULATIONS

The simulations are performed in a server equipped with
30 CPU cores and a GPU. The training and testing are
implemented in python using TensorFlow, and we used the
Adam optimizer [16]. We consider a measurement matrix A
with dimensions M = 150 and N = 250 with i.i.d. Gaussian
N (0, 1/M) entries, and the observations are generated at SNR
= 20 dB. Also, we use a Bernoulli-Gaussian prior to generate
the sparse vector x, namely, p(xi) = piδ(xi)+(1−pi)N (0, 1),
where δ(xi) is the Dirac delta function and pi = 0.9.

We evaluate the performance and robustness of the EM-
LAMP-SBL algorithm in two scenarios. In Scenario 1, we
evaluate the convergence of the EM-LAMP-SBL algorithm
with varying condition number, denoted by κ, of A. We
compare the performance of the EM-LAMP-SBL algorithm

with the original AMP-SBL and SAVE (space alternating
variational estimation)-SBL [17] (which is based on mean-field
variational Bayes for the estimation of x and hyperparame-
ters). In Scenario 2, we examine the robustness of the EM-
LAMP-SBL algorithm to deviations (errors) in the knowledge
of the measurement matrix A.
A. Scenario 1

In this scenario, we consider a matrix A generated with
condition number κ. To generate A with a specific condition
number, we first create a matrix with i.i.d, mean 0, variance
1/M Gaussian entries. Then, we perform a singular value
decomposition (SVD) of A. We also compute M uniformly
spaced points between 1 and 1/κ in the logarithmic scale, and
normalize them to have a unit sum. We replace the singular
values of A with these M values, and create a new A with
condition number κ by left- and right-multiplying by the
matrices containing the corresponding singular vectors.

In Fig. 3, we plot the normalized MSE (NMSE) as a
function of the iteration number (number of DNN layers for
EM-LAMP-SBL) for κ = 1 and 100. When κ = 1, EM-
LAMP-SBL converges faster than AMP-SBL and SAVE-SBL.
For example, to achieve an NMSE of −15 dB, EM-LAMP-
SBL requires only 5 iterations, while SAVE-SBL and AMP-
SBL require 20 and 30 iterations, respectively. Since a single
iteration of the three algorithms is of comparable complexity,
this represents a four-fold reduction in complexity compared to
the state-of-the-art. When κ = 100, AMP-SBL diverges. How-
ever, the EM-LAMP-SBL algorithm still converges, albeit with
a slightly degraded NMSE. We also see that it outperforms
SAVE-SBL, which takes around 100 iterations to converge to a
slightly worse NMSE than EM-LAMP-SBL. This degradation
in the NMSE with the condition number may be because the
algorithms converge to sub-optimal local optima.

10 0 10 1 10 2

No. of Iterations

-25

-20

-15

-10

-5

0
N

M
S

E
[d

B
]

AMP-SBL, =1

SAVE-SBL, =1

EM-LAMP-SBL, =1

SAVE-SBL, =100

EM-LAMP-SBL, =100

AMP-SBL, mismatched A, =1

EM-LAMP-SBL, mismatched A, =1

Fig. 3. NMSE versus the number of iterations/layers of the DNN, comprising
(a) comparison with state-of-the art approaches; (b) for matrices with different
condition numbers; and (c) with mismatched measurement matrices.

B. Scenario 2
We evaluate the case of mismatched measurement matrices,

where the matrix A used to generate the observations is
different from the matrix Â used by the recovery algorithm.
We generate A with i.i.d. Gaussian N (0, 1/M) entries and
condition number κ, and generate Â as Â = A + ∆A,
where ∆A has from a i.i.d Gaussian N (0, σ2/M), with σ2 set
equal to the noise variance. We train the DNN by providing
observations generated using different sets of Â.

In this mismatched measurement matrix scenario, EM-
LAMP-SBL performs much better than the AMP-SBL and
SAVE-SBL. It takes around 25 iterations to converge to an
NMSE of −25 dB when κ = 1 (and an NMSE of −15
dB when κ = 100). Moreover, the performance of our DNN
version is superior to AMP-SBL. Hence, the EM-LAMP-SBL
algorithm is robust to mismatch in A.

C. Complexity and Energy Efficiency Comparison
We use the number of floating point operations (flops) per

iteration as a proxy for energy efficiency, and compare EM-
LAMP-SBL with AMP-SBL. Each iteration of AMP-SBL
involves 3MN + 5N multiplications, which dominate the
computational complexity. EM-LAMP-SBL also involves the
same amount of computations as AMP-SBL since the only
difference in each layer of the DNN architecture is that the
A,AT are learned from the training data. We ignore the com-
plexity of training since it is performed offline. Furthermore, to
achieve an NMSE below −20 dB, the total complexity of the
AMP-SBL or SAVE-SBL is of the order of 70(3MN + 5N)
compared to 20(3MN + 5N) for the EM-LAMP-SBL, when
the condition number is one (see Fig. 3). When the condition
number increases to 100, the computational complexity and
hence the energy efficiency of EM-LAMP-SBL is almost 5
times lower than the other algorithms.

V. CONCLUSIONS

In this paper, we presented EM-LAMP-SBL, a deep learning
empowered computationally and energy efficient version of a

state-of-the-art AMP-based sparse signal recovery algorithm.
Through simulations on synthetic data, we illustrated the
superior performance of the EM-LAMP-SBL algorithm in
terms of the convergence rate, compared to its iterative model-
based parent algorithm. The convergence rate dictates the
number of iterations required for achieving a target NMSE,
and, therefore, is a proxy for the energy efficiency of the al-
gorithm. We also showed that EM-LAMP-SBL is robust to ill-
conditioned matrices and model mismatch. Our algorithm can
potentially be used in solving sparse signal recovery problems
with structured or parameterized measurement matrices, e.g.,
in massive MIMO or mmWave channel estimation systems.

VI. ACKNOWLEDGMENTS

C. K. Thomas was funded by a French FUI project titled
MASS-START. M. Kountouris was partially supported from
a Huawei France-funded Chair towards Future Wireless Net-
works. C. R. Murthy was funded by the Ministry of Electronics
and Information Technology, Govt. of India.

REFERENCES

[1] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol.
53, no. 12, pp. 4655–4666, December 2007.

[2] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 129–159,
1998.

[3] D. Wipf and S. Nagarajan, “Iterative reweighted l1 and l2 methods for
finding sparse solutions,” IEEE J. Sel. Topics Sig. Process., vol. 4, no.
2, pp. 317–329, April 2010.

[4] M. E. Tipping, “Sparse Bayesian Learning and the Relevance Vector
Machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

[5] D. P. Wipf and B. D. Rao, “Sparse Bayesian Learning for Basis
Selection,” IEEE Trans. on Sig. Proc., vol. 52, no. 8, pp. 2153–2164,
Aug. 2004.

[6] D. L. Donoho et al., “Message-passing algorithms for compressed
sensing,” PNAS, vol. 106, no. 106, pp. 18914–18919, Nov. 2009.

[7] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory, Saint
Petersburg, Russia, August 2011.

[8] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector Approximate
Message Passing,” IEEE Trans. on Info. Theory, vol. 65, no. 10, pp.
6664–6684, Oct. 2019.

[9] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in in Proc. Int. Conf. Mach. Learn., Haifa, Israel, 2010.

[10] U. Kamilov and H. Mansour, “Learning optimal nonlinearities for
iterative thresholding algorithms,” IEEE Signal Process. Lett., vol. 23,
no. 5, pp. 747–751, 2016.

[11] Z.Wang, Q. Ling, and T. S. Huang, “Learning deep l0 encoders,” in in
Proc. AAAI Conf. Artif. Intell., Arizona ,USA, 2016, p. 2194–2200.

[12] M. Al-Shoukairi and B. Rao, “Sparse Bayesian learning using ap-
proximate message passing,” in 48th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, November 2014.

[13] X. Tan and J. Li, “Computationally Efficient Sparse Bayesian Learning
via Belief Propagation ,” IEEE Trans. on Sig. Proc., vol. 58, no. 4, pp.
2010–2021, Apr. 2013.

[14] M. Bayati and A. Montanari, “The dynamics of message Passing on
dense graphs, with Applications to Compressed Sensing ,” IEEE Trans.
on Inf. Theory, vol. 57, no. 2, pp. 764–785, February 2011.

[15] M. Borgerding, P. Schniter, and S. Rangan, “AMP-Inspired Deep
Networks for Sparse Linear Inverse Problems,” IEEE Trans. On Sig.
Process., pp. 4293–4308, Aug. 2017.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in in Proc. Int. Conf. Learn. Representations, San Diego, USA, 2015.

[17] C. K. Thomas and Dirk Slock, “SAVE - Space alternating variational
estimation for sparse Bayesian learning,” in IEEE Data Science
Workshop, Lausanne, Switzerland, June 2018.

